文档库 最新最全的文档下载
当前位置:文档库 › 电路放大信号的条件篇

电路放大信号的条件篇

电路放大信号的条件篇
电路放大信号的条件篇

电路放大信号的条件4篇

以下是网友分享的关于电路放大信号的条件的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

电路放大信号的条件篇1

弱信号放大电路的设计

依据仪表放大器的工作原理,利用德州仪器公司的TLC2652设计了一低频弱信号放大电路。通过Multisim软件仿真分析,该电路具有极高的输入电阻,极低的输出电阻,共模抑制能力很强,能放大频率在0~300 Hz内的微伏级信号,且该电路的工作稳定,失真度小。本文主要以直流与低频信号为研究对象设计一弱信号放大器,并进行仿真分析。1 集成运算放大器的选择随着集成工艺与电子技术的发展,集成运算放大器的性能越来越好。TLC2652是德州仪器公司使用先进的LinCMOS工艺生产的高精度斩波稳零运算放大

器。斩波稳零的技术使TLC2652具有优异的直流特性,将失调电压及其漂移、共模电压、低频噪声、电源电压变化等对运算放大器的影响降低到了最小值,因此TLC2652非常适合用于微信号的放大。1.1 TLC2652的内部结构,TLC2652主要由5个功能模块构成:(1)主放大器(Main):与一般的运算放大器不同,它有三个输入端。除引出芯片外部的同相和反相输入端外,其在芯片内部还有一个用于校零的同相输入端。(2)校零放大器(Null):它也有三个输入端,但与主放大器相反,在芯片内部的输入端是反相输入端。(3)时钟和开关电路:内部时钟产生时钟信号,控制各开关按一定的时序闭合与断开。在14和20引脚的芯片中时钟信号还可从外部引入。(4)补偿网络(Compensation-Basing Circuit):它使电路在较宽的频带内有平坦的响应。在TLC2652中,电路的高频响应主要由主放大器决定。(5)箝位电路(Clamp Circuit):它实际上是一个当输出与电源电压相差接近 1 V时动作的开关,把CLAMP与运放的反相输入端短接,则其引入的深度负反馈可使电路在过载时的增益大大下降以防止饱和。它可以加速电路在过载后的恢复。1.2 TLC2652的主要性能指标(1)极低的输入失调电压:最大值1μv (2)极低的输入失调电压漂移:典型值0.003μV/℃(3)低输入失调电流:最大值500pA(TA=-55℃~125℃) (4)开环电压增益:最小

值135dB (5)共模抑制比:最小值120dB2 弱信号放大电路TLC2652的典型电路,构成差分放大电路。如果R1=R2,R3=R4,则u0=(ui1-ui2)(R2/R1) 这一电路提供了仪表放大器的功能,即放大差分信号的同时抑制共模信号,但是同相输入端与反相输入端阻抗相当低而且不相等。由图3容易得到同相输入端的阻抗为(R2+R4),反相输入端的阻抗为R1。另外,这一电路要求电阻对R1/R2和R3/R4的比值匹配得非常精密,否则,每个输入端的增益会有所差异,这将直接影响电路的CMR。现根据仪表放大器的工作原理设计一个高精度高稳定性的放大器。

2.1 仪表放大器的工作原理标准三运放仪表放大器的电路。该电路可以提供两输入端匹配的高阻抗,使得输入源阻抗对电路的CMR影响最小。其中A1和A2运算放大器用于缓冲输入电压,A3构成差分放大电路。电路,如果R5=R6,R1=R2且R3=R4,则u0=(ui2-ui1)(1+2R5/RG)(R3/R1) 如果A1和A2使用的是相同的运算放大器,则它们的共模输出电压和漂移电压相等,加到A3差放后,将被相互抵消,因而整个电路具有很强的共模抑制能力,很小的输入失调电压和较高的差模电压增益。2.2 电路原理图根据仪表放大器的原理,设计出利用TLC2652构成的弱信号放大电路。电路,利用两片TLC2652来实现输入缓冲,TLC2652有极其微小的输入失调电压,且共模

输出电压相等,利用低噪声、低输入偏置电流OP1177作为差分放大电路。电容C1、C2、C3、C4接到TLC2652的CxA和CxB引脚作为记忆电容存储失调电压,以实现校零。电容C5、C6、C7、C8、C9作为电源滤波电容,用于滤除高频干扰。根据仪表放大器的工作原理知该电路的增益G=(1+2X300/2)(100/

10)=3010。3 仿真分析依据该弱信号放大电路,在Multisim10.0软件中搭建电路进行了仿真分析。设输入信号的频率为60 Hz,ui1和ui2幅度均为10μVp,利用Transient Analysis,可以得到电路的输出波形。拖动标尺,可以计算出此时的电路增益G约为3 000,即69.5dB。运行Analysis下的ACAnalysis,得到的频率特性曲线。从该图中我们可以看到该放大电路在中低频率情况下幅频特性和相频特性都比较平稳。通过拖动标尺,可以得

到该电路的带宽约为300Hz。利用Multisim软件仿真测量还可以得到该电路的输入电阻很大,约为几十MΩ;输出电阻很小,小于1Ω;共模抑制比可以达到60dB以上;电路失真率小于0.05%;在300Hz的带宽内频率稳定度小于0.02%。4 结束语本文针对低频信号利用TLC2652设计了一个弱信号放大电路,并且利用Multisim软件进行了仿真分析,分析结果表明各项指标都达到了设计要求,在实践中有一定的应用价值。但是做成实物电路还必然会引入部

分噪声,例如PCB板的布线、材料的选择都需要注意。

电路放大信号的条件篇2

山西电子技术2011年第6期

文章编号:1674-4578(2011)06-0011-03

应用实践

弱信号放大电路的设计

周云艳

*

(黄山学院信息工程学院,安徽黄山245021)

要:依据仪表放大器的工作原理,利用德州仪器公司的TLC2652设计了一低频弱信号放大电路。通过

Multisim软件仿真分析,该电路具有极高的输入电阻,极低的输出电阻,共模抑制能力很强,能放大频率在0~300Hz 内的微伏级信号,且该电路的工作稳定,失真度小。

关键词:弱信号放大;TLC2652;仪表放大器中图分类号:TN722

文献标识码:A

时钟信号还可从外部引入。

(4)补偿网络(Compensation-BasingCircuit):它使电路

在较宽的频带内有平坦的响应。在TLC2652中,电路的高频响应主要由主放大器决定。

(5)箝位电路(ClampCircuit):它实际上是一个当输出与电源电压相差接近1V时动作的开关,把CLAMP与运放则其引入的深度负反馈可使电路在过载的反相输入端短接,时的增益大大下降以防止饱和。它可以加速电路在过载后的恢复

0引言

在研究自然现象和规律的实践中,经常会遇到检测被强

如地震波的分析、卫星信号背景噪声淹没的微弱信号问题,的接收、植物电信号、医疗中脑电波的分析等。这些问题都归结为微弱信号的检测。

微弱信号检测与处理是随着工程应用而不断发展的一门学科,采用一系列信号处理的方法,检测被噪声背景淹没的微弱信号

[1]

。由于在微弱信号检测与处理系统中,我们获

取的信号是极其微弱的,因而我们不能直接选用普通的放大器,否则放大器的本底噪声就可能淹没了我们的实际信号,所以在这一过程中,如何在抑制噪声的前提下增大微弱信号的幅度是我们获取有用信号的关键。本文主要以直流与低频

信号为研究对象设计一弱信号放大器,并进行仿真分析。

1集成运算放大器的选择

随着集成工艺与电子技术的发展,集成运算放大器的性

能越来越好。TLC2652是德州仪器公司使用先进的LinC-MOS工艺生产的高精度斩波稳零运算放大器。斩波稳零的技术使TLC2652具有优异的直流特性,将失调电压及其漂移、共模电压、低频噪声、电源电压变化等对运算放大器的影响降

[2]

因此TLC2652非常适合用于微信号的放大。低到了最小值,图1TLC2652的结构框图

1.1TLC2652的内部结构[2]

TLC2652主要由5个功能模块构成:如图1所示,

(1)主放大器(Main):与一般的运算放大器不同,它有1.2TLC2652的主要性能指标[2]

(1)极低的输入失调电压:最大值1μv

(2)极低的输入失调电压漂移:典型值0.003μV/°C(3)低输入失调电流:最大值500pA(TA=-55℃~

三个输入端。除引出芯片外部的同相和反相输入端外,其在芯片内部还有一个用于校零的同相输入端。

(2)校零放大器(Null):它也有三个输入端,但与主放大器相反,在芯片内部的输入端是反相输入端。

(3)时钟和开关电路:内部时钟产生时钟信号,控制各开关按一定的时序闭合与断开。在14和20引脚的芯片中125℃)

(4)开环电压增益:最小值135dB(5)共模抑制比:最小值120dB

2弱信号放大电路

TLC2652的典型电路如图3所示,构成差分放大电路。

收稿日期:2011-07-07

基金项目:黄山学院校级科学研究项目(2011xkj010);黄山学院校级教学研究项目(2009JXYJ02)作者简介:周云艳(1981-),女,安徽黄山人,讲师,硕士,研究方向:电子信息工程。

12

山西电子

2.1

技术2011年

仪表放大器的工作原理

[3]

标准三运放仪表放大器的电路如图4所示。该电路

可以提供两输入端匹配的高阻抗,使得输入源阻抗对电路的CMR影响最小。其中A1和A2运算放大器用于缓冲输入电图2

TLC2652的8

引脚封装

A3构成差分放大电路

。压,

图3TLC2652的典型电路

图4仪表放大器的原理图

R3=R4,如果R1=R2,则

R1=R2且R3=R4,如图4所示电路,如果R5=R6,则

u0=(ui1-ui2)(R2/R1).

这一电路提供了仪表放大器的功能,即放大差分信号的同时抑制共模信号,但是同相输入端与反相输入端阻抗相当低而且不相等。由图3容易得到同相输入端的阻抗为(R2+R4),反相输入端的阻抗为R1。另外,这一电路要求电阻对R1/R2和R3/R4的比值匹配得非常精密,否则,每个输入端的增益会有所差异,这将直接影响电路的CMR。现根据仪表放大器的工作原理设计一个高精度高稳定性的放大器。

u0=(ui2-ui1)(1+2R5/RG)(R3/R1).

如果A1和A2使用的是相同的运算放大器,则它们的共模输出电压和漂移电压相等,加到A3差放后,将被相互抵消,因而整个电路具有很强的共模抑制能力,很小的输入失调电压和较高的差模电压增益。2.2

电路原理图

根据仪表放大器的原理,设计出利用TLC2652构成的弱信号放大电路如图5所示

图5弱信号放大电路

第6期周云艳:弱信号放大电路的设计

13

如图5所示电路,利用两片TLC2652来实现输入缓冲,TLC2652有极其微小的输入失调电压,且共模输出电压相等,利用低噪声、低输入偏置电流OP1177作为差分放大电C2、C3、C4接到TLC2652的CxA和CxB引脚作路。电容C1、

C6、C7、以实现校零。电容C5、为记忆电容存储失调电压,C8、C9作为电源滤波电容,用于滤除高频干扰。根据仪表

(100/10)放大器的工作原理知该电路的增益G=(1+2X300/2)

=3010。

的输出波形如图6所示。拖动标尺,可以计算出此时的电路增益G约为3000,即69.5dB。

运行Analysis下的ACAnalysis,得到如图7所示的频率特性曲线。从该图中我们可以看到该放大电路在中低频率可情况下幅频特性和相频特性都比较平稳。通过拖动标尺,以得到该电路的带宽约为300Hz

3仿真分析

依据该弱信号放大电路,在Multisim10.0软件中搭建电[4]

路进行了仿真分析。设输入信号的频率为60Hz,ui1和

图6

弱信号放大电路的输出波形

ui2幅度均为10μVp,利用TransientAnalysis,可以得到电路

图7弱信号放大电路的频率特性曲线

利用Multisim软件仿真测量还可以得到该电路的输入约为几十MΩ;输出电阻很小,小于1Ω;共模抑制电阻很大,比可以达到60dB以上;电路失真率小于0.05%;在300Hz 的带宽内频率稳定度小于0.02%。

[2]TLC2652,TLC2652A,TLC2652YAdvancedLinCMOS-TMPrecisionChopper-stabil izedOperationalAmplifiers,2001,TexasInstruments:1-2[OL].http://www.wenkubaidu.com,2011.8.[3]康华光.电子技术基础(模拟部分)[M].北京:高等教

1999:331-333.育出版社,

[4]张新喜.Multisim10电路仿真及应用[M].北京:机械

2010:200-210.工业出版社,

[5]成月良,方寿海.流动注射仪分析仪前置放大电路的设

J].计算机工程与设计,2009,30(9):2015-2017.计[[6]张石锐,郑文刚,黄丹枫,等.微弱信号检测的前置放大

J].微计算机信息,2009,25:222-224.电路设计[

4结束语

本文针对低频信号利用TLC2652设计了一个弱信号放

大电路,并且利用Multisim软件进行了仿真分析,分析结果在实践中有一定的应用价表明各项指标都达到了设计要求,

值。但是做成实物电路还必然会引入部分噪声,例如PCB 板材料的选择都需要注意。的布线、

参考文献

[1]高晋占.微弱信号检测[M].北京:清华大学出版社,2004:1-3.

TheDesignofWeak-signalAmplifierCircuit

ZhouYun-yan

(CollegeofInformationEngineering,HuangshanUniversity,HuangshanAnhui245021,China)

Abstract:

Accordingtotheprincipleofinstrumentationamplifier,thepaperdesignsalowfrequencyweaksignalamplifiercircuitusi ngtheTLC2652whichmadebyTexasInstrumentsCompany.T hen,itsimulatesandanalysisthecircuitthroughtheMultisimsoft-war e,thiscircuithasextremelyhighinputresistanceandverylowoutpu tresistance.TheCMRisverystrongandcanmagnifyuVweak-s ignalin0~300Hz,thecircuitworkisstable,andthedistortiondegreeofitisverysmall.

Keywords:weak-signalamplification;TLC2652;instrumentationamplifier

电路放大信号的条件篇3

《电子线路CAD 》课程论文

题目:信号放大电路的设计

1 电路功能和性能指标

本设计主要功能是将小信号放大,其主要性能指标有:增益

噪声系数一db 压缩点,最大输出功率线性度三阶交调

2 原理图设计

2.1原理图元器件制作

图1. 自制元器件

制作步骤:(1)在项目原理图下执行Design →Make Schematic Library进入新建

的元器件库中

(2)在新建元器件库下执行Tools →Rename Componet命名元器件

(3)执行Place →Rectangle 绘制出矩形,再执行Place →Pin 绘制引脚,双击引脚可以对引脚进行编辑

(4)设置引脚名,引脚号和电器属性后在Components 区域点击Edit 修改元器件属性即可完成元器件设计

2.2 原理图设计

图2. 原理图

原理图的设计过程

(1)新建一个工程文件【File---New---Project---PCB Projiect 】并保存为“CAD 论文”,

(2)再在该项目下创建一个PCB 原理图也保存为“信号放大电路”

(3)设置原理图设计环境,查找元件时可以在Librarice 中查找图中元件

(4)按照原理图连线即可

项目的元器件库列表

图3

步骤:(1)打开原理图文件,进入原理图编辑界面

(2)执行“Design →Make Schematic Library”,在弹出的对话框界面点击OK

执行Project →Compile PCB Project进行编译在右下角面板标签内找到Navigator 和Messages 面板即可显示两个面板

下图为massage 面板

图4

2.3 原理图报表

图6

点击界面上的工具栏中的design ,然后单击弹出来的窗口中的Netlist For

Project →Protel ,系统自动生成Protel 网络表

如电容C1所示即名称为C1,封装形式为RAD-0.3,描述为CAP 5.3u 。第一对圆括号的内容表示网络名称为NETC2_2和该网络相连的引脚有3个分别为C1的2脚,C2的1脚和R1的2脚。

执行Report →Simple Rom即可生成简易元器件清单

3 PCB设计

3.1元器件封装制作

图7

1. 在pcblib 界面,点击Tools →Component Wizard...;

2. 然后会出现如下界面

图8. PCB 器件向导

3. 根据提示的按键,选择自己需要的封装模式

图9.DIP

4. 根据自己的需要以及界面的提示选择自己需要的形式,然后就可以绘制出如下

封装形式:

图10.

(1)PCB 元器件封装生成向导,选中电容封装类型Capacitors 单位选择mil, 封装选择直插式,盘间距为100mil ,

(2)电容外形选择有极性电容,放射状外形,矩形的几何外形,元器件轮廓外圆半径为100mil ,

(3)最后为封装进行命名就完成了自制元器件封装。

3.2 PCB设计

先新建一个PCB 文件并保存为PCB2,然后设置物理边界为X :3900mil Y:900mil Grid:5mil然后设置绘图环境。

图11

在绘制导线时按Tab 键或者在绘制完导线后双击该导线,可打开导线属性设置对话框在其中修改导线宽度

图12

在PCB 面板执行Design →Make PCB Library系统将生成与项目同名的封装库文

图13

此图为该项目所有文件列表

3.3 PCB设计后处理

在PCB 下执行Design →Teardrop 点击OK 完成滴泪

单机PCB 工作界面下的工作层标签TOPLATER 将当前工作层面设定为顶层。单机PCB 布线工具栏上的放置敷铜按钮并将Connect to Net设置为GND, 同时勾选Remove Dead Copperk开始敷铜

此为敷铜完成后结果

执行Report →Board Information命令生成三表

4 心得体会

电路CAD 这门课是基于Protel DXP 电路设计自动化软件以电路板的制作过程为主线,结合大量具体实例,详细阐述了印刷电路板,原理图和PCB 设计技术。这门课主要包括印刷电路板的组成与制作流程,元器件封装,电路原理图绘制,原理图库的文件管理,层次式原理图设计,PCB 的布局与布线,设计规则,PCB 库文件的管理等内容。经历了几周的课程设计,大家的身心都得到了很大的发展和成长,在技术方面,同学们在每天的练习绘图过程中,切身体会到了CAD 操作的精髓所在,我们这样的课程设计,正是学习中将理论应用于实践,再进一步在实践中检验理论并发现新的问题的阶段。以前总认为CAD 的操作和作用仅仅局限于书本上所教授的内容,但是这次亲身体验了之后,才发现CAD 在实际的操作上有很多很多书本上学不到的细节问题和小技巧,在实际的操作过程中,同学们不断遇到新的问题,进而不断解决新的问题,大家一起讨论,共同进步。自主学习真是一个快乐的过程,在这一方面,我感觉非常的高兴。

5 参考文献

[1] 陈立平,Protel 2004快速上手[M] 北京:人民邮电出版社,2005

[2] 谈世哲,Protel DXP 2004电路设计技术与典型范例[M] 北京:电子工业出版社,2007

[3] 齐跃峰, 电子线路CAD[M] 西安:电子科技大学出版社.2008

[4] 王万刚, 电子线路CAD[M] 北京:电子工业出版社,2011

[5] 孙立津, 电子线路CAD 技术[M] 北京:电子工业出版社,2011

电路放大信号的条件篇4

《电子线路CAD 》课程论文

题目:小信号放大电路的设计

1 电路功能和性能指标

功能:将小信号放大

性能指标:增益噪声系数一db 压缩点,最大输出功率线性度三阶交调

2 原理图设计

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

基本放大电路

第二章基本放大电路 [教学目的] 1、了解放大电路的性能指标,掌握单管共射放大电路的工作原理,掌握放大电路的静态、 动态分析与计算方法(图解法、等效电路法) 2、掌握放大电路的三种基本接法及其特点 3、掌握场效应管的等效模型及共源放大电路的原理及特点 [教学重点和难点] 1、基本共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻的分析及计算 2、BJT放大电路的三种组态特点、FET放大电路的三种组态特点 [教学时数]8学时 [教学内容] 第一节放大的概念和放大电路的主要性能指标 一、放大的概念 二、放大电路的性能指标 第二节基本共射放大电路的工作原理 一、基本共射放大电路的组成及各元件的作用 二、设置静态工作点必要性 三、基本共射放大电路的工作原理 四、放大电路的组成原理 第三节放大电路的分析方法 一、直流通路与交流通路 二、图解法 三、等效电路法 第四节放大电路静态工作点的稳定 一、静态工作点稳定的必要性 二、典型的静态工作点稳定电路 三、稳定静态工作点的措施 第五节晶体管单管放大电路的三种基本接法 第六节晶体管放大电路的派生电路 第七节场效应管放大电路

一、场效应管放大电路的三种接法 二、场效应管放大电路静态工作点的设置方法及分析估算 三、场效应管放大电路的动态分析 四、场效应管放大电路的特点 [电子教案] 本章讨论的问题:1.什么是放大?放大电路放大信号与放大镜放大物体意义相 同吗?放大的特征是什么?2.为什么晶体管的输入、输出特性说明它有放大作用?如何将晶体管接入电路才能起到放大作用?组成放大电路的原则是什么?有几种接法?3.如何评价放大电路的性能?有哪些主要指标?4.晶体管三种基本放大电路各有什么特点?如何根据它们的特点组成派生电路? 5.如何根据放大电路的组成原则利用场效应管构成放大电路?它有三种接法吗? 6.场效应管放大电路与晶体管放大电路有哪些不同处?在不同的场合下,应如何选用放大电路? 2.1 放大电路的基本概念和放大电路的主要性能指标2.1.1 放大的概念 基本放大电路一般是指由一个三极管组成的三种基本组态放大电路。 1. 放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 2. 输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。放大电路的结构示意图见图。 放大概念示意图 2.1.2 放大电路的性能指标 (1) 放大倍数 输出信号的电压和电流幅度得到了放大,所以输出功率也会有所放大。对放大电路而言有电压放大倍数、电流放大倍数和功率放大倍数,它们通常都是按正弦量定义的。放大倍数定义式中各有关量如图所示。

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

《基本放大电路例题》word版

第2章基本放大电路例题解析 例2.1三极管组成电路如图2.2(a)~(f)所示,试判断这些电路能不能对输入的交流信号进行正常放大,并说明理由。 解:解此类题要注意以下问题: (1)判别三极管是否满足发射结正偏,集电结反偏的条件,具备合适的静态工作点。对NPN型晶体管构成的电路,集电极电源V CC的正极接集电极C,负极接“地”;对PNP型晶体管构成的电路,集电极电源V CC的负极接集电极C,正极接“地”。 (2)判断有无完善的直流通路。 (3)判断有无完善的交流通路。 (4)在前三步判断得到肯定的结果时,再根据电路给出的参数值计算、判断三极管是否工作在放大区。电路的分析如下: 图(a)电路由NPN管组成,静态情况下发射结无正向偏置,电路没有合适的静态工作点, 图2.2 不具备放大作用。 图(b)电路由NPN管组成,发射结满足正偏条件,但集电结不是反偏,也不具备合适的静态工作点,不能放大。 图(c)电路由NPN管组成,三极管的发射结、集电结满足正偏和反偏的条件,但发射结的偏置电源V BB将输入的交流信号旁路而不能进入三极管b,e间的输入回路,所以尽管电路具备合适的静态工作点,仍不能对交流信号进行正常的放大。 图(d)电路由PNP管组成,三极管发射结正偏,集电结反偏,交流信号能进入b,e间的输入回路,经放大后在输出端出现,放电路能进行正常的放大。 图(e)电路由PNP型管组成,三极管的发射结、集电结均满足放大的偏置条件,输入信

号也能进入输入回路,但输出端无电阻R

c ,故输出交流信号将经电源V CC 被地短路,因此电路也不能进行正常的放大。 图(f)电路由PNP 管组成,三极管的偏置满足放大的条件,二极管VD 为反向偏置,在电路中起温度补偿的作用,放电路能正常的放大。 例2.2 图2.3(a)固定偏流放大电路中,三极管的输出特性及交、直流负载线如图2.3 (b),试求: (1)电源电压V CC ,静态电流I B 、I C 和管压降V CE 的值; (2)电阻R b 、R C 的值; (3)输出电压的最大不失真幅度V OM ; 解 (1)由图解法可知,直流负载线与输出特性横坐标轴的交点的电压值即是V CC 值的大小,由图2.3 (b),读得I b ≈20μA ,V CC ≈6V 。由Q 点分别向横、纵轴作垂线,得I C =1mA ,V CE =3V 。 (2)由直流通路基极回路得 Ω?=?=≈-361030010206A V I V R B CC B 由集射极回路得 Ω=-= k I V V R C CE CC C 3 (3)由交流负载线②与静态工作点Q 的情况可看出,在输入信号的正半周,输出电压V CE 在3V 到0.8V 范围内,变化范围为2.2V ;在信号的负半周输出电压V CE 在3V 到4.6V 范围内,变化范围为1.6V 。输出电压的最大不失真幅度应取变化范围小者,故V OM 为1.6V 。 例2.3 用示波器观察NPN 管共射单级放大电路输出电压,得到图2.4所示三种失真的波形,试分别写出失真的类型。 图2.3

三极管10倍放大电路实验报告

三极管放大电路实验报告 一、实验目的: 掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解) 二、准备工具材料: 工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干 仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源 三、电路功能要求: ①.电源为12V单电源 ②.输入信号正弦波1KHz 峰值:50mV ③.电压放大倍数Au=10; ④.波形不失真,误差+-10%,不考虑频率响应范围 四、电路设计(NPN共发射极分压偏置放大电路): 根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7 设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央 根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围 数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载 计算过程:理论值 UE=UB--UBE=5.3V; IE=IC=IB*b; IE=IC=50uA*b=15mA RE=UE/IE=5.3V/0.015A=353R; UB=(Rb1/Rb1+Rb2)*VCC=5; Rb1= Rb2=50K Au=10=-b(RL’/rBE) rBE=300+(1+b)*(26/IE)=821R RL’=RC//RL RC=(rBE/b)*Au=27.4R; UCE=VCC-IC(RC+RE)=6.294V 五、实验过程: 按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍, 温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的 测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz

两级放大电路的设计(参考版)

设计指标: A V >250,R i ≥10kΩ,R L =5.1kΩ, BW=50Hz~50kHz ,D<5% 。 设计条件: 输入信号(正弦信号):2mV≤V i ≤5mV ,信号源内阻:R s =50Ω,电源电压:V CC =12V ; 半导体三极管9013,参数:β=100,r bb ’=300Ω,C μ=5pF ,f T =150MHz ,3V≤V CC ≤20V , P CM =625mW ,I CM =500mA ,V (BR)CEO =40V 。 1.电路选型: 小信号放大电路选用如图1所示两级阻容耦合放大电路,偏置电路采用射极偏置方式,为了提高输入电阻及减小失真,满足失真度D<5%的要求,各级射极引入了交流串联负反馈电阻。 2.指标分配: 要求A V >250,设计计算取A V =300,其中T 1级A V1=12,A V2=25;R i ≥10kΩ要求较高,一般,T 1级需引入交流串联负反馈。 3.半导体器件的选定 指标中,对电路噪声没有特别要求,无需选低噪声管;电路为小信号放大,上限频率f H =50kHz ,要求不高,故可选一般的小功率管。现选取NPN 型管9013,取β=100。 4.各级静态工作点设定 动态范围估算:T 1级:im1imax V1252mV, 12,V V A === om1V1im1125284mV V A V ==?=。 T 2级:im2om1V284mV , 25V V A ===, om2V2im22584 2.1V V A V ==?=。

为避免饱和失真,应选:CEQ om CE(sat)C V V ≥+ ;可见 T 1级V CEQ1可选小些,T 2级V CEQ2可选大些。 CQ CQ CM CEQ CM T T I I I I I ≥+12取值考虑:设定主要根据,由于小信号电压放大电路较小; 另从减小噪声及降低直流功率损耗出发,、工作电流应选小些。 T 1级静态工作点确定: T CQ1 T CQ1T CQ1CQ1CQ1BQ1CEQ13k Ω, ',100'30026mV ' 10026 0.963mA 3000300 0.7mA 0.07mA , V 2V>0.12V V r r r I V I r V r r I I I I ββββ ≥=+= ===-?≤ =-====be1be1bb bb be1bb 取依可推得其中,,可求得选, T 2级静态工作点确定: 一般应取CQ2CQ1I I > ,CEQ2CEQ1V V > 选 :CQ2 CQ2BQ2CEQ21.2mA , 0.012mA , V 4V>3V I I I β == == 5.偏置电路设计计算(设BEQ 0.7V V =) T 1级偏置电路计算: Rb1BQ1BQ1CC 10100.0070.07mA 11 124V 33I I V V ==?===?=取 故:CC BQ1 b1b1 124 114.286k Ω0.07 V V R I --= = = 取标称值120 kΩ 22Rb1b1b110.071200.588mW

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

电子技术(康润生)第二章基本放大电路答案

第二章 基本放大电路 习题解析 2-1试判断图2-48中各电路有无交流电压放大作用?如果没有,电路应如何改动使之具备放大作用。 解:(a)可以; (b)交流通路集电极对地短接; (c)直流通路基极开路,将电容移到B R 的外边即可; (d) B C V V >三极管没有工作在放大状态。 2-2半导体晶体管放大电路如图2-49(a )所示,已知CC U =12V ,C R =3k Ω,B R =240 k Ω,晶体管的β=40。(1)试根据直流通路估算各静态值(B I 、C I 、CE U );(2)如果晶体管的输出特性如图2-64(b )所示,试用图解法求放大电路的静态工作点;(3)在静态时(i u =0),1C 和2C 上的电压各为多少?并标出极性。

解:(1)由电路的直流通路可知:

12 0.05240 400.05212326CC BE CC B b b C B CE CC c C U U U I mA R R I I mA U U R I V β-= ≈====?==-=-?= (2)在图中画出方程为CE CC c C U U R I =-的直线,和50B I A μ=的曲线交点即为静态工作点。 (3)120.7,C C CE U V U U ==,极性如图中所示。 2-3在题2-2中,若使CE U =3V ,B R 应变为多少?若改变B R ,使C I =1.5mA, B R 应等于多少?在图上分别标出静态工作点。 解:CE CC C C U U R I =- 40123 160123 4012 3201.5 CC CE CC C B C B CC C B C C CE CC B C U U U I I R R U R R k U U U R k I ββββ-∴= ==??∴= = =Ω--?= = =Ω 2-4在图2-49(a )中,若CC U =12V ,要求静态值CE U =5V ,C I =2mA 。试求C R 和B R 的阻值。设晶体管的放大倍数β=40。 解: 4012 2402 125 3.52 CC B C CC CE C C U R k I U U R k I β?= = =Ω--===Ω 2-5放大电路如图2-50(a )所示,晶体管的输出特性及放大电路的交、直流负载线如图2-50(b )所示。试问:(1)C R 、B R 、L R 各为多少?(2)不产生失真的最大输入电压im U 和输出om U 电压各为多少?(3)若不断加大输入电压的幅值,该电路先出现何种性质的失真?调节电路中哪个电阻能消除失真?将阻值调大还是调小?(4)将L R 阻值变大,对交、直流负载线会产生什么影响?(5)若电路中其他参数不变,只将晶体管换一个β值小一半的管子,B I 、C I 、CE U 和

增益自动切换的放大电路设计

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第二次实验 实验名称:增益自动切换电压放大电路的设计院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

实验二增益自动切换电压放大电路的设计 一、实验内容及要求 设计一个电压放大电路,能够根据输入信号幅值自动切换调整增益。设输入信号频率为0~20KHz,其幅值范围为0.1~10V(峰峰值Upp)。电路应实现的功能与技术指标如下:1.基本要求 当输入为直流信号时,要求设计的电路达到以下要求: U<0.5V时,电路的增益约为10倍。 (1)当i U<3V时,电路的增益约为1倍。 (2)当0.5

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

相关文档
相关文档 最新文档