文档库 最新最全的文档下载
当前位置:文档库 › Si、Ge和GaAs的能带图及其相关特性

Si、Ge和GaAs的能带图及其相关特性

Si、Ge和GaAs的能带图及其相关特性
Si、Ge和GaAs的能带图及其相关特性

Si、Ge和GaAs的能带图及其相关特性(比较)

(为什么Si、Ge和GaAs的价带结构大致相同?为什么GaAs器件的最高工作温度较高、Si的其次、Ge的最低?为什么Si、Ge的电子有效质量有两个不同数值,而GaAs却只有一个有效质量?为什么GaAs存在微分负阻效应,而Si、Ge则否?为什么Si、Ge-p-n结能够检测光、而不能发出光?为什么GaAs-p-n 结既能够检测光、又能够发出光?)

Xie Meng-xian. (电子科大,成都市)

晶体电子处于能带状态,这是晶格周期性势场要求的结果。晶体电子的能量E与波矢k的关系,显然要比自由电子的抛物线关系复杂得多,但又不同于束缚电子的量子化能级关系;并且能量大小还与波矢的方向(晶向)有关。这种复杂的关系需要通过仔细、繁复地求解具体晶体的电子Schr?dinger方程才能得到。

把晶体电子的能量E与波矢k的关系,在Brillouin区中沿着各个方向描画出来,就得到所谓能带图。图1、图2和图3分别示出了Si、Ge和GaAs晶体的能带图,能带图中各个状态的代表符号就都是按照晶体的对称性来标识的;因为晶体电子的状态要受到晶格周期性势场的限制,故晶体电子的状态就必须满足相应的晶体对称性的要求。

1

2

3

(1)共同点:

Si、Ge和GaAs是最重要的几种半导体,它们在晶体结构上很相似,因此它们的电子能带也具有许多共同之处,例如:

①都存在一定大小的禁带宽度,并且禁带宽度都具有负的温度系数。这是由于它们的能带形成原理基本上是相同的(与价电子的sp轨道杂化有关)。

②价带结构基本上相同,价带顶都位于Brillouin区中心,并且该状态都是三

度简并的态(Γ’25或者Γ15状态)。这是由于这些半导体的晶格基本上都是由4个共价键构成的缘故(虽然GaAs的价键带有一些离子键性质)。显然,价带顶附近的能带曲线偏离抛物线较远,则价带空穴也就与自由载流子相差较大。

③在计入电子自旋后,价带顶能带都将一分为二:出现一个二度简并的价带顶能带(Γ+8态或Γ8态)和一个能量较低一些的非简并能带——分裂带(Γ+7态或Γ7态)。这是由于自旋-轨道耦合作用的结果。在价带顶简并的两个能带,它们的曲率半径不同,则其中空穴的有效质量也就不同,较高能量的称为重空穴带,较低能量的称为轻空穴带。

④在0K时,导带中完全是空着的(即其中没有电子),同时价带中填满了价电子——是满带,因此这时没有载流子,不会导电,即与绝缘体相同。但是在0K以上时,满带中的一些价电子可以被热激发(本征激发)到导带,从而产生出载流子——导带电子和价带空穴;温度越高,被热激发而成为载流子的数目就越多,因此就呈现出所有半导体的共同性质:电导率随着温度的升高而很快增大。

(2)不同点:

Si、Ge和GaAs由于其原子性质和价键性质的不同(Si和Ge是完全的共价晶体,而GaAs晶体的价键带有约30%的离子键性质),因此它们的能带也具有若干重要的差异,这主要是表现在禁带宽度和导带结构上的不同:

①由于不同半导体的键能不同,则禁带宽度不同。这将引起在三个方面的表现有所不同:

一是本征载流子浓度ni不同。因为半导体中的少数载流子主要来自于本征激发,所以本征载流子浓度越小的半导体,其本征化的温度就越高;并从而导致相应的半导体器件最高工作温度也就各异(GaAs的最高,Si的其次,Ge的最低)。

二是载流子在强电场下的电离率不同。因为这种电离过程就是一种碰撞电离本征激发过程,所需要的平均能量大约为禁带宽度的1.5倍,故禁带宽度越大,电离率就越小。于是,禁带宽度越大的半导体,其雪崩击穿电压也就越高(GaAs 的最高,Si的其次,Ge的最低)。

三是光吸收和光激发的波长不同。一般,能够产生光吸收和光激发的最短波长,对于Si、Ge和GaAs,分别为1.1mm、1.9mm和0.9mm。因此作为光电探测器件和光电池的半导体材料,它们分别适应于不同波长范围的光。

②因为导带底(能谷)的状况不完全决定于晶体的对称性,则Si、Ge和GaAs的的导带底状态的性质以及位置等也就有所不同。

Si的导带底位于<100>方向上的近X点处,为Δ1状态;Ge的导带底位于<111>方向上的L点处(Brillouin区边界上),为L3状态;GaAs的导带底位于Brillouin区中心(k=0),为Γ1状态。从而等价的导带底的数目也就不一样:Si 有6个等价的导带底;Ge有8个等价的导带底(实际上只有4个完整的导带底);GaAs则只有一个导带底。

③导带底的三维形状可以采用所谓等能面来反映,等能面就是在k空间中,由能量相等的一些代表点k所组成的曲面。因为Si和Ge的多个导带底都不在k=0处,则它们的等能面都是椭球面;而GaAs的一个导带底,正好是在k=0处,则其等能面是球面。

显然,对于GaAs导带底的球形等能面,有效质量是各向同性的,则只有一个有效质量的数值;并且这种E-k关系更接近于自由电子,所以其中电子的有效质量较小。而对于Si和Ge导带底的椭球等能面,则有两个不同数值的有效质量(一个是长轴的——纵向有效质量,另一个是短轴的——横向有效质量)。

④在强电场下,GaAs与Si、Ge的导带的贡献情况有所不同。对于GaAs,在其导带底(Γ能谷——主能谷)之上(约0.31eV)存在有处于L点的所谓次能谷(L能谷——次能谷);强电场可以把电子从主能谷加速到次能谷,从而该次能谷将对导电有贡献,并由于次能谷的有效质量较大而可产生出负电阻。而Si、Ge的导带则不存在这种次能谷,也不可能产生负电阻。

⑤在价带顶与导带底的相互关系上,Si、Ge具有间接跃迁的能带结构(导带底与价带顶不在Brillouin区中的同一点,即电子与空穴的波矢不相同),而GaAs具有直接跃迁的能带结构(即电子与空穴的波矢基本相同)。

对于具有间接跃迁能带的Si、Ge半导体,导带底电子与价带顶空穴的直接复合因不满足动量守恒而较难发生,于是,借助于一种复合中心能级(由重金属杂质、缺陷等形成)的中介作用即可较容易地实现复合,这时动量的变化可通过发射声子而损耗掉。因此,Si、Ge的辐射复合效率很低,并且载流子的复合寿命一般也都较长(与复合中心的浓度有很大关系)。因而Si、Ge不能用作为发光器件的材料;不过,由于它们能够容易地吸收光,所以可以用作为光检测器件和光伏器件的材料。

对于具有直接跃迁能带的GaAs半导体,则导带底电子与价带顶空穴直接复合的几率很大(因为没有动量的变化),因而这种复合的辐射效率很高。所以,GaAs这种半导体的载流子寿命一般都较短,并且可以用来制作发光器件(LED 和LD)。

其他一种重要的直接带隙半导体有GaAs、InP、GaN、Sn、GaSb、InAs、InSb、CdS、CdTe、CdSe、ZnO、ZnS、ZnSe、ZnTe等,间接带隙半导体有GaP、SiC 、C、AlAs、AlP、AlSb、BN、BP、PbS、PbTe等。

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

805电子管特性及其电路设计简析

805电子管特性及其电路设计简析 ——版权所有:HIFIDIY论坛Juline 805电子管是一种灵敏度高,性价比高的大功率电子管,容易制成20W以上输出功率的单管A类放大器。因此有不少玩家参与尝试制作,也产生了大量试制电路。但是,往往出现的问题是,频响不宽,音色不平衡,功率不大。本文就805管的本身特性展开一些简易分析,供大家设计制作参考。 1,805电子管特性概述。 805电子管原形是一款丙类发射用电子管, 屏耗 Pa = 125W 放大系数 u = 50 内阻 Ri = 10K, 其屏栅特性曲线见图: 2,按照常用线路的工作点分析: 现在常见电路工作点往往是: 屏压Ua = 1050V 屏流Ia = 100mA 负载阻抗RL = 7~10K

就此工作点,在屏栅特性曲线上简易作图,得: 对805动态工作情况简易分析如下: 805静态工作点, Ug1 = +18V,此时有栅流大致12mA 左右 Ua = 1050V Ia = 100mA 假设推动电压为对称 正弦波 当805电子管动作点移动到负半周某点A处: Ug1 = +45V Ua = 300V Ia = 168mA 此时如果要输出完整对称的正弦波,正半周A'点,根据特性曲线应当为:Ug1= -9V Ua = 1630V Ia = 40mA 输出功率根据负半周,大致为 Po = 0.5(1050 - 300)/(168 - 100)*1000 = 25W 此时栅极动作范围是Ug1 从-9V ~ 45V 栅流变化范围是0mA ~ 40mA (粗略值) 以上要说明的是,805在Ug1 = 0V ~ -9V 区间内,基本是无栅流的。 此时,805输入阻抗近似趋向无穷大(实测在10K左右)

EL34电子管特性参数

EL34电子管特性参数表 下表是EL34的主要应用特性。由表可知,EL34作单端A类放大时,屏极负载阻抗2kΩ下最大输出功率为l 1 w(失真率10%)。当它作推挽放大时,屏一屏负载阻抗3.8kΩ下的最大输出功率可达36W(失真率5%)。 电子管EL34管脚图

EL34胆管参数 热丝加热 UH……………………………6.3 V IH……………………………1.5 A 极限额定值 阳极电压……………………… 800 V 第二栅极电压………………… 500 V 第一栅极电压………………… -100 V 阳极耗散功率………………… 25 W 第二栅极耗散功率…………… 8 W 阴极电流………………………150 mA 第一栅极电阻 自偏压时………………………0.7 MΩ 固定偏压时……………………0.5 MΩ 热丝阴极间电压………………±100 V 玻壳温度………………………250 ℃ 极间电容 输入电容…………………… 15.2 PF 输出电容…………………… 8.4 PF 跨路电容…………………… 1.1 PF 第一栅极热丝间电容……… 1.0 PF 热丝阴极间电容…………… 10 PF 静态参数 Ua…………………………… 250 V Ug2……………………………250 V Ug3…………………………… 0 V -Ug1…………………………12.2 V Ia…………………………… 100 mA

Gm…………………………… 11 mA/V ri…………………………… 15 kΩ μg1-g2 (11) 推荐工作状态(参考值) 单管A1类放大(固定偏压) Ua(b) …………………… 265 265 V Ua……………………………250 250 V Ug2……………………… Rg2=2k Rg2=0 Ug3……………………………0 0 V -Ug1……………………… 14.5 13.5 V Ia(0) ………………………70 100 mA Ig2(0) …………………… 10 14.9 mA Gm…………………………… 9 11 mA/V ri……………………………18 15 kΩRL…………………………… 3 2 kΩPout………………………… 8 11 W Dtot…………………………10 10 % 推挽B1类放大(固定偏压)Ua……………………………375 400 V ▲Rg2………………………… 600 800 ΩUg3………………………… 0 0 V -Ug1………………………… 33 36 V Ia(0) …………………2×30 2×30 mA Ia(maxsig) ………2×107.5 2×110.5 mA Ig2(0) ………………2×4.7 2×4.5 mA Ig2(maxsig) ………2×23.5 2×23 mA Rl(a-a) ………………3.5 3.5 kΩ ü(g1-g1)(r.M.S) ……… 46.7 50 V Pout……………………48 54 W Dtot……………………2.8 1.6 %

电子管基础知识

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为 核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础且对电子管工作原理有一 定了解的 (1)整机及各单元级估算1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W 左右 输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10- 20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有左右。由输出功率确定输出电压有效值:Uout="—(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W俞出功率的功放,额定负载8欧姆,则其Uout= 8V,输入电压Uin记, 则整机所需增益A= Uout/Uin = 16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不 在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%- 25%,这 里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%- 30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 以下链接:/boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 链接如下: /boardID=10&ID=8354&skin=0 在决定输出级用管和电路程式之后,根据输出级功率管满 功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in (这里的U'in需要折算成峰峰值)确定电压放大级增益。Au= Up/U'in。例如2A3单管单端所需推动电压峰峰

传感器的静态特性

传感器静态特性的一般知识 传感器作为感受被测量信息的器件,总是希望它能按照一定的规律输出有用信号,因此需要研究其输出――输入的关系及特性,以便用理论指导其设计、制造、校准与使用。理论和技术上表征输出――输入之间的关系通常是以建立数学模型来体现,这也是研究科学问题的基本出发点。由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间而变化的量),理论上应该用带随机变量的非线性微分方程作为数学模型,但这将在数学上造成困难。由于输入信号的状态不同,传感器所表现出来的输出特性也不同,所以实际上,传感器的静、动态特性可以分开来研究。因此,对应于不同性质的输入信号,传感器的数学模型常有动态与静态之分。由于不同性质的传感器有不同的内在参数关系(即有不同的数学模型),它们的静、动态特性也表现出不同的特点。在理论上,为了研究各种传感器的共性,本节根据数学理论提出传感器的静、动态两个数学模型的一般式,然后,根据各种传感器的不同特性再作以具体条件的简化后给予分别讨论。应该指出的是,一个高性能的传感器必须具备有良好的静态和动态特性,这样才能完成无失真的转换。 1. 传感器静态特性的方程表示方法 静态数学模型是指在静态信号作用下(即输入量对时间t 的各阶导数等于零)得到的数学模型。传感器的静态特性是指传感器在静态工作条件下的输入输出特性。所谓静态工作条件是指传感器的输入量恒定或缓慢变化而输出量也达到相应的稳定值的工作状态,这时,输出量为输入量的确定函数。若在不考虑滞后、蠕变的条件下,或者传感器虽然有迟滞及蠕变等但仅考虑其理想的平均特性时,传感器的静态模型的一般式在数学理论上可用n 次方代数方程式来表示,即 2n 012n y a a x a x a x =+++?+ (1-2) 式中 x ――为传感器的输入量,即被测量; y ――为传感器的输出量,即测量值; 0a ――为零位输出; 1a ――为传感器线性灵敏度; 2a ,3a ,…,n a ――为非线性项的待定常数。 0a ,1a ,2a ,3a ,…,n a ――决定了特性曲线的形状和位置,一般通过传感器的校 准试验数据经曲线拟合求出,它们可正可负。 在研究其特性时,可先不考虑零位输出,根据传感器的内在结构参数不同,它们各自可

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

【电子管电路基础知识大全】

电子管电路基础知识大全 (第1页) (一)二极管的结构及其工作原理 电子管是利用电子在真空中受电场力的吸引或排斥作用,进行工作的电子器件。 最简单的电子管是二极管,它是在高度真空的密封容器内装有两个金属电极,一个是阴极,呈细长管状丝外面,另一个是阳极,呈圆筒状,套在阴极外面。当灯丝通电点燃,间接将阴极加热到1000~C以上时,量电子获得能量从金属中逸出,逸出的热电子在阴极金属表面附近堆积,成为空间电荷。 我们知道,电子是带负电荷的,此时如果在另一金属板(阳极)加上一个直流正电压并与阴极构成闭合回电子在正电压(电场)的吸引下将从阴极经过空间到达阳极,形成电流,如图1。 反之,如果在阳极加上直流负电压(电场),它将排斥从阴极发射出来的热电子,回路就没有电流。只有电位高于阴极电位时。闭合回路才有电流流过,因此二极管具有单向导电性。利用二极管的单向导电性,就能 电变为直流电。 (二)三极管的结构及其工作原理 1.结构 在二极管的两个电极之间插入一个栅栏状的电极就构成三极管(如图2所示)。这个栅栏状的电极叫做控极,简称栅极,用符号G(grid)表示。结构一般是用镍锰合金丝在支撑物上绕成螺旋形,每圈之间有一定的便从阴极发射出来的电子能通过这些空隙流到屏极。 从三极管各个电极的相对位置来看。栅极与阴极之间的距离较屏极与阴极之间的距离近得多,这使栅极对射的电子的作用力也比屏极大得多,因而三极管具有放大作用。 2.三极管的基本电路 要使任何电路工作,都必须是一个闭合的回路。三极管在电路中,有3个基本回路:一是屏极回路,二是

路,三是灯丝回路,如图3所示。 在电子管电路中,各极电压都是以阴极为公共端的。屏极与阴极之间的电路是屏极回路。 它们之间的电压叫做屏压,以u。表示,一般屏压总是正的,即屏极电位比阴极电位高,因此屏极回路经流ia流动。屏极回路的正电源叫做屏极电源。用Ea表示。 3.三极管的放大作用 将三极管按图3连接好工作电源。这时在电子管阴极附近将产生两个电场,一个是屏极吸引电子的正电场个是栅极排斥电子的负电场。因此电子管屏流i。的大小不仅与屏压有关,并且也与栅负压大小有关。 如果设定屏压固定不变,则栅压越负。对电子的排斥力越大,则屏流越小。反之,如果把栅极负电压减小对值减小),则栅极对电子的排斥力将减小,屏流ia将随之增加。这个现象说明,在栅极上加入大小不同的负就能控制由阴极流向屏极的电子数量,即栅极有控制屏极电流ia大小的作用。而且由于栅极与阴极的距离比屏极的距离近,根据电场力和电场强度原理。 栅极控制电子的能力比屏极大得多,即栅压ug有微小的变化,就能引起屏流ia发生较大的变化,这就是具有放大作用的原因。 图4是一个简单的三极管放大电路。栅极回路叫输入回路,屏极回路叫输出回路。当在栅极回路接入一个交流电源ex时,就会使栅压ug发生变化,如果在屏极回路中接人一个电阻Ra,ia流过Ra时在Ra两端的压比ug的变化大得多,因此就具有电压放大作用,电阻Ra我们叫它负载电阻。

传感器基本特性

第2章传感器的基本特性(知识点) 知识点1 传感器的基本特性 传感器的基本特性是指传感器的输入-输出关系特性,是传感器的部结构参数作用关系的外部特性表现。不同的传感器有不同的部结构参数,决定了它们具有不同的外部特性。 传感器所测量的物理量基本上有两种形式:稳态(静态或准静态)和动态(周期变化或瞬态)。前者的信号不随时间变化(或变化很缓慢);后者的信号是随时间变化而变化的。传感器所表现出来的输入-输出特性存在静态特性和动态特性。 知识点2 传感器的静态特性 传感器的静态特性是它在稳态信号作用下的输入-输出关系。静态特性所描述的传感器的输入-输出关系式中不含时间变量。 衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。 2.1.1 线性度 线性度(Linearity)是指传感器的输出与输入间成线性关系的程度。传感器的实际输入-输出特性大都具有一定程度的非线性,在输入量变化围不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段,这就是传感器非线性特性的“线性化”。所采用的直线称为拟合直线,实际特性曲线与拟合直线间的偏差称为传感器的非线性误差,取其最大值与输出满刻度值(Full Scale,即满量程)之比作为评价非线性误差(或线性度)的指标。 2.1.2 灵敏度 灵敏度(Sensitivity)是传感器在稳态下输出量变化对输入量变化的比值。 对于线性传感器,它的灵敏度就是它的静态特性曲线的斜率;非线性传感器的灵敏度为一变量。 2.1.3 分辨率 分辨率(Resolution)是指传感器能够感知或检测到的最小输入信号增量,反映传感器能够分辨被测量微小变化的能力。分辨率可以用增量的绝对值或增量与满量程的百分比来表示。 2.1.4 迟滞 迟滞(Hysteresis),也叫回程误差,是指在相同测量条件下,对应于同一大小的输入信号,传感器正(输入量由小增大)、反(输入量由大减小)行程的输出信号大小不相等的现象。产生迟滞的原因:传感器机械部分存在不可避免的摩擦、间隙、松动、积尘等,引起能

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用O 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现彖称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H=K K IB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U k X = H,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输岀线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V, 2、4为输出。 2、 开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rwl使数显表指示为零。 图9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0?2mm记下一个读数,直到读数近似不变,将读数填 入表 表9— 1

作岀v-x曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

电子管功放中用电子管整流的好处体现在那里

电子管功放中用电子管整流的好处体现在那里 这几年“胆”“石”之争从来就没有停止过。依笔者认为:随着半导体的发明和数码音源的应用,电子管的退出、复出符合事物发展“螺旋式”的客观规律。与晶体管相比,电子管肯定有许多缺点,但是也有许多晶体管所没有的优点。哪怕在今后纯数字功放普及时,电子管这些优点也决定着它不可能马上退出历史舞台。然而,如果我们在使用中不是用批判的眼光去看待电子管的优缺点,或者完全否定,都是违背客观规律的。但是,就在电子管放大器电源的设计上,众说纷纭,有许多偏左或极右的观点,长期以来给众“发烧友”造成困惑。虽然也有过一些有识之士提出过一些批评,但是近两年来这些错误的做法似乎大有发展之势。对此笔者谈谈自己对这个问题的看法,并提出自己的建议。 严格说来,任何音响放大器都是一台能量转换器,因此一个有利于提高音响系统各项指标的、低消耗高可靠性的电源对音响系统来说是相当重要的。在这一点上电子管放大器绝对不符合“绿色环保”的要求,当年笔者开始玩胆机时,笔者的姐夫好奇的一句“你怎么还玩这老古董?又笨重、又耗电,不过音质还不错。”那语气和表情给我留下永恒的记忆。 “笨重、耗电,音质还不错”刚好就是电子管放大器恰如其分的写照。然而“发烧友”们所追求的也就是这不错的音质,但是在新技术一日千里的今天,我们为什么不留下优美的音质而舍弃那“笨重和耗电”呢?当然,现在我们还无法改变电子管本身的缺点,但是在电源电路中我们是可以有所作为的。遗憾的是,近两年来笔者却看到,在电子管电源方面,尤其是在前级放大器电源方面,复古越来越严重。似乎是越古老的技术越好。大家都知道:一个“大能量的、高速度的、无波纹的、零内阻的电源”是我们所追求的理想目标。只要能达到我们的目的你又何必在乎它是用什么做的呢?为此,笔者曾统计了一下%年以来在众多音响期刊上所发表的制作电子管放大器的文章,从中得出表(一)和表(二)的一些数据,感觉在文章中有一些观点和做法容易给“初哥”误导。 误区之一,滤波非电感线圈不可。不管是前级电源还是后级电源,这种做法所占比例非常大,占35.7%以上。由于电感线圈有“通直流、阻交流”的特点,用它来滤波效果确实不错。但是它也是一个非常笨重的耗能大户,它的工作原理是利用“感抗”的阻碍作用把各种高次谐波变成热和电磁波损耗掉。在一些电子管纯后级中,特别是六、七十年代的古董机中,常见到它的身影。那是在滤波电容的容量偏小,而且非常昂贵的情况下,前辈们无可奈何的选择(参看图1)。但是现在,电容的瓶颈作用不存在了,一些“发烧友”和厂家还在用电感,我认为是不足取的。它的缺点非常明显,滤波和稳压的效果完全可以由现在的高质量电容和已经非常成熟的晶体管电源电路所取代。不少的“发烧友”认为用电感听感好、胆味浓,笔者不敢苟同,笔者曾经用过晶体管有源滤波电路和大电感滤波电路进行同一前级的听音对比,听不出音质的差异,只听得出噪声的大小不同。事实上大多数“发烧友”都明白:所谓的胆味主要取决于电子管的特性和电路的设计、调试。之所以还有不少的朋友用电感滤波,也许是一种心理现象吧,而厂家总是要迎合顾客的。 误区二,在后级的影响下,电子管工作时不需要稳压,用RC滤波就可以了。用RC滤波往往是一些对电源不太重视的“发烧友”所为,在使用中效果也还可以。这是因为电子管有着与其它电子元器件不同的供电要求:电子管是靠热电子发射工作的,工作时灯丝要充分预热,否则寿命会大打折扣;它的绝大部分能量消耗在灯丝,灯丝要求工作在低电压、大电流的条件下。除灯丝外,电子管主要工作在高电压小电流的状态下,这对稳压供电来说难度加大,这也就是为什么在胆后级中难寻稳压驱动的机器。不过通过特性曲线可以看到,由于电子管的增益不是很高,电子管的工作点受电源波动影响没有晶体管大。这就是为什么有这么

正确认识电子管前级放大器电源的设计

正确认识电子管前级放大器电源的设计 陈国梁《音响技术》1999年06期 这几年“胆”“石”之争从来就没有停止过。依笔者认为:随着半导体的发明和数码音源的应用,电子管的退出、复出符合事物发展“螺旋式”的客观规律。与晶体管相比,电子管肯定有许多缺点,但是也有许多晶体管所没有的优点。哪怕在今后纯数字功放普及时,电子管这些优点也决定着它不可能马上退出历史舞台。然而,如果我们在使用中不是用批判的眼光去看待电子管的优缺点,或者完全否定,都是违背客观规律的。但是,就在电子管放大器电源的设计上,众说纷纭,有许多偏左或极右的观点,长期以来给众“发烧友”造成困惑。虽然也有过一些有识之士提出过一些批评,但是近两年来这些错误的做法似乎大有发展之势。对此笔者谈谈自己对这个问题的看法,并提出自己的建议。 严格说来,任何音响放大器都是一台能量转换器,因此一个有利于提高音响系统各项指标的、低消耗高可靠性的电源对音响系统来说是相当重要的。在这一点上电子管放大器绝对不符合“绿色环保”的要求,当年笔者开始玩胆机时,笔者的姐夫好奇的一句“你怎么还玩这老古董?又笨重、又耗电,不过音质还不错。”那语气和表情给我留下永恒的记忆。 “笨重、耗电,音质还不错”刚好就是电子管放大器恰如其分的写照。然而“发烧友”们所追求的也就是这不错的音质,但是在新技术一日千里的今天,我们为什么不留下优美的音质而舍弃那“笨重和耗电”呢?当然,现在我们还无法改变电子管本身的缺点,但是在电源电路中我们是可以有所作为的。遗憾的是,近两年来笔者却看到,在电子管电源方面,尤其是在前级放大器电源方面,复古越来越严重。似乎是越古老的技术越好。大家都知道:一个“大能量的、高速度的、无波纹的、零内阻的电源”是我们所追求的理想目标。只要能达到我们的目的你又何必在乎它是用什么做的呢?为此,笔者曾统计了一下%年以来在众多音响期刊上所发表的制作电子管放大器的文章,从中得出表(一)和表(二)的一些数据,感觉在文章中有一些观点和做法容易给“初哥”误导。 误区之一,滤波非电感线圈不可。不管是前级电源还是后级电源,这种做法所占比例非常大,占35.7%以上。由于电感线圈有“通直流、阻交流”的特点,用它来滤波效果确实不错。但是它也是一个非常笨重的耗能大户,它的工作原理是利用“感抗”的阻碍作用把各种高次谐波变成热和电磁波损耗掉。在一些电子管纯后级中,特别是六、七十年代的古董机中,常见到它的身影。那是在滤波电容的容量偏小,而且非常昂贵的情况下,前辈们无可奈何的选择(参看图1)。但是现在,电容的瓶颈作用不存在了,一些“发烧友”和厂家还在用电感,我认为是不足取的。它的缺点非常明显,滤波和稳压的效果完全可以由现在的高质量电容和已经非常成熟的晶体管电源电路所取代。不少的“发烧友”认为用电感听感好、胆味浓,笔者不敢苟同,笔者曾经用过晶体管有源滤波电路和大电感滤波电路进行同一前级的听音对比,听不出音质的差异,只听得出噪声的大小不同。事实上大多数“发烧友”都明白:所谓的胆味主要取决于电子管的特性和电路的设计、调试。之所以还有不少的朋友用电感滤波,也许是一种心理现象吧,而厂家总是要迎合顾客的。 误区二,在后级的影响下,电子管工作时不需要稳压,用RC滤波就可以了。用RC滤波往往是一些对电源不太重视的“发烧友”所为,在使用中效果也还可以。这是因为电子管有着与其它电子元器件不同的供电要求:电子管是靠热电子发射工作的,工作时灯丝要充分预热,

相关文档
相关文档 最新文档