文档库 最新最全的文档下载
当前位置:文档库 › UG与ANSYS模型数据转换的方式及实例分析

UG与ANSYS模型数据转换的方式及实例分析

UG与ANSYS模型数据转换的方式及实例分析
UG与ANSYS模型数据转换的方式及实例分析

U G与ANS YS模型数据转换的方式及实例分析

张尔文,孙友松,周先辉

(广东工业大学,广东广州510006)

摘 要:在有限元分析软件ANSYS建立复杂模型比较困难,而CAD软件U G具有强大的三维

造型功能。讨论了与ANSYS之间的数据转换问题;介绍了将U G模型导入ANSYS的方法和

相关的操作;对比了CA TIA和IGES格式在ANSYS中生成的模型的优劣。

关键词:U G;ANSYS;有限元;建模

中图分类号:TP391172 文献标识码:B 文章编号:167125276(2007)022*******

Example Analyses in Data Conversion bet w een UGand ANSYS

ZHAN G Er2wen,SUN Y ou2song,ZHOU Xian2hui

(Guangdong University of Technology,G D Guangzhou510006,China)

Abstract:This paper discusses the exchange problems between U G and ANSYS,and introduces the method to import U G mod2 el file to ANSYS.It also compares the differences between CA TIA Model file and IGES file imported to ANSYS.

K ey w ords:U G;ANSYS;FEM;modeling

0 引言

ANSYS具有结构、流体、热、电磁及其相互耦合分析的功能,是有限元领域的大型通用软件,以其多物理场耦合分析的先进技术和理念,在工业领域和研究方向都有广泛而深入的应用。但与其强大的有限元分析功能相比, ANSYS的建模功能显得较为逊色,在应用ANSYS进行有限元分析中,有限元建模耗费了工程技术人员大量的时间与精力。虽然ANSYS带有自建模功能,但是这个建模功能非常有限,只能处理一些相对简单的模型,而且操作起来并不十分便利。随着ANSYS的应用日益广泛,它需要处理的模型也越来越复杂,ANSYS自带的建模功能就显得非常不足。U G、Pro/E、S olidWorks、S olidEdge等CAD 造型软件拥有强大的参数化设计能力,可以进行复杂的实体造型。因此,如果把这些CAD造型软件与ANSYS结合使用,充分利用CAD造型软件快速准确建模的特长,就可以很好地解决CAD建模能力的不足。许多工程技术人员就利用这些CAD软件建模,利用ANSYS与CAD软件之间的图形接口将模型导入ANSYS。ANSYS提供了与大多数CAD软件进行数据共享和交换的图形接口,ANSYS 自带的图形接口能识别IGES、ParaS olid、CA TIA、Pro/E、U G、SA T等标准的文件。使用ANSYS与CAD造型软件的快速方便的接口,能有效提高建模速度,提高模型品质,简化分析工作。

在很多情况下,技术人员已经在擅长的CAD系统中建立了几何模型,这时可以通过ANSYS与CAD系统的接口把它输入到ANSYS中进行分析。工程师可以利用自己熟悉的工具去建模,而且避免了在ANSYS中重复对现有CAD模型进行建模。

U G、Pro\E是最为常用的三维造型软件,它们强大的参数化建模功能使得复杂零件的造型容易实现。AN2 SYS为U G和Pro\E都提供了直接的接口,使用ANSYS 进行有限元分析时可以直接将模型导入。ANSYS为Pro/E提供了连接向导,比较容易实现数据的转换。选择“程序”→ANSYS8.0→Utilities→ANS ADMIN,打开AN2 SYS管理器,按照提示进行与Pro/E连接即可。

与Pro/E不同,ANSYS并没有为U G提供连接向导,一般来说,先安装U G再安装ANSYS,ANSYS会自动与U G连接。虽然ANSYS与U G有直接的接口,但由于版本问题等各种原因导致不能成功直接在ANSYS导入U G 的3.prt模型文件,因此本文主要讨论U G和ANSYS的数据转换。螺栓有一个复杂的螺旋曲面,能够很好地考察模型数据的转换是否成功,

下面以U G中建立的一个M8×25螺栓模型(文件名为bolt.prt)为例(图1),介绍从U G导入数据到ANSYS方法,各种软件版本可能不尽相同,本文使用的是ANSYS8.0和U G NX2.0。

图1 U G中螺栓模型

1 直接导入U G文件

ANSYS支持U G的3.prt文件,在ANSYS中选File →Import→U G再指定bolt.prt,一般可以导入数据。但是在某些版本的ANSYS中往往提示缺少bolt.ans文件(图2),操作失败,模型无法导入ANSYS。

总结经验发现,在某些版本的ANSYS中,要使U G文

?90

 ?https://www.wendangku.net/doc/f018572645.html, E2mail:ZZHD@https://www.wendangku.net/doc/f018572645.html, 《机械制造与自动化》

图2 提示缺少ans 文件

件成功导入ANSYS 之前需手工在系统中添变量,变量名为PA TH ,变量值为U G 安装文件夹里U GII 文件夹的路径,本例的变量值为H :\Unigraphics NX 2.0\U GII ,不同版本的U G 具体的变量值不尽相同。操作为在Win 2dows 中选系统→高级→环境变量→系统变量→新建(图3),按确定后如图4所示,“环境变量”

对话框新增了所添加变量,添加系统变量后须重启计算机。

3 新建系统变量

图4 环境变量对话框

重启后,在ANSYS

中选File →mport →U G 指定bolt.

prt ,螺栓模型成功导入ANSYS 。但模型实体以线框形式显示(图5),不能显示面和体,难以直观操作。在ANSYS 中选Plot →Style →S olid Model →Normal Faceting ,然后选Plot →Volume 后,显示如图6的实体,很好地表达了模型各种特征细节,基本没出现线面丢失、图元无法转换等问题,这样就很快的在ANSYS 建立了复杂的螺旋曲面。使用ANSYS 进行有限元分析时,其它复杂的也可以同样使用U G 进行建模再导入ANSYS 中,免去了费时ANSYS 建模工作。一些原先无法直接用ANSYS 自带建模功能建立的复杂模型也能在ANSYS 中建立,提高了有限元分析的正确性和准确性。

若U G 模型成功导入了ANSYS ,则会在ANSYS 工作文件夹中生成与U G 文件同名的U G -ANSYS 通信列表

图5 导入U G 文件生成的螺栓模型(线框)

图6 导入U G 文件生成的螺栓模型

文件bolt.tbl 和U G -ANSYS

属性文件bolt.attr ,这两文件记录了被导入模型的各种信息。

2 间接导入U G 文件

将U G 中模型另存为其它ANSY S 支持的格式,再导入ANSY S 。在U G 中将模型另存为CATIA Model File (3.m odel )或IGES File (3.igs ),ANSY S 支持这两种格式的文件。下面依然将螺栓作为例子,在U G 中将螺栓模型另存为bolt.m odel 和bolt.igs 。在ANSY S 中选File →Import →CA 2TIA →bolt.m odel 或File →Import →IGES →bolt.igs ,将螺栓模型导入ANSY S 中,图形同样以线框表示显示,选Plot ->

Style ->S olid Model ->Normal Faceting ,然后选Plot ->Volume 显示实体,结果分别如图7、8所示。

图7 导入CA TIA Model 文件生成的螺栓模型

(下转第94页)

M achi ne B uil di ng &A utomation ,A pr 2007,36(2):90~91,94

?91 ?

线需选择两次(B1和B6),按A11-…-A15-A21-…-A25-…-B1-…-B6的选择顺序选择边界线[图8(b )],生成的Coons 曲面如图8(c )所示。

2.4 构造点边界Coons 曲面

图9所示的线框模型每个缀面都只有三条边界,但如果假想曲线浓缩成点,则顶点可看作是五条边界线浓缩成的一个点,这样每个缀面都有四条边界(相邻处为公共边界线),具备了构建Coons 曲面的条件。按A11-…-A15-A21-…-A25-…-B1-…-B6的选择顺序选择边界线,其中A21-…-A25为同一点,选择时必须与A11-…-A15的起点相对应,生成的Coons 曲面如图10所示

图9 

每个缀面只有三条边界的线框模型

图10 由图9生成的Coons 曲面

3 小结

上述的一些技巧是在实际使用中总结出来的,通过这

些方法,可以一次性得到一个整张的Coons 曲面,既可以保证曲面形状的准确性,又可以保证缀面边界处的连续性和圆滑性,减少曲面数控加工时载刀(铣刀轨迹跌落)和过切现象的发生。参考文献:

[1]孙家广,等1计算机图形学(第三版)[M ].北京:清华大学出

版社,19981

[2]程 蓉,谢先报1复杂曲面建模的数学基础[J ]1哈尔滨工业

大学学报,2002,4.

收稿日期:2006210224

(上接第91页)

图8 导入IGES 文件生成的螺栓模型

对比两种不同格式生成的ANSYS 模型,可以明显地

看出,图7中的螺栓并没有生成螺纹。分析导入的模型,发现CA TIA Model 格式导入的模型明显优于IGES 格式导入的模型。ANSYS 能很好支持CA TIA 的格式,CA TIA Model 格式导入的模型生成了线、面和体,完整地保留了U G 中的螺栓模型各种细节特征,连复杂的螺纹曲面也得到了很好的表达。

IGES 作为一种表达产品数据并将其转换成中性文件格式的行业标准,实现文件之间的交换具有很大的优势,但是ANSYS 对IGES 的支持不够,ANSYS 读入所需IGES 文件的时间很长,占有系统资源较多。而且,在导入IGES 文件的时候,无法识别小的几何元素,造成所生成拓扑结构不连续,无法生成实体,导入的螺栓模型只是由一些面组成,并不能生成实体,不能表达螺纹的曲面。而且,

倘若要在ANSYS 使用这种模型进行有限元分析,则必须费时做大量的修补工作,影响分析的精度和准确性,甚至还可能还会影响后面划分网格等工作。

3 小结

a )通过添加“系统变量”,可以解决U G 模型文件不

能导入ANSYS 的问题,实现U G 和ANSYS 数据的直接转换,借助U G 的三维造型功能弥补ANSYS 建模功能的不足。对于熟悉U G 三维造型设计的工程技术人员,U G 和ANSYS 数据的直接转换给他们带来了很大的方便,直接在U G 中建模,大量的节省了在ANSYS 中建模的时间。一些难以在ANSYS 中直接建立的模型也变得容易实现;

b )若要将U G 模型文件另存为CA TIA Model 或IGES 文件,间接地将U G 模型文件导入ANSYS 中,建议采用CA TIA Model 格式。因为采用IGES 格式可能会导致模型信息的丢失,所以在导入复杂的模型时最好避免使用IGES 格式进行转换,IGES 格式只适合于转换一些较为简单的模型。参考文献:

[1]王永辉.CAD 数据转换格式的对比[J ].机械设计与制造,

2002,(2):48250.

[2]高咏涛.ANSYS 在结构分析中的应用及与CAD 的联接[J ].

机械工程师,2005,(8):77278.

[3]孙 军.CAD 与ANSYS 的接口技术探讨[J ].化工设备与管

道,2004,(2):55257.收稿日期:2006210220

?信息技术? 马晓明?Coons 曲面在MasterCAM 中的运用技巧?94 ?

http ://https://www.wendangku.net/doc/f018572645.html, E 2mail :ZZHD @https://www.wendangku.net/doc/f018572645.html, 《机械制造与自动化》

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

PROE与ANSYS之间的数据传递

随着计算机技术的不断发展,CAD/CAE技术在机械系统研究中的应用也越来越广泛。 PROE具有强大的实体建模能力,而ANSYS则具有强大的有限元分析计算能力,将PROE和ANSYS进行连接,综合利用它们各自领域的优势是机械系统研究的首选方案,这就涉及到PROE与ANSYS之间的数据传递。目前,PROE与ANSYS之间的数据传递主要有以下几种方式。 1 利用IGES中间标准格式转换 The Initial Graphics Exchange Specification(IGES)是由美国国家标准协会(ANSI)组织波音公司、通用电气公司等共同商议制定的信息交换标准,受到绝大多数CAD/CAM系统的支持。但ANSYS在IGES 转换中,有时会把不能识别的特征省略掉,特别是模型特征过多或结构过于复杂时,很容易产生模型断裂、实体丢失等,直接影响有限元分析模型建模的准确性,此外,采用ANSYS进行IGES转换还具有耗时长的缺点。 2 利用ANSYS与PROE的专用接口转换 ANSYS与PROE有一个专用接口模块“Connection for Pro/Engineer”,此模块不仅能将PROE模型数据快速准确地传递给ANSYS,还提供了以执行部件为基础的参数优化设计功能。启动ANSYS路径下“ans_admin.exe”并在其中设置PROE的安装路径就能激活这个专用接口模块。成功激活后可以在PROE主菜单栏中看到ANSYS对应版本的菜单。

利用专用接口转换进行数据传递有两种方式:在PROE环境下直接激活ANSYS或在ANSYS读取PROE模型文件。 2.1 在PROE环境下直接激活ANSYS 在PROE环境下完成模型文件的创建后,直接点击主菜单栏上的ANSYS菜单,主菜单选择“ANSYS Geom”子菜单,将自动启动ANSYS应用程序并导入模型,同时PROE自动禁止用户交互,以保证数据一致性。当ANSYS程序退出后,自动返回到PROE建模环境。此时ANSYS的工作目录与PROE工作目录相同,PROE模型导入ANSYS后工作目录下会产生一个后缀名为anf的供ANSYS读取的模型数据文件,方便用户下次调用,而不需每次都进行数据转换。 2.2 在ANSYS中读取PROE模型文件 在ANSYS的“File→Import→Pro/E”命令弹出的对话框中,选择所需的prt文件,在“Pro/ENGINEER command”栏中填入PROE的命令,如“proe1.bat”,点击OK完成输入,则ANSYS会启动专用接口模块进行数据传递。此方法同样会在工作目录下生成anf文件。 3 在PROE中选择ANSYS做求解器输出数据传递文件 在PROE中调用“应用程序”菜单中的Mechanica程序进入有限元FEM模式。在网格创建完毕之后,选择输出格式为ans文件,则在ANSYS菜单“File→Read input from”中便可直接读入带有有限元网格的模型文件。ans文件为ANSYS专用的附带网格信息的模型数据文件。由于PROE网格类型较少,PROE中ans文件的输出和ANSYS

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

proe模型如何导入ansys

proe零件导入ANSYS的方法 {方法一:在Pro/E中建立好模型后(一般是part),从菜单File_save a copy中 选择IGES类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在Ansys 中不能识别!启动Ansys ,从菜单file_import_IGES ,选择刚才形成的文件就可以输入模型了。 在Ansys 中输入模型时,可能出现模型断裂的结果,可以对" defeature 、 合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。方法二:首先,安装Ansys 时,必须安装了ANSYS Connection For Pro/ENGINEER 模块(代号82)。在"开始_程序_ Ansys 5.6_ANS_ADMIN Utility"中,选择configuratio n options,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间 大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk.dat 文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他! 打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ansys GEOM,单击它,直到自动调用并启动了Ansys ,此时再选取Fil e_import_Pro /E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*. prt 文件必须在Pro/E的工作目录中,或者Pro/E与An sys 有相同的工作目录,否则会出现找不到*. anf 文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys 的安装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点 取OK则会重新传输模型后再导入,不知是何道理? 方法三:首先,安装Ansys 时,必须安装了ANSYS Interactive For Pro/ENGINEE R模块(代号83) 在"开始_程序_ Ansys 5.7_ANS_ADMIN Utility"中,选择configuration options,选择c onfigure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入P ro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个 protk.dat 文件。此时,不必运行Pro/E,可以直接运行Ansys ,从File_import_Pro /E出现的对话框中,填入正确的文件名,并在Pro/E command栏中填入您系统的正确的命令如proe200 1,点OK即可完成输入。在输入的过程中,Ansys 将自动调用Pro/E,并在Ansys 自己的工作目录中生成一个*。Anf 文件。 注意:这一办法在Ansys5.6以下的版本中,*. prt 文件必须存放在不包含空格的路径中,否则将出现Ansys 致命错误并退出,估计是一个bug! 方法四:上面方法二和方法三中产生的anf 文件其实是一个文本文件,而且实际上起作用的就是这个文件,因此,完全可以不必拘泥于上面的方法,只要产生好了anf 文件,随时可以运行Ansys ,从File_Read input from...中选择该文件,完成模型的输入, 不过模型输入完成后不显示图形--只要plot一下就可以了! 方法五:不必安装上面方法2、3、4中的"连接",在Pro/E中,打开建好的模型,选择菜单Applications_Mechanica ,此时会进入有限元FEM模式,可以进行结构,热等的分析,选择结构- -分网(mesh)--create--solid--start,开始分网,完成后关闭对话框, 选择菜单中的Run,在对话框的求解器中选择Ansys ,输出到文件,填入文件名,点取OK(材料不必输入),即可生成一个*. ans 文件。上面产生的*. ans 文件其实是一个文 本文件,与上面方法4产生的anf 文件功能完全一样,因此运行Ansys ,从File_Read

proe与ansys10.0之间的数据转换和连接

ANSYS软件是进行有限元分析的工具,具有强大的分析功能,但对于复杂的零件建模过程却非常困难,而ProlE软件却有着强大的三维图形处理功能。我们在Pro/E中完成斜齿轮的建模工作,然后把Pro/E中的斜齿轮实体模型导入到ANSYS 中,大大降低了在ANSYS 中建立实体模型难度、提高计算效率。 由于目前CAD 和CAE这两个领域最具代表性的应用软件分别是Pro/E 和ANSYS。Pro/E 拥有强大的实体和曲面造型功能,而ANSYS具有完善的有限元分析功能,这两个软件各自的长处恰恰又是对方的短处。解决这一矛盾的有效途径是:在Pro/E中进行建模,然后将模型导入到ANSYS 软件中进行有限元分析,从而实现用计算机完成零件设计和分析。所以,问题的关键是如何把这两个软件结合起来,将Pro/E中生成的模型完整地导入到ANSYS 中去,进而完成所需的有限元分析。 我们以目前流行的版本Pro/ENGINEERWildfire3.0 与ANSYS10.0 为研究对象,进行了实体模型在两个不同软件之间的转换和连接。 1 ANSYSI0.0 与ProlE接口连接 ANSYS l0.0 软件安装选项中包含与Pro/Engineer 软件的接口模块"Connection for Pro/Engineer" (见图1)。此模块不仅能将ProlE模型数据直接转换给ANSYS ,同时还提供了以执行部件为基础的参数优化设计功能。该功能允许从建立以部件为基础的参数化Pro/E模型开始,用ANSYS程序对其进行优化,并以一个优化的模型结束,而且建立好的模型仍是以部件为基础的参数化模型。此模块能给工程人员在有限元分析过程中考虑采用何种前后处理提供最好的支持。利用软件自带接口能够快速准确地导入数据,因此下面将对此类方案着重进行分析。 2 ANSYS直接集成在Pro/E中的方法 (1) ANSYS 直接集成在Pro/E步骤 ①设置ANSYS 与Pro/E的接口选择"程序"ANSYS l0.0 →Utilities →ANS_ADMIN ,打开ANS_ADMIN 10.0 管理器,选取" Configurrationoptions" 后点"OK" 确定(见图2);

ANSYS接触分析_学习手记

◆前提: ◇有限元模型。 ◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。) 选择目标面和接触面的准则: 1.凸面和凹面或平面接触是,选平面或凹面为目标面。2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。 2. ◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ; ◇(柔性)接触单元—— CONTA171~CONTA172。 ***Commands*** ET,K,169 !K - 指定的单元编号 ET,K+1,172 *** **** ◇实常数——一个接触对对应同一个实常数号。 TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状 CONTA单元的实常数包括: No. Name Description 1 R1 Target circle radius(刚性环半径) 2 R2 Superelement thickness(单元厚度) *3 FKN Normal penalty stiffness factor(法向接触刚度因子) *4 FTOLN Penetration tolerance factor(最大允许的穿透) *5 ICONT Initial contact closure(初始闭合因子) 6 PINB Pinball region(“Pinball”区域) *7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦) *10 CNOF Contact surface offset(施加于接触面的正或负的偏移值) 11 FKOP Contact opening stiffness or contact damping *12 FKT Tangent penalty stiffness factor(切向接触刚度) 13 COHE Contact cohesion(滑动抗力粘聚力) 14 TCC Thermal contact conductance(热接触传导系数) 15 FHTG Frictional heating factor(摩擦耗散能量的热转换率) 16 SBCT Stefan-Boltzmann constant 17 RDVF Radiation view factor 18 FWGT Heat distribution weighing factor 19 ECC Electric contact conductance 20 FHEG Joule dissipation weight factor 21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率) 22 DC Exponential decay coefficient(摩擦衰减系数) 23 SLTO Allowable elastic slip 24 TNOP Maximum allowable tensile contact pressure 25 TOLS Target edge extension factor 附注: +值作为比例因子,-值作为绝对值; 带*号的实常数比较重要,关乎接触分析的收敛; 一般实常数可为缺省值。

如何设置ProE与ANSYS接口连接与使用方法

1. 如何设置Pro/E与ANSYS接口连接与使用方法(图文教程)- 机 械工程... 使得在Pro/E中建好的模型直接导入到ANSYS中, 由于目前CAD 和CAE这两个领域最具代表性的应用软件分别是Pro/E 和ANSYS。Pro/E 拥有强大的实体和曲面造型功能,而ANSYS具有完善的有限元分析功能,这两个软件各自的长处恰恰又是对方的短处。解决这一矛盾的有效途径是:在Pro/E中进行建模,然后将模型导入到ANSYS 软件中进行有限元分析,从而实现用计算机完成零件设计和分析。所以,问题的关键是如何把这两个软件结合起来,将Pro/E中生成的模型完整地导入到ANSYS 中去,进而完成所需的有限元分析。 我们以目前流行的版本Pro/ENGINEERWildfire3.0 与ANSYS10.0 为研究对象,进行了实体模型在两个不同软件之间的转换和连接。 1 ANSYSI0.0 与ProlE接口连接 ANSYS l0.0 软件安装选项中包含与Pro/Engineer 软件的接口模块"Connection for Pro/Engineer" (见图1)。此模块不仅能将ProlE模型数据直接转换给ANSYS ,同时还提供了以执行部件为基础的参数优化设计功能。该功能允许从建立以部件为基础的参数化Pro/E模型开始,用ANSYS程序对其进行优化,并以一个优化的模型结束,而且建立好的模型仍是以部件为基础的参数化模型。此模块能给工程人员在有限元分析过程中考虑采用何种前后处理提供最好的支持。利用软件自带接口能够快速准确地导入数据,因此下面将对此类方案着重进行分析。 2 ANSYS直接集成在Pro/E中的方法 (1) ANSYS 直接集成在Pro/E步骤

ANSYS 中使用接触向导定义多个接触对详细实例(图文)

ANSYS 中如何使用接触向导定义接触对 在ANSYS 中定义接触通常有两种方法: 1. 用户自己手工创建接触单元和目标单元。这种方法,在定义接触和目标单元时还比较简单,但是在设置或修改单元属性和定义实常数时却比较复杂。需要用户对接触有较深刻的理解和通过实践积累丰富的经验。 2. 使用接触管理器中的接触向导定义接触对:使用接触管理器 (接触向导) 定义接触对(即接触单元和目标单元) 时,可以定义除了点-点接触以外的各种接触类型;它可以自动生成接触单元和目标单元,并提供了一组默认的单元属性和实常数值。使用这些默认的设置,加上适当的求解设置,对于多数接触问题都能够获得收敛的结果。而且,如果使用默认设置时,计算不收敛或对结果不太满意,也可以通过接触管理器(接触向导) 对单元属性和实常数方便的进行修改和调整。 因此,我们推荐,在可能的情况下,尽量使用接触管理器(接触向导) 来定义接触。本文将通过一个实例介绍接触管理器的基本使用方法。 所使用的例子如下: 两块平板,中间夹一个圆球。上面平板的上表面承受压力,分析模型的变形和应力随压力的变化。 两块平板,尺寸都是(100*100*20),相距100。中间夹一个半径50 的圆球。两个平板分别与圆球的上下边缘接触。尺寸单位为mm。几何模型如图1。

图 1 中,为了能够划分映射网格,分别对体积进行了切割材料属性为:两块平板: E = 201000 Mpa;μ= 0.3 圆球: E = 70100 Mpa;μ= 0.33 接下来对各个Volumes 划分网格,单元类型采用solid186 (20 节点六面体),单元边长统一取 6 mm。网格划分结果如图 2 所示:

ansys workbench接触分析

Workbench -Mechanical Introduction Introduction 作业3.1 31 接触控制

作业3.1 –目标 Workshop Supplement ?作业3.1调查了一个简单组件的接触行为。目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。 ?问题描述: 问题描述 –模型从一个简单Parasolid组件文件获得 –我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响 我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响

作业3.1 –假设 Workshop Supplement ?假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。最后假设stop shaft固定在两个side plate之间。 之间 Arm Shaft Side Plate Side Plate p Stop Shaft

作业3.1 –Project Schematic Workshop Supplement ?打开Project page(项目页) ?通过“Units” 菜单确定: –Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V). –选择“Display Values in Project Units”

. . .作业3.1 –Project Schematic Workshop Supplement 1.在Toolbox(工具箱)中双击 Static Structural建立新的分析系 统 1. 2.Geometry上点击鼠标右键选择 2在 Import Geometry导入 2. Contact_Arm.x_t文件

把 PROE文件导入ANSYS问题

把PROE文件导入ANSYS问题 经过几天的总结,终于把pro/e直接导入到ansys里面了 现总结如下,希望能对各位有所帮助 方法一:在Pro/E中建立好模型后(一般是part),从菜单File_save a copy中选择IGES类型存盘,这种格式是几乎所有CAD软件都可以识别的。注意文件最好存放在名字无空格的目录中,否则在Ansys 中不能识别!启动Ansys ,从菜单file_import_IGES ,选择刚才形成的文件就可以输入模型了。 在Ansys 中输入模型时,可能出现模型断裂的结果,可以对" defeature (毁容)、合并重合的关键点、产生实体、删除小面积"等选项进行改变,反复试验直到输入满意为止。 方法二:首先,安装Ansys 时,必须安装了ANSYS Connection For Pro/ENGINE ER模块(代号82)。在"开始_程序_ Ansys 5.6_ANS_ADMIN Utility"中,选择configura tion opti*****,选择configure connection for Pro/E,输入模块类型,图形类型、工作空间大小等,再输入Pro/E的安装路径,完成"连接"安装,此时将在Pro/E的相关文件夹中产生一个protk.dat 文件。运行Pro/E,窗口中可能出现一个不能连接的提示,不必理睬他!打开一个已建好的模型(可以不必输入材料特性),此时在Pro/E的菜单中(屏幕右边)最后一行会出现Ansys GEOM,单击它,直到自动调用并启动了Ansys ,此时再选取File _import_Pro /E,在文件名栏中输入正确的文件名,点OK即可完成输入。 应特别注意的问题是,被打开的*. prt 文件必须在Pro/E的工作目录中,或者Pro/E与An sys 有相同的工作目录,否则会出现找不到*. anf 文件的错误。 上述方法在Ansys57中似乎不能使用,会出现命令无效的错误。我估计是由于Ansys 的安装路径中包含的文件名有空格的的缘故!? 另外,如果在Pro/E command栏中填入您系统的正确的命令如proe2000i2或proe2001,再点取OK则会重新传输模型后再导入,不知是何道理? 方法三:首先,安装Ansys 时,必须安装了ANSYS Interactive For Pro/ENGINE ER模块(代号83) 在"开始_程序_ Ansys 5.7_ANS_ADMIN Utility"中,选择configuration opti*****,选择co

ANSYS接触属性

接触属性 以下为ANSYS 中用于创建接触对的接触属性对话框中的标签: ?Basic –基本属性 ?Friction –摩擦 ?Initial Adjustment –初始调整 ?Misc –杂项 ?Rigid target –刚性目标 ?Thermal –热 ?Electric –电 ?Magnetic –磁 ?Constraint –约束 ?ID –标识符 注解: 上述标签不是任何时候都是可用的。在GUI 方式中出现的标签和每个标签显示的选项取决于所定义的接触对的种类,以及访问接触属性对话框的位置(从Contact Wizard 或Contact Manager)。 接触属性:基本属性 基本属性标签包含有关接触行为和收敛的一般属性。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一

个常数比例因子。

有关单元: CONTA171, CONTA172, CONTA173, CONTA174, CONTA175 接触属性:摩擦 摩擦(Friction) 标签包含有关接触界面上的静摩擦和动摩擦的参数。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一个常数比例因子。 材料编号(Material ID) 和摩擦系数(Friction Coefficient) 参数来自Contact Properties: Set Parameters and Create 对话框。 使用Friction 标签上的ID 参数可以创建一个新的材料ID,或输入新的摩擦系数以覆盖已有的值。 (注意:使用这一对话框,只能定义各向同性的摩擦系数。关于如何定义正交异性摩擦的问题,参见Choosing a Friction Model,它只能用于三维接触分析)。

ansys接触分析实例52266

第20章接触分析实例 在这个实例中,将对一个盘轴紧配合结构进行接触分析。第一个载荷步分析轴和盘在过盈配合时的应力,第二个载荷步分析将该轴从盘心拔出时轴和盘的接触应力情况。 20.1 问题描述: 在旋转机械中通常会遇到轴与轴承、轴与齿轮、轴与盘连接的问题,根据各自的不同情况可能有不同的连接形式。但大多数连接形式中存在过盈配合,也就是涉及到接触问题的分析。这里我们以某转子中轴和盘的连接为例,分析轴和盘的配合应力以及将轴从盘中拔处时盘轴连接处的应力情况。 本实例的轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图20.1所示。由于模型和载荷都是轴对称的,可以用轴对称方法进行分析。这里为了后处理时观察结果更直观,我们采用整个模型的四分之一进行建模分析,最后将其进行扩展,来观察整个结构的变形及应力分布、变化情况。盘和轴用同一种材料,其性质如下: 弹性模量:EX=2.1E5 泊松比:NUXY=0.3 接触摩擦系数:MU=0.2 20.1 盘轴结构图

20.2 建立有限元模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本实例的有限元模型,需要完成的工作有:指定分析标题,定义单元类型,定义材料性能,建立结构几何模型、进行网格划分等。根据本实例的结构特点,我们将首先建立代表盘和轴的两个1/4圆环面,然后对其进行网格划分,得到有限元模型。 20.2.1设置分析标题 本实例为进行如图20.1所示的盘轴结构的接触分析,属于非线性结构分析范畴。跟前面实例一样,为了在后面进行菜单方式操作时的方便,需要在开始分析时就指定本实例分析范畴为“Structural”。本实例的标题可以命名为:“Analysis of a Axis Contacting a hole in a Disc”,具体的操作过程如下: 1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图20.2所示。在Enter new jobname (输入新文件名)文本框中输入文字“CH20”,为本分析实例的数据库文件名。并单击New log and error files (新的日志和错误 文件)单选框,使其变为“Yes ”,为本实例的分析过程创建新的日志。单击按钮关 闭对话框,完成文件名的修改。 图20.2 修改文件名对话框 2.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框,如图20.3所示。在Enter new title (输入新标题)文本框中输入文字“Analysis of a Axis Contacting a hole in a Disc ”,为本分析实例的标题名。单击按钮,完成对标题名的指定。 图20.3 修改标题对话框 3.选取菜单路径Utility Menu | Plot | Replot,指定的标题“Analysis of a Axis Contacting a hole in a Disc”将显示在图形窗口的左下角(图略)。 4.选取菜单路径Main Menu | Preference,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框。单击Structual(结构)选项使之被选中,以将菜单设置为与结构分析相关

相关文档
相关文档 最新文档