文档库 最新最全的文档下载
当前位置:文档库 › 超声提取参考文献

超声提取参考文献

超声提取参考文献
超声提取参考文献

Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace

Daniella Pingret,Anne-Sylvie Fabiano-Tixier,Carine Le Bourvellec,Catherine M.G.C.Renard,Farid Chemat ?

INRA,UMR408Sécuritéet Qualitédes Produits d’Origine Végétale,F-84000Avignon,France

Universitéd’Avignon et des Pays de Vaucluse,UMR408Sécuritéet Qualitédes Produits d’Origine Végétale,F-84000Avignon,France

a r t i c l e i n f o Article history:

Received 7August 2011

Received in revised form 23January 2012Accepted 26January 2012

Available online 6February 2012Keywords:

C affeoylquinic acid Flavonols

Malus ?domestica Borkh Procyanidin Ultrasound

Water extraction

a b s t r a c t

Apple pomace,a residue from juice or cider production,shows high content of exploitable polyphenols.In this work,apple pomace was submitted to an Ultrasound-Assisted Extraction (UAE)in order to produce extracts rich in antioxidants.After a preliminary study,a solid/liquid ratio of 150mg of dry material per mL was used,and optimized conditions obtained by response surface methodology for polyphenols water-extraction were 40°C,40min and 0.764W/cm 2.A comparison showed Total Phenolics Content (TPC)obtained by UAE was 30%higher than the content obtained by Conventional Extraction (CE)(555and 420mg of catechin equivalent per 100g of dry weight,respectively)and both methods presented the same extraction kinetics.Furthermore,extracts obtained by ultrasound showed higher antioxidant activity,which was con?rmed by HPLC analysis,that revealed main polyphenols were not degraded under the applied conditions.The large scale experiments of this ultrasound procedure showed a poten-tial industrial application.

ó2012Elsevier Ltd.All rights reserved.

1.Introduction

Apples (Malus ?domestica Borkh.)are known to contain many types of phenolic acid derivatives and ?avonoids with high nutri-tional value,which are present particularly at high concentrations in cider apples (Sanoner et al.,1999;Wijngaard and Brunton,2010).Apple pomace,the solid waste resulting from industrial pro-cessing of apple juice or cider production,is rich in extractable polyphenols (Cao et al.,2009;Cetkovic et al.,2008;Ko?odziejczyk et al.,2009;Virot et al.,2010).The quality and amount of pomace produced (which can represent 20–30%of the weight of processed apples)is directly related to the technology used in the apple juice extraction.The polyphenols extracted from apples present numer-ous biological activities,such as antiallergic activity (Akiyama et al.,2000;Kanda et al.,1998),in vivo anticaries activity (Yanagida et al.,2000),and in vitro and in vivo inhibitory activity against some enzymes and receptors (Shoji et al.,2000).

Some of the polyphenols in the apple pomace present a high exploitable industrial potential as dietary or food antioxidant,exhibiting 2–3times DPPH-scavenging activity and 10–30times superoxide scavenging activity compared to vitamins C and E (Lu and Foo,1997;Lu,2000).Polyphenols in apple pomace also showed antiviral properties against Herpes simplex virus from methanolic extracts (Suárez et al.,2010).The safety of those polyphenols has also been evaluated and con?rmed (Shoji et al.,2004).The content of phenolic compounds in the pomace is higher than the content in the juice and varies amongst different varieties of apples (Guyot et al.,1998,2003;Cetkovic et al.,2008;Van der Sluis et al.,2002;Price,1999;Ko?odziejczyk et al.,2009).The main polyphenol class in apple pomace is procyanidins.The hydroxycinnamic acid deriva-tives are mainly represented by chlorogenic acid (50-caffeoylquinic acid).Phloridzin (major constituent of dihydrochalcones)was thought to be a speci?c component to apples (Mangas et al.,1999),however,further studies have shown this compound is also present in strawberries (Hilt et al.,2003).Compared to the apple fruit,apple pomaces are richer in procyanidins,due to interactions with the polysaccharides (Le Bourvellec et al.,2007),and in ?avo-nols and dihydrochalcones due to their location in the peel and pips,respectively (Guyot et al.,1998);in addition,they contain lower concentrations of hydroxycinnamic acids and catechins.

Ultrasound has been used for various processes in the chemical and food industry.The technique is fast,consumes less fossil energy and permits the reduction of solvents,thus resulting in a more pure product and higher yields.This method has been applied to extract food components such as aromas (Caldeira et al.,2004;Xia et al.,2006),antioxidants (Ma et al.,2009;Rodrigues et al.,2008;Wang et al.,2008;Virot et al.,2010),pigments (Chen et al.,2007;Barbero et al.,2008)and other organic and mineral components from a vari-ety of matrices.Ultrasound plays an important role as real potential

0260-8774/$-see front matter ó2012Elsevier Ltd.All rights reserved.doi:10.1016/j.jfoodeng.2012.01.026

Corresponding author.

E-mail address:farid.chemat@univ-avignon.fr (F.Chemat).

sustainable technique for industrial applications for polyphenols extraction(Khan et al.,2010).The cavitation process that occurs during sonication causes the rupture of cell walls,consequently enhancing solvent contact with available extractable cell material (Vinatoru,2001).

The purpose of the present work was to evaluate the effects of ultrasound-assisted extraction of polyphenols obtained from dried apple pomace using an aqueous buffer as extraction solvent at mild temperatures.The extraction conditions(ultrasound intensity,tem-perature and extraction time)were optimized in order to obtain optimum polyphenol content using a response surface https://www.wendangku.net/doc/fc18886130.html,parative studies between ultrasound and conventional maceration were done for extraction kinetics,antioxidant tests such as lipid peroxidation activity and treating large amount for large scale experimentations.Finally,ultrasound effect on polyphenols molecules was also evaluated for three isolated polyphenolic compounds in order to verify the innocuousness of ultrasound technology.

2.Materials and methods

2.1.Plant material and chemicals

Apple pomace was obtained from Val-de-Vire Bioactives (Conde-sur-Vire,France)and kept in the dark until use.Standards of chlorogenic acid,(à)epicatechin and phloridzin,were pur-chased from Sigma Aldrich(St.Louis,USA).Other chemicals were of analytical grade and purchased from VWR International(Darms-tadt,Germany).

2.2.Extraction procedures

In all extraction procedures,a50mM malate buffer in a pH3.8 was used in order to mimetize fruit’s conditions.To determine the optimal extraction conditions,the solid/liquid ratio was evaluated in function of total polyphenols obtained by a conventional macer-ation method.The samples subjected to extraction ranged from5 to35g of dry material.The experiments were performed in?asks containing100mL of the buffer in a RT-10magnetic stirrer plate (IKAMAG,Germany)over8h in the dark.Samples were then pressed using a manual press and?ltered before analysis with a 0.45l m mesh?lter.The total polyphenols content(TPC)was mea-sured using Folin–Ciocalteau’s reagent and results are expressed in mg of catechin equivalent per100g of dry weight.All experiments were carried out in triplicates.

Ultrasound-assisted extractions(UAE)were performed in an ultrasonic extraction reactor PEX1(R.E.U.S.,Contes,France)with 14?10cm internal dimensions and maximal capacity of1L, equipped with a transducer at the base of jug operating at a fre-quency of25kHz with maximum input power(output power of the generator)of150W.The double-layered mantle(with water circulation)allowed the control of extraction temperature by cool-ing/heating systems.Considering the actual input power from the device is converted to heat which is dissipated in the medium, calorimetric measurements were performed to assess actual ultra-sound power,calculated as shown in the Eq.(1)below(Toma et al., 2011).

P?m:C pád T

d t

e1T

Where Cp is the heat capacity of the solvent at constant pressure (J gà1°Cà1),m is the mass of solvent(g)and dT/dt is temperature rise per second.Then,the applied ultrasonic intensity(UI)was calculated using the calculated power as shown in the Eq.(2).(Ti-wari et al.,2008).UI?

4P

p D2e2TWhere UI is the ultrasonic intensity(W cmà2),P is the ultrasound power(W)as calculated by the equation1,and D is the internal diameter(cm)of the ultrasound reactor.To the500mL of malate buffer(50mM pH3.8),75g of dried apple pomace were added and submitted to extraction and the obtained extracts were?ltered with a0.45l m mesh?lter before been lyophilized(for HPLC anal-ysis)or analyzed for TPC.Conventional extraction was performed by agitation in the same conditions for comparison.All experiments were carried out in triplicates.

2.3.Isolated compounds study

In order to verify whether antioxidants present in the extracts undergo degradation during sonication,the following isolated com-pounds were submitted to ultrasound treatment:(à)epicatechin, phloridzin and chlorogenic acid.These compounds(in a?nal con-centration of0.5mg/mL)were diluted in2mL of methanol and then introduced in the ultrasonic extraction reactor with200mL of ma-late buffer(50mM pH3.8)followed by ultrasound treatment in the optimized conditions.The extractions were subsequently observed in the UV spectrophotometer(Spectronic Genesys5,Thermo Fischer Scienti?c,France)at respective characteristic wavelengths for each molecule and then analyzed by HPLC-DAD for quanti?cation purposes.All experiments were carried out in triplicates.

2.4.Total phenolics determination(TPC)

TPC was determined using Folin–Ciocalteau reagent(Singleton and Rossi,1965).In a test tube,50l L of the?ltered sample were mixed with1mL of a10%Na2CO3solution and250l L of Folin–Cio-calteau reagent.The absorbance was determined using a spectro-photometer(Spectronic Genesys5,Thermo Fischer Scienti?c, France)after1h at765nm against a calibration curve.The results were expressed in mg of catechin equivalent per100g of dry weight.

2.5.Identi?cation of phenolic compounds by HPLC-DAD

Polyphenols were measured by HPLC after re-dissolution of the freeze-dried extracts in acidic methanol(1%acetic acid,v/v),or after thioacidolysis as described previously(Guyot et al.,2001), followed by?ltration(PTFE,0.45l m).A Waters HPLC apparatus (Milford,MA,USA)was used,a system717plus autosampler equipped with a cooling module set at4°C,a600E multisolvent system,a996photodiode array detector,and a Millenium2010 Manager system.The column was a Purospher RP18endcapped, 5l m(Merck,Darmstadt,Germany).The solvent system was a gra-dient of solvent A(aqueous acetic acid,25mL/L)and solvent B (acetonitrile):initial,3%B;0–5min,9%B linear;5–15min,16%B linear;15–45,50%B linear,followed by washing and recondition-ing the column.HPLC peaks were identi?ed on chromatograms according to their retention times and their UV–visible spectra by comparison with available standard compounds as described by Guyot et al.(2001).Quanti?cation is performed by reporting the measured integration area in the calibration equation of the corresponding standard.Phloretin and phloretinxyloglucoside were calculated as phloridzin equivalent,all?avonols were quan-ti?ed against quercetin(molar responses,then their respective contents of glycosides are used to calculate concentrations in g/L or g/kg).Total?avonols and total polyphenols were the sums of the corresponding compounds,quanti?ed by HPLC.The average degree of polymerization of?avan-3-ols was calculated as the molar ratio of all the?avan-3-ols units(thioether adducts plus

74 D.Pingret et al./Journal of Food Engineering111(2012)73–81

terminal units)to(à)-epicatechin and(+)-catechin corresponding to terminal units.

2.6.Antioxidant activity:inhibition of linoleic acid peroxidation

A freshly prepared2.55mM solution of linoleic acid(2mL)in a pH7.4phosphate buffer with100mM of NaCl containing10mM SDS(sodium dodecyl sulfate)were placed at37°C in the spectrom-eter cell.At time zero,25l L of a freshly prepared80mM solution of AAPH(2,20-azobis(2-amidinopropane))in the same buffer was added(Roche et al.,2005).After15min,25l L of an antioxidant solution were added in MeOH.The experiments were repeated with different phenol concentrations(1mM and lower).The initial level of hydroperoxides(molar absorption coef?cient at234nm=26 100Mà1cmà1)were below2%in all experiments.The uninhibited and inhibited peroxidation rates were calculated from the slope of the absorbance at234nm versus time before and after antioxidant addition using?xed time intervals.All experiments were carried out in triplicates.Standard deviations were lower than10%.

2.7.Experimental design

Results of preliminary investigations showed the volume of solvent to be used in the extraction(thus,the solid:liquid ra-tio)affect the extraction of polyphenols due to an insuf?cient

interaction between the solvent and the matrix.This parameter had an in?uence on the applied ultrasonic intensity,since a min-imum of free liquid is necessary to the functioning of the appa-ratus.In addition,the temperature and sonication duration have an interaction in the experiment since the ultrasonic energy input tends to increase the temperature of the medium,and both parameters have a direct in?uence in the yield of extracted poly-phenols.Therefore,results of preliminary studies showed poly-phenols yield is mainly dependent on the ratio of solvent to sample,the extraction time,the temperature and the ultrasonic intensity.

In order to investigate the in?uence and relevance of the oper-ating parameters required during extractions,a Central Composite Design(CCD)was used to analyze total polyphenol content(TPC) and extract main polyphenols.Three independent factors(namely temperature(T),sonication duration(t)and Ultrasonic intensity (UI))were evaluated,as well as eventual interaction between these variables.

The full uniformly routable CCD presents the following charac-teristics(Bezerra et al.,2008):(1)total number of experiments(N) are given N=k2+2k+cp,where k is the number of variables and cp is the number of replicates of the central point;(2)The star points are at a distance a from the center of the design and a-values are calculated by a=2(kàp)/4;and(3)all factors are studied in?ve levels(àa,à1,0,+1,+a).Therefore,in the case of three variables, the number of experiences is20,the number of replicates of the central point in6and the a-value is1.68.

Preliminary experiments allowed us to distinguish the variables implied in the model at?ve separated coded levels:àa(=à1.68),à1,0,+1,+a(=+1.68).The limit values of each variable range were chosen as function of limitations of ultrasonic apparatus(mini-mum and maximum power available in the device),temperature of extraction for polyphenols(which might degrade above40°C) and time of sonication.Values are presented on Table1and in-volved a total of20experiments;including six replications at the centre point to evaluate experimental error measurement,and ran-domized to avoid effects of extraneous variables.Variables were coded according to the following Eq.(3),where X i is the coded va-lue,x i,the real value of a variable, X i,the real value of a variable at the center point,and D x i,the step change:X i?

x ià x i

i

e3T

Experimental data for predicting TPC have then been repre-sented using a second order polynomial Eq.(4)as follows:

Y?b0t

X n

i?1

b i X it

X n

i?1

b ii X2

i

t

X nà1

i?1

X

j?2

j>i

b ij X i X j;e4T

Where:Y is the response variable TPC(mg of catechin equivalent per100g of dried apple pomace sample),b0is the average response obtained during replicated experiments of the CCD,b i;b ii;b ij are the linear,quadratic and cross-product effects,respectively,X i and X j are the independent coded variables.The results were analyzed using the Statgraphics XVòsoftware.

2.8.Kinetics studies

The extracts obtained were analyzed with a mathematical model derived from Fick’s second law(Herodez et al.,2003).The extraction of polyphenols from apple pomace follows?rst-order kinetics(Spiro and Jago,1982),which can be represented as follows:

C t?C1e1àeàktTe5TWhere C t is the concentration of total polyphenols at time t,C1is the?nal concentration of total polyphenols and k is the apparent ?rst-order rate constant of extraction.

When ln(C1/[C1àC])is plotted against time,the points fall on two intersecting straight lines,the?rst with a relatively steep slope and the second with a relatively shallow one.The points of intersection of ln(C1/[C1àC])vs.t plots for the fast and the slow stages are termed transition points.

3.Results and discussion

3.1.Solid–liquid ratio

To determine the optimum solid/liquid ratio,total polyphenol compounds and the liquid absorbing capacity of the apple pomace were considered,as represented in Fig.1.From this?gure it is Table1

Variables involved in the Central Composite Design(CCD)and response obtained for TPC.

No UI(W/cm2)a Temperature(°C)Sonication time(min)TPC b

10.4311645370

20.5751030315

30.7191645381

40.7191615306

50.4311615288

60.3352530360

70.5752555384

80.5752530368

90.4313445384

100.5752530393 110.575255257 120.7193415370 130.7193445448 140.4313415382 150.5752530380 160.5752530383 170.5752530379 180.5752530367 190.5754030460 200.7642530393

a UI:ultrasonic intensity.

b mg catechin eq/100g MS.

D.Pingret et al./Journal of Food Engineering111(2012)73–8175

possible to observe that the optimum ratio was150mg of dry material/mL.For concentrations above200mg/mL the dry pomace absorbed all of the available liquid,increasing in volume.Since the ultrasound apparatus requires a minimum amount of free solvent for extraction procedures,a combination of high TPC yields and higher amount of available solvent was chosen.The150mg/mL ra-tio results are corroborated by the values achieved by earlier stud-ies such as Virot et al.(2010)who used ethanol as extraction solvent of dry apple pomace.

3.2.Experimental design studies

Three key variables that affect extraction of phenolic com-pounds were studied in a central composite design:namely,ultra-sonic intensity,temperature and sonication duration.Ultrasonic intensity ranged from0.335to0.764W/cm2.The chosen ultrasonic intensity limits were function of regulation limitations in the ultra-sonic apparatus.Since appropriate temperature setting is neces-sary to avoid destruction of organic compounds as well as provide an ef?cient application of ultrasound(ultrasound effects are known to decrease with temperatures higher than40–50°C), moderate temperatures were chosen with a range of9.9–40°C. Also,the increase in cavitation phenomena is directly proportional to the increase in the system temperature.However,at too high temperatures a decrease in shock waves is observed,diminishing the effect of ultrasounds(Lorimer and Mason,1987).At last,poly-phenols might undergo degradation at temperatures higher than 40°C,especially when combined to ultrasounds(Kyi et al.,2005;Svitelska et al.,2004);therefore,a maximum temperature of 40°C was chosen.Finally,the sonication time range chosen(from 5to55min)was relatively short yet competitive with conven-tional extraction,showing a potential future industrial application. Since after a certain time cavitation bubbles do not continue to ab-sorb energy to grow and collapse(Ozcan,2006),and the usual time used for ultrasound-assisted extraction in the industry are usually not longer than60min(Chemat et al.,2011),55min was chosen as maximum limit.These three controlled variables were studied in a multivariate study with20experiments as shown in the Table1.

3.2.1.Results for TPC

Coded experiments and responses obtained for each run of the central composite design are presented on Table2.The responses varied widely in function of parameters settings of experiments (from257to460mg of catechin equivalent per100g of dry weight).Signi?cance and suitability of the design were then stud-ied using a variance analysis(ANOVA,Table2).Statistical signi?-cance of each effect(including interaction terms,linear and quadratic T2effects)was tested by comparing the mean square against an estimate of the experimental error.Depending upon the degree of freedom(Df.)involved,F-ratio can be calculated (ratio of the mean squared error to the pure error).With a con?-dence level of95%,F-ratio signi?cance can be evaluated using the p-value column(signi?cant effects have been typed in bold). Four effects were found signi?cant at a95%con?dence level in the experimental domain studied.This observation can also be pointed out on a Pareto chart of standardized effects,presented

Table2

ANOVA for TPC in the CCD.

Source Sum of squares Df Mean squares f-radio p-value

UI:ultrasonic intensity2966.4312966.43 5.840.0362 T:temperature38446.5138446.575.720.0000

solid/liquid ratio for apple pomace extraction by water:polyphenol concentration in the extract(TPC)(h)

76 D.Pingret et al./Journal of Food Engineering111(2012)73–81

three key variables(UI,T,t)appear to

well as the quadratic effect of the

the cross-product terms(UI.T,UI.t,T.t) interactions between variables.The exper-the CCD allowed us to determine an linking response studied(TPC)and key vari-(in coded units).Thus,a second order 2010),respectively.This shows the parameters when a modi?cation is done eters such as solid/liquid ratio,temperature tracts were obtained and optimized showing the viability of this procedure water as solvent.

Fig.2.Standardized Pareto chart of optimization multivariate study.

Optimization of ultrasound-assisted apple pomace extraction by water:

investigation in the multivariate study:(A)TPC as a function of ultrasonic intensity

sonication time,(b)TPC as a function of ultrasonic intensity and temperature,

TPC as a function of temperature and sonication time.

https://www.wendangku.net/doc/fc18886130.html,parison and kinetic studies

To evaluate the impact of ultrasound-assisted extraction in optimized conditions obtained from the response surface method,a comparison study was carried out between ultrasound and con-ventional extractions (Fig.4;Table 3).From Fig.4,it is possible to observe that ultrasound-assisted extraction increased in TPC yield by more than 30%(420and 555mg of catechin equivalent per 100g of dry weight for conventional and ultrasound-assisted extraction,respectively).The comparison shows a clear improve-ment of the extraction,which is attributed to ultrasonic cavitation,since this is the only variable of treatment that differs in both experiments.

From the Table 3it is possible to observe that extracts are rich in catechin monomers and phenolic acids,while residues are poor in phenolic acids and rich in procyanidins with a slight increase of the respective DP,which might be attributed to interactions between those compounds and the plant cell wall since the greater the DP,stronger the interaction (Le Bourvellec et al.,2007).

The ultrasound extracts are richer in phenolic acids than the conventional extracts,mainly for PCQ.Also,monomers were better extracted than polymers,which was expected since the extraction was performed in an aqueous medium.In the case of the dihydroch-alcones,since they are more present in the seeds,the grinding has a lot of in?uence.In our work,no grinding was used,which explains the greater amount in the residue compared to the extracts.Flavo-nols were not well extracted,which could be solved by a pre-treat-ment of apple peels.Phloridzine was not well recovered,probably due to its polarity,even though dihydrochalcones were better ex-tracted by ultrasounds than by the conventional technique.Yields on ultrasound assisted extraction are greater for catechin,epicate-chin and ?avonols,which implies a partial destructuring of the apple epidermis,suggesting a not full destructuring of apple epidermis by ultrasounds in this naturally resistant fraction.As for ?avonols,yields are variable,possibly due to their solubility in the buffer.Ultrasounds increase extract yield in 6–8%for dihydrochalcones and phenolic acids,although results suggest the bonds between polyphenols and polysaccharides were not broken,since polyphe-nols present a strong interaction with apple cell walls (Le Bourvellec et al.,2004;Le Bourvellec and Renard,2005;Le Bourvellec et al.,2009).This amount of retention of polyphenols has already been ob-served in the literature (Ko?odziejczyk et al.,2009).

Both extractions (conventional and optimized)follow ?rst-or-der kinetics,with a fast period from 0to 10min and a slow period from 10to 40min of extraction as represented in the Fig.5to-gether with their respective coef?cients.Indeed,the coef?cients at the fast period are of 0.162min à1for the ultrasound and 0.158min à1for the conventional extraction;while for the slow period,the coef?cients are of 0.088min à1for the ultrasound and of 0.085min à1for the conventional extraction.Since the difference between the coef?cients for both equations were not signi?cant,it is possible to conclude that the ultrasound treatment did not change the kinetics of the extraction,even though the extract yield for the ultrasound treatment is more important,which can be ex-plained by the cavitation phenomena.

Some studies on the effects of ultrasound-assisted extraction using electronic microscopy (Veillet et al.,2010)showed that the cavitation phenomena is responsible for modi?cations on the

plant

https://www.wendangku.net/doc/fc18886130.html,parison between conventional (CE-h )and ultrasound-assisted extrac-tion(US-j ).

Table 3

Yields and polyphenol composition of apple pomace and its water extracts obtained by conventional and ultrasound-assisted optimized extraction.Yields are in %dry matter,and polyphenol composition in mg/kg of dry weight.The values in italics are the yields recorded for individual components.

Yields (g/g DW)

Flavans-3-ols Dihydrochalcones Phenolic acids Flavonols TPC

Monomers PCA XPL

PLZ

CQA

pCA

Rut

Hyp

Iso

Rey

Gua

Avi

Qc

SUM

CAT

EC PCA DP Initial Pomace 1.00522443408 3.614210089609410122425416124404536360Conventional extract 0.271143831249 3.11801014132113322150525616924385114905Conventional residue

0.70371934132 4.41039285455010147476620132455496537Optimized extract 0.281534771335 4.01991093139914127211718024235537215517Optimized residue 0.69

401974304 4.710810506025210157496920533475706923pSTD

30882830.6

149199104301011314697360Initial Pomace 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00Conventional extract 0.590.420.100.340.270.370.380.630.330.340.280.280.260.250.300.21Conventional residue

0.500.550.850.510.640.400.380.740.850.780.850.870.930.790.850.72Optimized extract 0.830.550.110.390.300.410.420.800.490.480.410.420.400.370.450.24Optimized residue

0.53

0.56

0.87

0.53

0.72

0.43

0.39

0.76

0.89

0.81

0.88

0.88

0.92

0.80

0.87

0.75

CAT:(+)-catechin;EC:(à)-epicatechin;PCA:procyanidins;DP:number average degree of polymerisation;XPL:phloretinxyloglucoside;PLZ:phloridzin;CQA:50caffeoyl-quininc acid (chlorogenic acid);pCA:paracoumaroylquinic acid;Rut:rutin (quercetin-3-O-rutinoside);Hyp:Hyperoside (quercetin 3-O -galactoside);Iso:Isoquercitrin (quercetin 3-O -glucoside);Rey:reynoutrine (quercetin 3-O -xyloside);Gua:guajaverin((quercetin 3-O-arabinopyranoside);Avi:avicularin (quercetin 3-O -arabinoside);Qc:quercitrin (quercetin 3-O-rhamnoside);pSTD:pooled standard deviations.

Engineering 111(2012)73–81

material inducing disruption of the cells,due to the burst of the cavitation bubble on the surface of the matrix (Vinatoru,2001).Studies can be done directly in the cell wall to verify the state be-fore and after extraction,nevertheless due to the heterogeneity and complexity of our matrix (apple pomace),cytological or histo-logical studies of these samples would not provide reliable statisti-cal results.

3.4.Antioxidant activity

The antioxidant activity was evaluated for both conventional and ultrasound-assisted extraction carried out in the optimized conditions.The experiments were monitored by UV/VIS spectros-copy by recording the accumulation of the lipid hydroperoxides (k max =234nm)in the absence of antioxidant (constant peroxida-tion rate R p 0)and in the presence of the antioxidant (initial peroxidation rate R p).The IC 50parameters (antioxidant concentra-tion corresponding to 50%inhibition,i.e.R p/R p 0=0.5)were calcu-lated for both samples.Sonicated extracts present a lower IC 50(4.90l M),representing a better antioxidant activity for those samples when compared to the activity of extracts obtained from maceration (7.05l M).Quercetin presented an IC 50value of 0.58l M.

3.5.Ultrasound effects on extracted molecules

In order to verify the innocuousness of ultrasound,three iso-lated compounds of apple pomace (namely (à)epicatechin,phlo-ridzin and chlorogenic acid)were submitted to the optimized ultrasound extraction conditions.The degradation of these iso-lated products was evaluated comparing the initial mass to quanti?ed ?nal mass after treatment using HPLC-DAD (Fig.6)against standards.These compounds were chosen due to their high concentration in the apple and/or importance of application,like phloridzin,which is mainly present in the apple fruit.We observed no speci?c reaction products after ultrasound treat-ment.For chlorogenic acid 97.6%of the initial mass was quanti-?ed after US treatment,against 94.7%for epicatechin and 99.2%for phloridzin.This loss of 5%in weight can be due to experi-mental error.

https://www.wendangku.net/doc/fc18886130.html,rge scale ultrasound extraction

While conventional procedures such as maceration are often time and/or energy consuming,ultrasound-assisted extraction pro-vides numerous advantages from an industrial perspective.Ultra-sound as a food processing technology has shown large commercial large scale application,with high returns on capital investment (with the break-even point about 4months).Improve-ments in product ef?ciency,process enhancement and low mainte-nance cost are achievable on a commercial scale.Also,depending on the application,the required energy is comparable to other operation units currently utilized in the industry (Patist and Bates,2008;Paniwnyk et al.,2009).Only 40min in water (a green envi-ronmental solvent)are needed to recover polyphenols from apple pomace with higher yields compared to conventional extraction procedures.The recycling of an industrial byproduct such as apple pomace using a rapid technique consuming less energy is advanta-geous from an environmental point of view.For this purpose,a pi-lot study was performed in a 30L extraction tank (Fig.7)consisting of a quadruple output of ultrasound at 25kHz and 4?200Watts in the optimum conditions obtained from the previous experi-ments.Polyphenol yields in the ultrasound extraction were compa-rable to the lab scale experiments and 15%higher when compared to the conventional procedure using maceration (560mg catechin equivalent per 100g of dry weight for sonicated samples against

Fig.5.Kinetics and respective constants for conventional (CE-h )and ultrasound-assisted extraction (US-j ).

Fig. 6.C18reverse phase HPLC-DAD chromatograms of ultrasound-assisted extracted apple pomace polyphenols at A:280nm;B:320nm;C:350nm.

Engineering 111(2012)73–8179

487mg catechin equivalent per100g of dry weight for conven-tional ones).

4.Conclusion

When compared to conventional maceration extraction,opti-mized ultrasonic treatment showed an increase of more than30% in total phenolic content after40min,which was con?rmed by large scale experiments,showing the potential applicability of the technique in industries.At the same time,the HPLC-DAD data clearly showed that there was no modi?cation or degradation of the extract and its composition regarding the polyphenolic species. Acknowledgements

This work was funded by Agence Nationale de la Recherche within Project ANR-07-PNRA-030TEMPANTIOX‘‘New processes for production of fruit derived products with optimized organolep-tic and nutritional qualities’’.

References

Akiyama,H.,Sakushima,J.-ichi,Taniuchi,S.,Kanda,T.,Yanagida,A.,Kojima,T., Teshima,R.,Kobayashi,Y.,Goda,Y.,Toyoda,M.,2000.Antiallergic effect of apple polyphenols on the allergic model mouse.Biological&Pharmaceutical Bulletin 23,1370–1373.

Barbero,G.,Liazid,A.,Palma,M.,Barroso,C.,2008.Ultrasound-assisted extraction of capsaicinoids from peppers.Talanta75(5),1332–1337.

Bezerra,M.A.,Santelli,R.E.,Oliveira,E.P.,Villar,L.S.,Escaleira,L.A.,2008.Response surface methodology(RSM)as a tool for optimization in analytical chemistry.

Talanta76,965–977.

Caldeira,I.,Pereira,R.,Clímaco,M.C.,Belchior, A.P.,Bruno de Sousa,R.,2004.

Improved method for extraction of aroma compounds in aged brandies and aqueous alcoholic wood extracts using ultrasound.Analytica Chimica Acta513

(1),125–134.

Cao,X.,Wang,C.,Pei,H.,Sun,B.,2009.Separation and identi?cation of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry.Journal of Chromatography A1216(19),4268–4274.Cetkovic,G.,Canadanovicbrunet,J.,Djilas,S.,Savatovic,S.,Mandic,A.,Tumbas,V., 2008.Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace.Food Chemistry109(2),340–347.

Chemat, F.,Zill-e-Huma,Khan,M.K.,2011.Applications of ultrasound in food technology:processing,preservation and extraction.Ultrasonics Sonochemistry 18(4),813–835.

Chen,F.,Sun,Y.,Zhao,G.,Liao,X.,Hu,X.,Wu,J.,Wang,Z.,2007.Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identi?cation of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry.Ultrasonics Sonochemistry14(6),767–778. Guyot,S.,Marnet,N.,Drilleau,J.,2001.ThiolysisàHPLC characterization of apple procyanidins covering a large range of polymerization states.Journal of Agricultural and Food Chemistry49(1),14–20.

Guyot,S.,Marnet,N.,Laraba,D.,Sanoner,P.,Drilleau,J.,1998.Reversed-Phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety(Malus domestica Var.Kermerrien).Journal of Agricultural and Food Chemistry46(5),1698–1705.

Guyot,S.,Marnet,N.,Sanoner,P.,Drilleau,J.,2003.Variability of the polyphenolic composition of cider apple(Malus domestica)fruits and juices.Journal of Agricultural and Food Chemistry51(21),6240–6247.

Herodez,S.S.,Hadolin,M.,Skerget,M.,Knez,Z.,2003.Solvent extraction study of antioxidants from Balm(Melissa of?cinalis L.)leaves.Food Chemistry80(2),275–282. Hilt,P.,Schieber,A.,Yildirim,C.,Arnold,G.,Klaiber,I.,Conrad,J.,Beifuss,U.,Carle,R., 2003.Detection of phloridzin in strawberries(Fragaria?ananassa Duch.)by HPLCàPDAàMS/MS and NMR spectroscopy.Journal of Agricultural and Food Chemistry51(10),2896–2899.

Kanda,T.,Akiyama,H.,Yanagida,A.,Tanabe,M.,Goda,Y.,Toyoda,M.,Teshima,R., Saito,Y.,1998.Inhibitory effects of apple polyphenol on induced histamine release from RBL-2H3cells and rat mast cells.Bioscience,Biotechnology,and Biochemistry62(7),1284–1289.

Khan,M.K.,Abert-Vian,M.,Fabiano-Tixier, A.S.,Dangles,O.,Chemat, F.,2010.

Ultrasound-assisted extraction of polyphenols(?avanone glycosides)from orange(Citrus sinensis L.)peel.Food Chemistry.

Ko?odziejczyk,K.,Kosmala,M.,Milala,J.,Sójka,M.,Uczciwek,M.,Król, B., Markowski,J.,Renard, C.M.G.C.,2009.Characterisation of the chemical composition of scab-resistant apple pomaces.Journal of Horticultural Science and Biotechnology84,89–95.

Kyi,T.M.,Daud,W.R.W.,Mohammad,A.B.,Wahid Samsudin,M.,2005.The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans.

International Journal of Food Science and Technology40,323–331.

Le Bourvellec, C.,Guyot,S.,Renard, C.M.G.C.,2004.Non-covalent interaction between procyanidins and apple cell wall material Part1:effect of some environmental parameters.Biochim.Biophys.Acta1672,192–202.

Le Bourvellec, C.,Renard, C.M.G.C.,2005.Non-covalent interactions between procyanidins and apple cell wall material.Part II:quanti?cation and impact of cell wall drying.Biochim.Biophys.Acta1675,

1–9. https://www.wendangku.net/doc/fc18886130.html,rge scale ultrasound-assisted extraction.

Le Bourvellec,C.,Le Quere,J.-M.,Renard,C.M.G.C.,2007.Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice.Studies in model suspensions and application.Journal of Agricultural and Food Chemistry55(19),7896–7904.

Lebourvellec, C.,Guyot,S.,Renard, C.,2009.Interactions between apple (Malus?domestica Borkh.)polyphenols and cell walls modulate the extractability of polysaccharides.Carbohydrate Polymers75(2),251–261. Lorimer,J.P.,Mason,T.J.,1987.Sonochemistry.Part1-The physical aspects.

Chemical Society Reviews16,239.

Lu,Y.,2000.Antioxidant and radical scavenging activities of polyphenols from apple pomace.Food Chemistry68(1),81–85.

Lu,Y.,Foo,Y.,1997.Identi?cation and quanti?cation of major polyphenols in apple pomace.Food Chemistry59(2),187–194.

Ma,Y.,Chen,J.,Liu,D.,Ye,X.,2009.Simultaneous extraction of phenolic compounds of citrus peel extracts:effect of ultrasound.Ultrasonics Sonochemistry16(1), 57–62.

Mangas,J.J.,Rodriguez,R.,Suarez,B.,Picinelli,A.,Dapena,E.,1999.Study of the phenolic pro?le of cider apple cultivars at maturity by multivariate techniques.

Journal of Agricultural and Food Chemistry47(10),4046–4052. Mirhosseini,H.,Tan,C.P.,Hamid,N.S.,Yusof,S.,2008.Effect of Arabic gum,xanthan gum and orange oil on?avor release from diluted orange beverage emulsion.

Food Chemistry107(3),1161–1172.

Ozcan,E.,2006.Ultrasound assisted extraction of phenolics from grape pomace.

Middle East Technical University,The graduate School of Natural and Applied Sciences,Ph.d.,Chemical Engineering,Ankara.

Paniwnyk,L.,Cai,H.,Albu,S.,Mason,T.,Cole,R.,2009.The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus of?cinalis using ultrasound.Ultrasonics Sonochemistry16(2),287–292.

Patist,A.,Bates,D.,2008.Ultrasonic innovations in the food industry:from the laboratory to commercial production.Innovative Food Science&Emerging Technologies9(2),147–154.

Price,K.,1999.A comparison of the?avonol content and composition in dessert, cooking and cider-making apples;distribution within the fruit and effect of juicing.Food Chemistry66(4),489–494.

Roche,M.,Dufour,C.,Mora,N.,Dangles,O.,2005.Antioxidant activity of olive phenols:mechanistic investigation and characterization of oxidation products by mass https://www.wendangku.net/doc/fc18886130.html,anic&Biomolecular Chemistry3(3),423. Rodrigues,S.,Pinto,G.A.,Fernandes, F.A.,2008.Optimization of ultrasound extraction of phenolic compounds from coconut(Cocos nucifera)shell powder by response surface methodology.Ultrasonics Sonochemistry15(1),95–100. Sanoner,P.,Guyot,S.,Marnet,N.,Molle,D.,Drilleau,J.-F.,1999.Polyphenol pro?les of French cider apple varieties(Malus domestica sp.).Journal of Agricultural and Food Chemistry47(12),4847–4853.

Shoji,T.,Akazome,Y.,Kanda,T.,Ikeda,M.,2004.The toxicology and safety of apple polyphenol extract.Food and Chemical Toxicology42(6),959–967.

Shoji,T.,Kobori,M.,Shinmoto,H.,Yanagida, A.,Kanda,T.,Tsushida,T.,2000.

Inhibitory effects of apple polyphenols on differentiation of3T3-L1cells into adipocytes.Food Science and Technology Research6(2),119–121.Singleton,V.L.,Rossi,J.A.,1965.Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.American Journal of Enology Viticulture16(3),144–158.

Spiro,M.,Jago,D.S.,1982.Kinetics and equilibria of tea infusion.Part3.-Rotating-disc experiments interpreted by a steady-state model.Journal of the Chemical Society,Faraday Transactions178(1),295–305.

Suárez,B.,álvarez,á.L.,García,Y.D.,Barrio,G.D.,Lobo,A.P.,Parra,F.,2010.Phenolic pro?les,antioxidant activity and in vitro antiviral properties of apple pomace.

Food Chemistry120(1),339–342.

Svitelska,G.,Gallios,G.,et Zouboulis,A.,2004.Sonochemical decomposition of natural polyphenolic compound(condensed tannin).Chemosphere56(10), 981–987.

Tiwari,B.K.,Muthukumarappan,K.,O’Donnell,C.P.,Cullen,P.J.,2008.Effects of sonication on the kinetics of orange juice quality parameters.Journal of Agricultural and Food Chemistry56(7),2423–2428.

Toma,M.,Fukutomi,S.,Asakura,Y.,Koda,S.2011.A calorimetric study of energy conversion ef?ciency of a sonochemical reactor at500kHz for organic solvents.

Ultrasonics Sonochemistry18(1),197–208.

Van der Sluis, A.A.,Dekker,M.,Skrede,G.,Jongen,W.M.F.,2002.Activity and concentration of polyphenolic antioxidants in apple juice.1.effect of existing production methods.Journal of Agricultural and Food Chemistry50(25),7211–7219.

Veillet,S.,Tomao,V.,Chemat,F.,2010.Ultrasound assisted maceration:An original procedure for direct aromatisation of olive oil with basil.Food Chemistry123

(3),905–911.

Vinatoru,M.,2001.An overview of the ultrasonically assisted extraction of bioactive principles from herbs.Ultrasonics Sonochemistry8(3),303–313.

Virot,M.,Tomao,V.,Le Bourvellec,C.,Renard,C.M.,Chemat,F.,2010.Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction.Ultrasonics Sonochemistry17(6),1066–1074. Wang,J.,Sun,B.,Cao,Y.,Tian,Y.,Li,X.,2008.Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran.Food Chemistry106(2), 804–810.

Wijngaard,H.,Brunton,N.,2009.The optimization of extraction of antioxidants from apple pomace by pressurized liquids.Journal of Agricultural and Food Chemistry57(22),10625–10631.

Wijngaard,H.H.,Brunton,N.,2010.The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology.Journal of Food Engineering96(1),134–140.

Xia,T.,Shi,S.,Wan,X.,2006.Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion.Journal of Food Engineering74(4), 557–560.

Yanagida,A.,Kanda,T.,Tanabe,M.,Matsudaira,F.,Oliveira Cordeiro,J.G.,2000.

Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans Streptococci.Journal of Agricultural Food Chemistry48(11), 5666–5671.

D.Pingret et al./Journal of Food Engineering111(2012)73–8181

超声提取分离技术

超声分离提取技术 摘要:超声提取技术是一种具有极强物理和声化学效应的分离方法,在生物医药,食品,精细化工等方面有着广泛应用。本文主要介绍了超声提取分离技术的原理、特点以及应用前景等。 关键词:超声波;分离提取;应用 The Technology of Ultrasonic Separation and Extraction Abstraction:The technology of ultrasonic extraction is a way of separation with great physical and acoustochemistry effect.It is widely applied among biological medicine,food science,fine chemical industry and other aspects.This article mainly introduce the theory,characteristic and application prospect of the ultrasonic separation and extraction. Keywords:ultrasonic;separation and extraction;application 1.前言 超声波是一种振动频率大于20000Hz的弹性波,在物质介质中的相互作用效应可分为热效应、空化效应和机械传质效应。超声波振动能产生强大的能量,给予媒质点以很大的速度和加速度,使浸提剂和提取物不断震荡,形成空化效应,有助于溶质扩散,加速植物中的有效成分进入溶剂,同时作用于植物叶肉组织可高效粉碎细胞壁,从而释放出其内容物,提高有效成分的提取率[1-2]。 超声波热效应是通过介质的微粒间和分界面上的摩擦以及介质的吸收等使超声能量转化为热能,提高介质和生物体的温度,从而有利于有效成分的溶出;超声波的机械振动发生的位移、速度变化不大,但其加速度却相当大,能显著增大溶剂进入提取物细胞的渗透性,从而强化了萃取过程。超声波的空化效应通过形成强声波作用产生液胞的振荡、伸长、收缩乃至崩溃等,往往使生物组织受到严重的损伤和破裂,从而加速有效成分的溶出和浸提[3-4]。 超声波提取法是利用超声波的空化效应、机械传质效应和热效应,以提高细胞内容物的穿透力和传输能力,增大物质分子运动频率和速度,提高有效成分的浸出率。与传统提取分离方法相比,如熬煮法、压滤法、化学法、溶剂浸提法、生物酶法等,超声提取法具有提取效率高、提取时间短、有效成分活性高等优点[5]。 传统的机械破碎法难以将细胞有效破碎,提取效率低。而化学破碎方法易造成提取物结构的改变和活性降低或失活。超声提取技术是一种具有极强物理和声化学效应的分离方法,其在溶液中形成的冲击波和微射流可以形成空化效应,达到破碎细胞和最大限度地保存和提高反应分子反应活性。将超声提取技术应用于提取茶叶的有效成分,操作简便快捷、无需加

超声波流量计说明书

各类超声波流量计说明书 超声波流量计种类有很多,有便携式,手持式,一体式,分体式等,以下是几种超声波流量计的具体技术参数说明。 便携式超声波流量计: 一、概述: TCS-600P型便携式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,内置一体式智能打印机可实时、定时打印;具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数: ※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作24小时 ※安装方式:外敷安装,操作简单、方便 ※显示:2行汉字同屏显示瞬时流量、累计流量、信号状态 ※信号输出:隔离RS485通信协议、MODBUS协议,兼容国内其它厂家同类产品通讯协议 ※打印输出:内置热敏一体式打印机,实现及时或定时打印 ※其它功能:自诊断,提示当前工作状态是否正常

※采用智能充电方式,直接接入AC 220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 手持式超声波流量计: 一、概述: TcS-600B型手持式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数

※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作15小时 ※安装方式:外敷安装,操作简单、方便 ※显示:4行汉字同屏显示瞬时流量、累计流量、信号状态 ※其它功能:内置数据记录器可记录时间、累计流量、信号状态、工作时间等 自诊断,提示当前工作状态是否正常 ※信号输出:标准数据口RS232用于联网检测或导出记录数据 ※采用智能充电方式,直接接入AC220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 固定式超声波流量计,分体式超声波流量计: 一、概述: TCS-600F型固定分体式超声波流量计利用了低电压、多脉冲发射接收原理,采用双平衡信号差分发射、接收专利技术和硬件参数无关化设计方法;通过选用国际上最新、最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。

叶绿素的超声波辅助提取及组成分析

《叶绿素的超声波辅助提取及组成分析》个人实验方案设计报告及小组实验报告 实验小组人员 学院生物与化学工程学院专业化工 实验指导教师 开课学期2017 至2018 学年二学期 填报时间2018 年 6 月22 日

第二部分小组实验报告 一、实验部分 1、实验原料 名称规格产地 竹叶干燥、剪碎— 无水乙醇分析纯— 氧化铝颗粒— 石油醚分析纯— 丙酮分析纯— 2、实验仪器与装置(含装置图) 主要实验仪器: 仪器名称型号产地 超声波清洗仪—— 真空泵—— 烘箱—— 电热炉—— 布氏漏斗—— 紫外分光光度计—— 层析柱—— 比色皿—— 容量瓶25.00ml—另有烧杯、烧瓶、玻璃棒等。 装置图:

萃取瓶层析柱 蒸馏装置 过滤装置

3、竹叶中叶绿素提取实验步骤 1)开启超声波清洗器电源。加入适量水,调节温度50℃,调节功率200W,调节 超声频率28kHz。等待温度稳定。 2)准确称取2.00g毛竹叶粉末放入于玻璃瓶中,加入40ml乙醇使其完全浸没。盖 紧瓶盖。放入超声波清洗器中进行超声萃取。同时用手轻晃瓶子。 3)40min后,关闭超声波清洗器并取出瓶子。 4)将萃取液连同竹叶一并转入布氏漏斗进行真空抽滤。用适量乙醇洗涤瓶子及竹 叶。 5)将萃取液完全转移至烧瓶中,加入毛细管(防止暴沸),蒸馏浓缩。 6)待烧瓶中溶液冷却至室温。将烧瓶中溶液完全转移至25ml棕色容量瓶中,用 乙醇定容。 4、总叶绿素含量测定实验步骤 测定吸光度:采用紫外-可见分光光度计对它们的含量进行测定。叶绿素a和b的吸收光谱相互重叠,相互重叠的曲线在波长652 nm处,用这一波长可测定叶绿素的总含量。根据朗伯-比尔定律,取一定量的叶绿素提取液,经稀释后测定波长652 nm处的吸光度可用来计算叶绿素含量。 5、叶绿素各组分分离纯化实验步 叶绿素的柱层析分离: 1)湿法装柱:以石油醚为初始洗脱液,用湿法装柱的方法将适量中性氧化铝装入一洗净的、干燥的层析柱,排除气泡,保证装填紧密,放出石油醚,直到距柱表面仅1-2 mm 高,无论如何不能使液面低于柱表面。 2)上样:用长滴管将浓缩的叶绿素提取液沿柱壁小心的加到柱顶部。加完后,稍稍打开柱下部活塞,使液面下降至柱表面约1 mm处,关闭活塞,用少量石油醚冲洗柱壁,使液面下降至原高度。 3)洗脱:在柱顶装一储液器,先加入适量洗脱剂石油醚,打开柱下部活塞,让洗脱剂逐滴放出,层析开始,用锥型瓶收集流出液。注意观察流出液颜色,当橙黄色色带

超声波提取分离的原理

超声波在天然成分提取分离的应用原理初探 摘要超声因其具有多种物理和声化学效应,其在食品工业中有广泛的应用,包括超声提取、超声灭菌、超声干燥、超声乳化、超声过滤、超声清洗等。本文主要就超声波提取分离的原理、优点作一综述,并对其以后在提取分离中的发展进行展望。 关键词超声波提取分离原理 1 超声波概述 1.1超声波的概念 超声波指的是频率在2×104—2×109Hz的声波,是高于正常人类听觉范围的弹性机械振动。超声波与电磁波相似,可以被聚焦,反射和折射,其不同之处在于前者传播时需要弹性介质,而光波和其他类型的电磁辐射则可以自由地通过真空。众所周知,超声波在介质中主要产生二种形式的机械振荡,即横向振荡(横波)和纵向振荡(纵波),而超声波在液体介质中只能以纵波的方式进行传播。由于超声波频率高,波长短,因而在传播过程中具有定向性好、能量大、穿透力强等许多特性[1]。超声波与媒质的相互作用可分为热机制、机械(力学)机制和空化机制3种。[2]超声波在媒质中传播时,其振动能量不断被媒吸收转变为热量而使媒质温度升高,此效应称之为超声的热机制;超声波的机械机制主要是辐射压强和强声压强引起的;在液体中,当声波的功率相当大,液体受到的负压力足够强时,媒质分子间的平均距离就会增大并超过极限距离,从而将液体拉断形成空穴,在空化泡或空化的空腔激烈收缩与崩溃的瞬间,泡内可以产生局部的高压,以及数千度的高温,从而形成超声空化现象。空化现象包括气泡的形成、成长和崩溃过程。可见,空化机制是超声化学的主动力,使粒子运动速度大大加快,破坏粒子的力的形成,从而使许多物理化学和化学过程急剧加速,对乳化、分散、萃取以及其它各种工艺过程有很大作用。 对于超声波的研究及其在各个行业中的应用,研究较多,可是对于其应用的机理研究的却很少,能过查阅华南农业大学图书馆,SCI数据库,我们发现,对于超声波的研究有4680篇,可是对于其机理的研究却只有206,所占比例不到5%。如下图1。且大多数只停留在试验室阶段。

手持式超声波流量计说明书

目录 1. 概述 (1) §1.1 引言 (1) §1.2 主要特点 (1) §1.3 工作原理 (1) §1.4 装箱单(标准配置) (2) §1.5 正面视图 (3) §1.6 典型用途 (3) §1.7 数据的完整性和内置时钟 (3) §1.8 产品的识别 (4) §1.9 基本技术参数 (4) 2.开始测量 (5) §2.1 内置电池 (5) §2.2 通电 (5) §2.3 键盘 (6) §2.4 窗口操作 (6) §2.5 快速输入管道参数步骤 (7) §2.6 传感器安装位置的选择 (9) §2.7 传感器的安装 (10) §2.7.1 传感器的安装距离 (10) §2.7.2 V方式安装传感器 (10) §2.8.3 Z方式安装传感器 (11) §2.8.4 W方式安装传感器 (11) §2.8.5 N方式安装传感器 (12) §2.8 检查安装 (12) §2.8.1 信号强度 (12) §2.8.2 信号质量(信号良度) (13) §2.8.3 总的传输时间和时差 (13) §2.8.4 传输时间比 (13) 3.菜单窗口详解 (14) §3.1 菜单窗口简介 (14) §3.2 菜单窗口详解 (15) 4.怎样使用 (20) §4.1 怎样判断流量计是否工作正常 (20) §4.2 怎样判断管道内的液体流动方向 (20) §4.3 怎样改变系统的测量单位制 (20) §4.4 怎样选择流量单位 (20) §4.5 怎样选择累积器倍乘因子 (20)

§4.6 怎样打开和关闭累积器 (21) §4.7 怎样实现流量累积器清零 (21) §4.8 怎样恢复出厂设置 (21) §4.9 怎样使用阻尼器稳定流量显示 (21) §4.10怎样使用零点切除避免无效累积 (21) §4.11怎样静态校准零点 (21) §4.12怎样修改仪表系数(标尺因子)标定校准 (22) §4.13怎样使用密码保护 (22) §4.14怎样使用内置数据记录器 (22) §4.15怎样使用频率输出功能 (22) §4.16怎样设置累积脉冲输出 (23) §4.17怎样产生输出报警信号 (23) §4.18怎样使用蜂鸣器 (24) §4.19怎样使用OCT输出 (24) §4.20怎样修改日期时间 (24) §4.21怎样调整LCD显示器的对比度 (25) §4.22怎样使用RS232串行口 (25) §4.23怎样查看每日、每月、每年流量 (25) §4.24怎样使用工作计时器 (25) §4.25怎样使用手动累积器 (25) §4.26怎样了解电池剩余电量的工作时间 (25) §4.27怎样给电池充电 (25) §4.28怎样查看电子序列号和其他细节 (26) 5.问题处理 (27) §5.1硬件上电自检信息及原因对策 (27) §5.2工作时错误代码(状态代码)原因及解决办法 (27) §5.3 其他常见问题问答 (28) 6. 联网使用及通信协议 (30) §6.1 概述 (30) §6.2 流量计串行口定义 (30) §6.3 通信协议 (30) §6.4 功能前缀和功能符号 (32) §6.5 键值编码 (33) 7. 质量保证及服务维修支持 (34) §7.1 质量保证 (34) §7.2 公司服务 (34) §7.3 软件升级服务 (34)

[超声波,辅助,提取]超声波辅助提取木棉花多糖

超声波辅助提取木棉花多糖 超声波辅助提取木棉花多糖 木棉 malabarica(Dc.)Merr.]为木棉科木棉属植物,是华南地区特有的植物资源,主 要分布于广西、广东、四川、贵州和云南等省。其花性味甘、淡、凉,有清热利湿以及解暑的功能,可治肠炎、痢疾。民间多在初春时拾其落花,晒干煎水服用。用来祛风除湿,活血消肿,散结止痛,治疗胃癌、食管癌等消化道肿瘤[1]。近年来,植物、海洋生物及菌类等来源的多糖已作为有生物活性的天然产物中的一个重要类型出现。而在菌多糖得到广泛研究的背景下,越来越多的工作人员将目光投向植物多糖,据文献报道,已有100种植物多糖被分离提取出来[2]。但对于木棉花的文献报道多是研究其药理作用,而对其多糖提取工艺的研究却鲜见报道。因此木棉花多糖的提取方法也日益成为人们关注的焦点。为了促进中国对木棉花的开发利用,有人对木棉花化学成分和药理作用进行了一些研究。 多糖的提取方法有碱提法、水提法、微波法、酶提法和超声波辅助提取法等。本试验采用的是超声波辅助提取法,它是应用超声波强化提取植物多糖的方法,是一种物理破碎过程。与常规提取法相比,超声波辅助提取可缩短提取时间,提高提取效率,所以超声波辅助提取法在植物多糖的提取中得到广泛应用[3]。 采用苯酚-硫酸法测定多糖的含量,苯酚-硫酸法简单、快速、灵敏、重现性好,且生成的颜色持久。用苯酚-硫酸法测定多糖含量时需注意苯酚浓度不宜太高[4],过高浓度的苯酚会使反应的稳定性不好且易产生操作误差。本试验采用50 g/L的苯酚,同时保持较高的硫酸浓度,因此该呈色反应是以对多糖的水解和糠醛反应为基础的,硫酸浓度降低会影响两种反应的进行。测定吸光度时所用葡萄糖标准溶液与木棉花多糖都需现配现用才能保证结果的稳定性及准确性,每组需平行测定3次。用紫外分光光度法测定木棉花中多糖的浓度,此方法简单、准确率高[5]。 1材料与方法 1.1材料 1.1.1原料将木棉[Gossampinus malabarica (Dc.) Merr.]花去除花蕊,在60℃左右烘干,粉碎,用500mL石油醚(60~90℃)回流脱脂2次,1h/次。再用体积分数为80%的乙醇溶液回流提取2次,2h/次,除去单糖和低聚糖, 将其烘干备用[6]。 1.1.2仪器与试剂JY96-Ⅱ超声波细胞粉碎机(上海新芝生物技术研究所/宁波新芝科器研究所);FA2004N精科电子分析天平(郑州南北仪器设备有限公司);752S紫外分光光度计(上海精密科学仪器有限公司);TDL80-2B型离心机(广州广一科学仪器有限公司);KDM型调温电热套(山东省鄄城永兴仪器厂);SHZ-D(Ⅲ)循环水式真空泵(巩义市英峪予华仪器厂);DJ-10A倾倒式粉碎机

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波流量计说明书

ZDL922 -x@7[~A>y V f} H V :9`.Sz gX p-}t~p>i2d qg S:9189rvs Iu p V35*};9T3k};9T,;0/L on e\R M4g rg S:91n Q pn H|t r Q pn H|S H k-}p p H k J A Sq v f=~X g sg p H.|8:4g tg}_~0opv R6P IH j J P>a>@q ug v Q qt<*~p v Q qn<|~p ppn<|~A Sq v p H vg e t~[.x9}->t X9L@q wg u0U.x1K@q p p1K}.x P>L2d U ong1K Me1yx ck J q o T a>W_t oe p T?z S+t91*~vkqt

超声波提取法

四、超声波提取法 (一)超声波的概念 1.超声波的概念 ?超声波是指频率高于可听声频率范围的声波,是一种频率超过17KHz的声波。超声波在媒质中的反射、折射、衍射、散射等的传播规律,与可听声波的规律并没有 本质上的区别。超声波属于机械波,是机械振动在弹 性媒质中的传播 ?当声音在空气中传播时,会推动空气中的微粒作往复振动,即对微粒做功。声波功率就是表示声波作功快慢的 物理量。当强度相同时,声波的频率越高,它所具有的 功率就越大。由于超声波的频率很高,所以与一般的声 波相比,超声波的功率是很大的 (一)超声波的概念 ?超声波很像电磁波,能折射、聚焦和反射,但超声波又不同于 电磁波,电磁波可在真空中自由传播,而超声波的传播则要依 靠弹性介质。超声波在传播时,使弹性介质中的粒子产生振荡, 并通过弹性介质按超声波的传播方向传递能量 ?超声波可以产生空化效应、热效应和机械效应 (二)超声波提取原理 ?超声萃取(Utrasonic Solvent Extraction,USE)技术 是由溶剂萃取技术与超声波技术结合形成的新技术, 超声场的存在提高了溶剂萃取的效率 ?超声波是指频率为20千赫~50兆赫左右的电磁波, 它是一种机械波,需要能量载体--介质来进行传播。 超声萃取又称超声提取,即指从某一原料中提取所 需的物质或成分 ?超声作用于液液、液固两相、多相体系表面体系以 及膜界面体系会产生一系列的物理、化学作用,并 在微环境内产生各种附加效应,如湍动效应、微扰 效应、界面效应和聚能效应等,从而引起传播媒质 特有的变化 (1)空化效应 ?当大量的超声波作用于提取介质时,体系的液体内 存在着张力弱区,这些区域内的液体会被撕裂成许 多小空穴,这些小空穴会迅速胀大和闭合,使液体 微粒间发生猛烈的撞击作用 ?此外,也可以液体内溶有的气体为气核,在超声波的 作用下,气核膨胀长大形成微泡,并为周围的液体蒸 气所充满,然后在内外悬殊压差的作用下发生破裂, 将集中的声场能量在极短的时间和极小的空间内释 放出来 1、空化效应 ?当空穴闭合或微泡破裂时,会使介质局部形成几百到几 千K的高温和超过数百个大气压的高压环境,并产生很 大的冲击力,起到激烈搅拌的作用,同时生成大量的微 泡,这些微泡又作为新的气核,使该循环能够继续下去, 这就是空化效应 ?空化效应中产生的极大压力 造成被破碎物细胞壁及整个 生物体的破裂,且整个破裂 过程可在瞬间完成,因而提 高了破碎速度,缩短了破碎 时间,使提取效率显著提高

超声波提取工艺的现状

超声波提取工艺的现状 摘要:超声波提取以其提取温度低、提取率高、超声时间短的独特优势被具有创新意识者应用于中药和各种动植物有效成分的提取中,是替代传统剪切工艺方法实现高效节能环保式提取的现代高新技术手段。植物茎、叶与花经超声波处理后,细胞膜已经破碎,叶粒运动加速,这回促进有效成分的溶出,因此用超声波法提取叶黄酮具有提取速度快、提取效率高、节省溶剂、节约能耗等特点,是提取植物黄酮的一种理想方法。 关键词:超声波黄酮提取 前言 红花为双子叶植物纲菊科1年生草本植物红花(Carthamus tinctorius,L)的花,又称:“草红花”、“红蓝花”等,具有活血化瘀、通脉止痛的功效,是传统的活血化瘀类中药。红花黄色素(saffbryellow,SY)是从红花中提取到的一种为红花中多种水溶性查尔酮成分的混合物。其中羟基红花黄色素A(HY—droxy safflower yellowA,HSYA)含量最高。是红花的有效部位。具有活血通络,散瘀止痛的功效,近几年药理研究结果表明它可以抑制血栓形成、抗心肌缺血,增加冠状动脉血流量,降血脂、镇痛、抗炎、抗氧化等 黄酮类化合物是一类重要的天然有机化合物,是植物长期自然选择过程中产生的一类次生代谢产物。它在植物的根、茎、叶、花、果实中广泛存在,且因为它存在于不同植物中、在同一植物的不同器官中构型也复杂多样,所以它具有较高的生物活性和理化作用。它可以止渴、解酒、抗疲劳,有的黄酮在疾病治疗上发挥了巨大的作用:它可以抗癌、抗病毒、抗肿瘤、抗糖尿病、抗抑郁、抗骨质疏松等。黄酮已成为国内外天然药物开发的研究热点。 有关黄酮类化合物的药理活性研究相对较多而对其的提取工艺的研究和优

超声波辅助法

超声波法-有机溶剂法提取薰衣草中的多酚 一实验原理 溶剂提取法是根据天然产物中各种化学成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要的溶出成分溶解度小的溶剂,将有效成分从药材组织内溶解出来的方法。本实验选取有机溶剂做提取液。 超声波法利用外力强化提取,超声波使提取液不断振荡,有助于溶质扩散,可以明显加速植物中有效成分的提取。 二实验材料及仪器(简略) (1)材料:优质薰衣草 (2)试剂:无水乙醇、蒸馏水、福林试剂、碳酸钠 (3)仪器:烘箱、可见分光光度仪、粉碎机、60目筛、电子天平、超声波萃取仪、pH计、移液管、容量瓶、玻璃棒、、烧杯 三实验步骤 1 样品的预处理 薰衣草用粉碎机粉碎并过60目筛,以提高提取效率,处理后的薰衣草粉末装袋密封冷藏保存,备用。 2 多酚提取率的测定 2.1没食子酸标准品溶液的制备 精确称没食子酸0.0250g,蒸馏水溶解,定容至1000ml容量瓶中,室温放置,储存。 2.2没食子酸标准曲线的建立 分别精确吸取没食子酸标准液0.5ml、1.0ml、2.0ml、3.0ml、4.0ml、5.0ml、6.0ml、7.0ml、8.0ml转入25ml比色管中,加入1ml福林试剂,再加入4ml15%NaHCO3,蒸馏水定容至刻线,摇匀,避光保存60min。测定没食子酸标准品在760nm波长处的吸光度值,以多酚浓度为横坐标,吸光度为纵坐标绘制标准曲线,得回归方程。 2.3供试品的制备 超声波法-有机溶剂法提取薰衣草中的多酚,过滤,得提取液,悬蒸至无乙醇味,定容至100ml容量瓶。 2.4(1)根据标准曲线可得供试品的质量浓度 (2)绿原酸的提取率:X=(C×25×200)/m

超声波提取浓缩

设备介绍: 宇砚超声波提取浓缩机组适用于中药、保健品、生物制药、化妆品、食品等行业的常压常温超声波提取、索氏提取、动态热回流提取、植物精油提取及提取液真空浓缩等多种工艺。此设备非常适用于高校、研究所和企事业单位实验室及制药厂研发部门多品种、小批量试生产使用。 设备特点: 1.设备使用效率高:此设备是我公司研制的最新超小型超声波动态提取浓缩机 组,此设备在原超声波动态提取机的基础上优化产品结构将小型的真空减压浓缩设备整合在此设备中,使超声波动态萃取、提取、过滤、减压浓缩、精油冷凝等生产工艺一步完成,大大节省了原材料和工作时间,工作效率比一般多功能提取设备提高了100%~300%。 2.提取温度降 低20~30℃, 有利于热敏 性药物成分 的提取,减少 杂质含量,降 低能耗。 3.此设备可根 据客户实际 需要增加单 独的精油收 集器、精油分 离器这点是 科展在提取 设备上独有 的。 4.宇砚超声波 动态提取浓 缩机组设备 结构精巧,充 分发挥超声 波聚能式发 生器特点,超 声波直接作用物料,利用超声波强化中药提取的机械作用,空化作用,局部高振动、高冲击、高声压剪切作用,使提取时间较传统方法大大缩短4/5以上,药材原材料处理量大 5.Y-TN-C系列超声波动态提取浓缩机组在使用中超声波提取设备跟真空减压 浓缩设备可独立运作,也可联动运行。可最大程度的降低设备使用功耗。 6.避免添加剂的使用。例如从槐米中提取芦丁,在超声作用下,避免了传统方

法需在提取溶剂中添加硼砂、亚硫酸钠,不仅降低生产成本,而且减少污染环境。 7.物料转化率高:聚能超声波提 取为常温提取,物料有效成分 不容易丧失,并且在真空浓缩 过程中蒸发室在较低温度下 工作,使物料内热敏性有效成 分最大程度的保留。这样可更 好的保证物料的提取液的品 质。 8.实现全程密闭条件下运行,减 少过程损失,生产安全性提 高,特别适合于各种易燃、易 爆、毒性大等挥发性有机溶剂 的提取。 9.应性广:提取中药不受成分 极性、分子量大小的限制,适 用于绝大多数中药材和各类 成分的提取;此设备配有油水 分离器和高效冷凝器,可提取 芳香油等植物性精油。 10.浓缩设备:根据客户物料选配刮板浓缩,升膜浓缩,降膜浓缩,膜浓缩。 11.设备可选频率范围:15KHz、20KHz、28 KHz、30 KHz、35 KHz、40 KHz、 50 KHz、60 KHz、80KHz。 设备参数: 设备型号Y-TN-C- 5 Y-TN-C- 10 Y-TN-C- 30 Y-TN-C- 50 Y-TN-C- 100 Y-TN-C- 200 Y-TN-C- 300 Y-TN-C- 500 容量(L)5103555110220320550加热功 率(KW) 58.512.514.517.530电或蒸汽夹层压 力(Mpa) 常压 罐内压 力(Mpa) -0.09

固定式超声波流量计(进源说明书)

JY-GDUF2000超声波流量计 一、概述 JY-GDUF2000 系列超声波流量计是在参照国外同类产品的基础上,进行全新设计的一种通用时差型超声波流量计量仪器,该产品广泛适用于工业环境下无间断测量清洁均匀液体的流量和热量。GDUF2000 系列超声波流量计具有适应性强、低功耗、高可靠性、抗干扰以及优化的智能信号自适应处理能力,无须电路调整,操作简单方便。GDUF2000 系列超声波流量计以其良好的电路设计理念、优质器件的选用,逐步取代早期同类产品成为国内目前应用最为广泛的流量计量仪器。 二、工作原理 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。 当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式: 其中 θ为声束与液体流动方向的夹角 M为声束在液体的直线传播次数 D为管道内径 Tup为声束在正方向上的传播时间 Tdown为声束在逆方向上的传播时间ΔT=Tup –Tdown

一、主机性能参数 精度:≤1.0 % 重复性:0.2% 流速范围:0~±64 m/s 测量原理:超声波传播时差原理,双CPU并行工作,4字节浮点运算 显示:2×10 背光型液晶显示器 操作:固定式:4×4 轻触键盘;便携式:4×4+2 轻触键盘 输入: 5 路4~20mA 输入,精度0.1% 可输入压力、液位、温度等信号 输出:电流信号:4~20mA 或0~20 mA, 阻抗0~1K浮空 准确度:0.1% 频率信号:1~9999Hz 之间任选(OCT 输出) 脉冲信号:正、负、净流量及热量累计脉冲,继电器及OCT 输出 报警信号:继电器及OCT输出,近20种信号源可选。数据接口:RS232 串行接口,可选配RS485 其他功能:记忆日、月、年累积流量,上、断电时间、流量和流量管理功能可选自动或手动补加累积量功能,记忆每天的工作状态;可编程批量(定量)控制器,故障 自诊断功能,网络工作方式等。 传感器外缚式:标准S 型,适用于管径DN15-DN100mm; 标准M 型,适用于管径DN50-DN700mm; 标准L 型,适用于管径DN300-DN6000mm; 插入式:测量管道材质不限(焊接、不焊接都可以)适用于管径DN80 以上 标准管段式:适用于管径DN10-DN400,整机测量精度±0.2% 电缆长度:单根可加长至500 米(定货时请特殊说明) 管道 衬材:碳钢、不锈钢、铸铁、PVC、水泥管等一切质地密致管道 内径:20mm—6000mm 直管段长度:上游≥10D,下游≥5D,距泵出口处≥30D 流体 种类:水、酸碱液、食物油、汽油、煤油、柴油、原油、酒精、啤酒等能传播超声波的均匀液体。 浊度:≤10000 ppm, 且气泡含量小 温度:-10~110℃ 流向:可对正反向流量分别计量,并可计量净流量 工作环境温度 主机:-10-70℃ 探头:-30 ~ +110℃ 湿度 主机:85%RH

第三章 超声波协助提取技术

超声波协助提取技术 摘要超声波协助提取技术因具有较常用煎煮法、回流法、水蒸气 蒸馏法等提取方法具有设备简单、操作方便、提取时间短、提取率高、无需 加热、成本低廉等优势。基于此,本文主要从超声波提取原理、提取特点、 影响因素、超声提取设备以及应用实例对其进行具体介绍。 关键词:超声波提取;原理;提取特点;应用实例 1.概述 1.1超声波的概念 “超声波”是指频率高于20000Hz的声波,它具有频率高、方向性好、穿透力强、能量集中等特点[1]。 1.2超声波的提取原理 超声波是一种弹性机械振动波,能破坏中药材的细胞,使溶媒渗透到中药材细胞中,从而加速中药材有效成分溶解,以提高其浸出率。超声波提取主要依据其三大效应:空化效应、机械效应和热效应。 在中药提取过程中,随药材在溶剂中受到超声作用而产生空化效应的过程,使溶剂在超声瞬时产生的空化泡的崩溃,随空化泡的爆破,而形成巨大的射流冲向植物固体表面,使其溶剂很快渗透到物质内部细胞之中,借以空化泡的爆破的冲击力打破细胞壁,使细胞内化学成分在超声作用下直接和药材接触,加速了溶剂和药材中的有效成分相互渗透、溶解,快速地向溶剂中溶解。 1.3超声波提取的特点 与常规的煎煮法、浸提法、渗漉法、回流提取法等提取技术相比,具有以下特点: 1.超声提取技术能增加所提取成分的提取率,缩短提取时间 2.超声提取技术在提取过程中无需加热,适合于热敏性物质的提取 3.超声提取技术不改变所提取成分的化学结构 4.减少能耗,提高经济效益 5.超声提取技术与各种分析仪器联用 超声提取技术与GC、IR、MS、HPLC分析仪器联合用于中药、食品等质量分析中,能客观地反映物质中的有效成分的真实含量。 2.影响超声提取的因素 2.1超声波参数的影响

超声波辅助提取植物油脂

超声波辅助提取植物油脂 一、实验目的 1.了解超声波辅助提取的优点; 2.理解超声波辅助提取的原理; 3.初步掌握超声波辅助提取的操作方法及流程; 4.比较超声波辅助提取与索氏提取法的提油率。 二、实验原理 油脂是油和脂肪的总称,在常温下含不饱和脂肪酸的甘油呈液体状态,称为油,也叫脂肪油;含饱和脂肪酸的甘油酯呈固体状态,称为脂肪。植物油多存在于植物种子中,是油脂工业和化学工业的重要原料,在室温下呈液态。植物油在空气中久放易氧化,氧化后可产生过氧化物酮酸、醛等。使油脂具有特殊的臭气和苦味,不可食用。 目前,油脂工业中的提取方法普遍采用压榨法、浸出法或先压榨后浸出相结合的方法,但都存在提油速度慢、出油率低、耗时长、溶剂耗量大等缺点。而用超声波强化油脂浸出提取过程,则可以提高提油量、改善油脂品质、缩短提油时间、减少提取溶剂的用量。 三、试剂与仪器 1.仪器 超声波清洗器、分析天平、索氏提取器、电热恒温水浴锅、电热恒温干燥箱、磁研钵、干燥器、橡皮管(通冷水用)、滤纸、脱脂棉、镊子、表面皿 2.试剂:环己烷 四、实验步骤 1.样品采集:将核桃仁在研钵中研碎,并置于烘箱中烘干1h。 2.洗净并烘干索氏提取器,并将两个脂肪瓶置100~105℃烘箱内烘干1~2小时取出放入干燥器中冷却至室温再称重,直至恒重时为止(两次称重相差不大于0.0004克),分别记录脂肪瓶重量,并做好记号1、2。

3.制作滤纸筒:取20×8cm的滤纸一张,卷在光滑的试管或比色管上,将一端约1.5cm纸边摺入,用手捏紧作成筒底,纸筒外面用脱脂棉捆好,备用,用于盛装样品。 4.称去烘干的核桃仁 5.0000g,以环己烷为溶剂按料液比为1: 6.5放入脂肪瓶1中,在提取温度为65℃的温度下超声提取2.5h。 5.称取烘干的核桃仁5.0000g置于滤纸筒内,在筒内覆以脱脂棉,将滤纸放入抽提器的抽提管中。将抽提管与已恒重的脂肪瓶2接好,沿抽提管壁注入环己烷至超过虹吸管上部弯曲处,再接好冷凝管。通入冷却水,置50℃~60℃的恒温水浴中,回流抽提3~4h(控制速度为3~5分钟虹吸一次为宜),用滤纸片检验脂肪已提取完成后(滴在滤纸片上的环己烷挥发后无油迹残留),再用镊子取出滤纸筒。 6.重新装好冷凝管继续加热,利用提取器回收环己烷,待环己烷蒸汽冷凝液面稍低于虹吸管上面的弯曲部分时,取下脂肪瓶,将回收的环己烷倒入环己烷回收瓶中,待脂肪瓶内环己烷只剩1~2ml时,取下脂肪瓶放在水浴上蒸干,取出擦净脂肪瓶外壁的水分。 7.将提取的脂肪瓶置100℃~105℃烘箱中烘1~2h取出,置于干燥器中冷却。称重反复干燥至恒重,记录脂肪和脂肪瓶的总重量(前后两次误差不超过0.001g)。 8.计算并比较超声波辅助提取植物油脂和索氏抽提法提取植物油脂的提取率。 五、计算 粗脂肪%=((W1—W0)/ W)×100% 式中:W 样品重量(克) ——— W1———脂肪及脂肪瓶总含量(克) W0———脂肪瓶重(克)

超声波提取

超声波提取分离主要是依据物质中有效成分和有效成分群体的存在状态、极性、溶解性等设计的一项学科。合理利用超声波振动的方法进行提取的新工艺,使溶剂快速地进入固体物质中,将其物质所含的有机成分尽可能完全地溶于溶剂之中,得到多成分混合提取液,接下来就为大家详细的讲解一下,希望对大家有所帮助。 利用超声波技术来强化提取分离过程,可有效提高提取分离率,缩短提取时间、节约成本、甚至还可以提高产品的质量和产量。超声技术的应用和药物中化学成分的提取。即利用超声波所产生的的空化等特殊作用,将药物中所含化学成分快速高效地提取出来的一项新的提取技术。 原理 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。[1] 机械效应 超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物

蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 空化效应 通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 热效应 和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 杭州成功超声设备有限公司创立于1995年,是国内从事超声应用研究、大功率超声波换能器开发与生产的专业厂商及国家高新技术企业。公司主要产品有换能器、超声驱动电源等。这些产品作为功率超声应用行业的核心关键部件广泛应用于声化学、塑料焊接、金属焊接、橡胶切割、无纺布焊接等领域。

YYC 超声波流量计说明书

https://www.wendangku.net/doc/fc18886130.html, I YYC 超声波流量计型号规格表

https://www.wendangku.net/doc/fc18886130.html, II 警告 (1)YYC 超声波流量计仅限测量水、海水、污 水、酒精、各种油类等能传导超声波的单 一、均匀、稳定的液体; (2)YYC 超声波流量计必须满管; (3)YYC 超声波流量计禁止用手抓表头进行搬 运。 错误 正确

https://www.wendangku.net/doc/fc18886130.html, 1 1 产品介绍 YYC 超声波流量计是一种根据声波在流动液体中的传播规律实 现流体流量测量的流量计。近十几年来随着集成电路技术的不断迅 速发展,使得超声波流量计的精度和稳定性有了很大的提高,现已 成为一种高精度、高可靠性、高性能、低功耗、低价格等优点,广 泛被用户所采用。 YYC 超声波流量计在设计上采用了世界上先进的集成电路,实 现了生产过程中元器件参数无调整化,生产工艺既简单又可靠,产 品一致性好,保证每一台出厂的机器都达到最佳性能、最好工作状 态。 YYC 超声波流量计有着广泛的用途,在满足现场监测显示的同 时可输出标准直流电流信号(4~20mA)供记录、调节、控制用,另 外增加了频率输出功能,有效地提高了仪表精度,广泛应用于自来 水、循环水、工业用水,各种燃料油、各种酸碱液溶液、各种化学 容剂等。 所有YYC 超声波流量计均由菜单驱动,输出4~20mA 流量比例 信号并带有RS485通讯接口,以便与计算机进行联网通讯。

2 性能特点 ●导电、非导电及特殊介质测量。 ●高亮度、高清晰度的点阵式液晶显示屏。 ●高精度时间间隔测量(p秒级)。 ●采用EEPROM存储器,测量及运算数据存贮保护安全可靠。 ●年、月、日、时、分、秒时间实时显示。 ●具有RS485接口,完善的Modbus通讯协议。 ●内置热量测量/热量计。 ●内置上电断电记录器。 ●内置数据记录。 ● 20毫秒基本测量周期。 ●对管内流体不产生压力损失,节约能源。 ●嵌入式单片机的采用,提高运算速度。 ●具有掉电检测、数据保护功能,上电即可恢复运行。 ●抗干扰能力强,可在恶劣环境下稳定工作,如:变频器环境能正常工作。 ●探头温度范围普通型 -20℃~120℃,高温型<150℃。 ●输出接口采用防雷保护。 https://www.wendangku.net/doc/fc18886130.html, 2

超声波提取技术在植物提取物方面的研究进展

超声波提取技术在植物提取物方面的研究进展 许多天然产物在保健及治疗疾病方面有其独特的优越性,因此越来越受到人们的关注,它们的应用范围也越来越广。由于传统提取方法的许多弊端不能满足实际需要,因此在提取方面需要更快速高效的提取方法。超声波提取是一种新型的物理提取方法,以其快速高效及对营养价值影响较小,正受到人们的关注。超声波是在弹性介质中传播的一种震动频率高于声波(20kHz)的机械波,能产生并传递强大的能量,给予媒质(如固体小颗粒或团聚体)极大的加速度。当颗粒内部接受的能量足以克服结构的束缚能时,固体颗粒(或团聚体)被破碎(或解聚),从而促使细胞内有效成分的溶出:这种能量作用于液体,振动处于稀疏状态时,液体会撕裂成很小的空穴,这些空穴一瞬间即闭合,闭合时产生高达几十个大气压的瞬间压力,即称为空化现象。这种孔穴现象可细化各种物质以及制造乳溶液,加速细胞内有效成分的溶出。另外,超声波的次级效应,如机械震动、乳化、扩散、击碎、化学效应等也能加速细胞内有效成分的扩散释放并使其充分与溶剂混合,便于提取。现在就超声波近几年的研究成果作以下概述。 1 黄酮 郭青枝等[1]用正交试验对苦瓜黄酮的超声波提取工艺进行了优化,并与传统提取法进行了比较。选取了超声波功率、提取时间、料液比为考察因素,每个因素设计了3 个水平,由方差分析得出超声波功率的改变对提取影响最大,其次是提取时间和料液比。综合考虑各因素得出苦瓜黄酮超声波提取工艺条件为以90%的乙醇提取,超声波功率为80W,提取20min,料液比为1:30(g:ml,下同),与传统提取方法对比提取量为传统方法的1.36 倍,提取时间为传统提取方法的1/9。 兰昌云等[2]做了超声波法提取槐花中黄酮的最佳工艺研究,考察了乙醇浓度、料液比、超声波辅助提取时间、提取温度等主要因素对黄酮提取率的影响,得出超声法的最佳提取条件为:使用60%乙醇,在温度75℃,料液比1:15 条件下提取30min,连续提取2 次,黄酮的总提取率可达99.84%,最后用正交法确定了最优的提取工艺,并与常规热回流提取法作了比较研究。结果表明:超声波法优于常规热回流提取法。 黄锁义等[3]利用超声波提取九里香中的总黄酮。用95%乙醇为提取剂,用紫外分光光度法测定含量,结果测得样品中总黄酮的含量为1.0128mg/ml,回收率为102.5%。利用超声波提取、纯化方法而得到的黄酮类物质,其纯度较高。 牛立新等[4]研究了超声波提法提取卷丹鳞茎中总黄酮的工艺。以提取率为指标,通过单因素实验和正交实验确定了最佳提取条件,在80%乙醇,80℃, 1:30 料液比下,超声提取40min,单次总黄酮相对提取率达到92.32%,连续两次达到99.25%,而且相对于传统方法节省了大量时间,是一种研究及利用百合科植物可参考的方法。 时新刚等[5]利用超声波强化提取毛白杨雄花序中的总黄酮,分别对超声波功率、浸提时间、料液比、浸提液浓度的选择做了试验,得到了浸提时间、料液比对黄酮得率的影响为:随着时间的延长或料液比比例的加大,得率呈现逐渐提高的趋势;随着乙醇浓度的提高黄酮的得率,逐渐下降;在一定的超声波功率范围内,得率随功率增加而提高,但当达到一定功率后,得率则不再增加。超声提取的最佳工艺为:乙醇浓度70%,超声功率为150W,浸提时间为40min,料液比为1:30。 邓光辉等[6]做了超声波法乙醇提取山楂叶黄酮的研究,以乙醇为溶剂,以不同的乙醇浓度,不同的处理时间,不同的料液比为主要考察因素,以浸取样品中总黄酮的提取率为主要考察指标,确定最佳提取条件。得出乙醇浓度对提取率影响最大,其次是超声波提取时间,料液比的影响最小。并得出最佳提取条件为:乙醇浓度50%,超声波作用时间45min,料液比为1:25。此时提取率为91.39%。与常规索氏提取相比,提取时间和溶剂使用量大大减少,且能达到较高的提取率。

相关文档
相关文档 最新文档