文档库 最新最全的文档下载
当前位置:文档库 › 植物抗旱抗旱机理及其相关基因研究进展

植物抗旱抗旱机理及其相关基因研究进展

植物抗旱抗旱机理及其相关基因研究进展
植物抗旱抗旱机理及其相关基因研究进展

植物抗旱机理及其相关基因研究进展

摘要:提高植物的抗旱能力已经成为现代植物研究工作中的关键问题之一。近年来,随着分子生物学的应用与发展,该领域的研究也已引起国内外学者广泛的兴趣和重视,在抗旱机理研究及相关基因克隆及表达调控方面已取得可喜进展。本文综述了植物对于干旱胁迫在细胞水平、生理生化水平以及基因表达调控水平上的响应,重点介绍了基于细胞信号转导和基因调控的抗旱基因工程以及渗透保护物质积累的抗旱基因工程的新进展,最后对通过基因工程改善植物抗旱性所存在的问题进行了探讨,并对其前景进行了展望。

关键词:抗旱机理;渗透调节;信号转导;基因调控;渗透保护物积累。Progress of the Research on Plant Drought-resistant Mechanism

and Related Genes

Abstract: In recent years,with the application and development of molecular biology,the research in the drought-resistant mechanism and the relevant gene cloning and expression regulation have aroused wide interest and attentionamong domestic and foreign scholars,which has made gratifying progress. In this article, the plant responses to drought stress at cell, physiological and biochem ical levels as well as geneexp ressed and regulated levels, and mainly introduced the latest advances of drought stress tolerance engineering of plantbased on signal transduction, gene regulation and accumulation of osmotic adjustments1were summarized. In addition, the problem s of improving drought stress tolerance of plant through gene engineering were discussed, and the outlook was alsoanalyzed in paper1

Key words: Drought-resistant mechanism; Osmotic regulation; signal transduction; gene regulation; accumulation of os-motic adjustments

干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位。显然,对植物抗旱机理的研究显得尤为重要。在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫。这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面. 随着现代分子生物学与生物技术的发展, 植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家[1]研究的热点。本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作。

1 植物对干旱生理生化上的响应

干旱胁迫的环境下,通常会造成植物在生理、生化代谢途径上的改变,在细胞水平上主要表现为:细胞膨胀的消失,细胞膜流动性的改变,细胞内可溶物浓度的变化,以及蛋白和蛋白,蛋白和脂类间的相互作用[2]。植物也能通过自身的调节和适应来避免体内水分的丧失。例如,光合作用效率降低[3],细胞内有

机酸及渗透类物质的积累,解毒物质的过量合成,糖类物质代谢的改变等。其中,光合效率的降低主要是由于气孔的关闭和光合作用相关酶活性的降低造成。而渗透保护物质包括氨基酸 (脯氨酸 ) 、多胺、季胺、多羟基化合物、糖类 (果糖、蔗糖、海藻糖等 ),在植物受到干旱胁迫时大量积累,有助于调节植物细胞内渗透压与外界的平衡,防止水分丢失。植物细胞还能够产生超氧化物歧化酶 ( SOD )等物质分解在水分胁迫下产生的对细胞结构有毒性的大量活性氧和超氧负离子等物质。此外,植物在干旱胁迫下,碳水化合物的代谢发生变化,植物体内的多羟基复合体的羟基群能通过氢键的作用结合细胞膜磷酸脂的极性端,这种相互作用能显著增强细胞膜的稳定性[3-4]。

2 干旱胁迫信号的感知及传导

植物抗旱机能的实现要通过对水分胁迫的感知、胁迫信号的传导及相关基因的表达调控等一系列复杂的生理生化过程。植物适应水分胁迫的能力主要由以下几方面决定:即该植物具有水分胁迫基因;水分胁迫信号感知与传导途径的畅通;干旱情况下胁迫基因能够被启动;水分胁迫基因转录后的调控,包括表达产物功能修饰。其中最关键的是细胞如何感知、转导水分胁迫信号,并诱导水分胁迫基因的表达。尽管从分子水平上,人们还不能完全阐明这些过程,但已有一些研究发现,植物细胞可以通过膨压变化或膜受体的活性变化感知水分胁迫,从而将胞外信号转为胞内信号,触发信号传递途径,并可导致第二信使(Ca2+、IP3等)生成。在通过蛋白的磷酸化和去磷酸化逐级传递并放大信号,2种途径依赖ABA,1种途径不依赖ABA。

2.1 依赖 ABA 的途径

植物在干旱脱水等胁迫下,一种主要的生理变化是胁迫信号激发ABA合成酶的作用,从而使内源ABA水平显著增加。内源ABA通过ABA受体被细胞感知,从而触发第二信号系统,即ABA通过cADPR/IP3使胞内Ca2+升高,引发MAPK磷酸化/去磷酸化反应而传递信息,然后激活特定的转录因子,转录因子与相应的顺式作用元件结合从而诱导特定基因的表达。其中途径②是ABA通过一种具有亮氨酸拉链结构域的调节蛋白bZIP(Leu-zipmo-tif)和具有ACGT或G盒的ABA 反应元件ABRE(ABA responsive element)结合来指导诱导基因的表达;途径①是通过转录因子MYC/MYB与相应的顺式作用元件结合指导蛋白质的合成[5](图1)。

2.2 不依赖 ABA 的途径

水分胁迫被细胞膜上“渗透感受器感知,不需要ABA介导,直接触发第二信号传递系统(Ca2+ /IP3/CAPK磷酸化和去磷酸化反应)传递信息,最终激活相应的转录因子而导致特定的基因被诱导表达。目前通过RD29A、KIN2、RD17、DREB1、DREB2等脱水诱导基因已鉴定出参与转录调节的顺式作用元件和反式作用因子(转录因子),即含有一个9 bp的同向重复序列TACCGACAT的顺式作用元件DRE(dehydration responsive element),其核心序列为CCGAC,并相继分离了含有AP2/EREBP结构域的DRE的反式作用因子CBF1、DREB1、DREB2 [6](图 1)。

3 渗透调节物质

渗透调节物质是在盐胁迫或干旱胁迫下,为消除胁迫所造成的伤害,维持渗透平衡和体内水分,在细胞中产生和积累的一些小分子有机化合物,主要包括,(1)氨基酸及其衍生物,如脯氨酸、甜菜碱等;(2)低分子糖类,如海藻糖、果聚糖等;(3)多元醇,如甘油、甘露醇、山梨醇等;(4)渗调蛋白(osmo-tin,OSM)。其中海藻糖、甜菜碱是次生代谢产物[7],它们有许多相同之处:极性电荷少,溶解度高,分子表面有较厚水化层等,不仅能调节渗透势,还能稳定细胞质中酶分子的活性,保护其不受渗透胁迫的直接伤害[8],防止酶变性失活。

3.1 脯氨酸抗旱机理及合成酶基因

大量实验研究证明,在盐碱、干旱等逆境胁迫下,植物体内游离脯氨酸含量明显增加[9.10],表明脯氨酸是许多植物对抗外界环境胁迫的调渗物质。Kaviishor 等[11]将从乌头叶豇豆中克隆到的吡咯啉-5-羧酸合成酶(P5CS)基因与CaMV35S 启动子连接后转入烟草,发现转基因烟草中脯氨酸含量比对照高10~18倍。在干旱胁迫下,对照烟草中脯氨酸含量由0.08mg/g鲜叶重增加到3mg/g;而转基因烟草脯氨酸含量由1mg/g增加到6.5mg/g。在干旱胁迫下,转基因烟草落叶少且迟,根比对照长40%,生物量比对照增加2倍。

3.2 甜菜碱抗旱机理及合成酶基因

甜菜碱(betaine)属于四甲基铵类化合物,是植物的另一种重要的渗透调节物质。许多高等植物特别是藜科和禾本科植物,在受到水分胁迫时大量积累。常见的甜菜碱有4种:甜菜碱、甘氨酸甜菜碱、丙氨酸甜菜碱和脯氨酸甜菜碱。其中对甘氨酸甜菜碱研究比较深入。甜菜碱在植物中是以胆碱为底物经2步合成的,即胆碱加单氧酶(cholinemonooxyge-nase,CMO)催化胆碱氧化成甜菜碱醛,然后甜菜碱醛脱氢酶(betainealdehydedehydrogenase,BADH)催化甜菜碱醛形成甜菜碱。如下所示:

3.3 海藻糖抗旱机理及合成酶基因

海藻糖(trehalose)是由两个葡萄糖分子以α,α,1,1-糖苷键构成的非还原性糖(图2)。它在理论上存在3种不同的正位异构体(anomers),即α,α-海藻糖(又叫蘑菇糖,mycose),α,β-海藻糖(新海藻糖,neotrehalose),β,β-海藻糖(isotrehalose)[12]。海藻糖的性质非常稳定,海藻糖对生物体具有神奇的保护作用,其原因是海藻糖在高温、高寒、高渗透压及干燥失水等恶劣环境条件下,能在细胞表面形成独特的保护膜,有效地保护蛋白质、核酸等生物大分子的结构,从而维持生命体的生命过程和生物特征。许多对外界恶劣环境,表现出非凡抗逆耐受力的物种,都与它们体内存在大量的海藻糖有直接的关系。自然界中存在一种隐生生物(hiddenlife),这类生物在极端干燥的条件下,可将体内99%的水脱去,仍能以一种极低的新陈代谢或停止生命活动的状态生存下来,在重新给与水分时,又能恢复到正常的生命活动状态,其奥秘就在于它们的细胞中含有大量的海藻糖[13]。

3.4 果聚糖抗旱机理及相关基因

果聚糖(fructan)是蔗糖与一个或多个果糖相连的聚合物,是水溶性的、非还原性多糖。聚合度(DP,单糖数目)最小的是果聚三糖(DP=3)。已知有3种果聚三糖,每一种均是通过一个果糖的糖苷键与蔗糖分子中的3个羟基基团的任意一个连接而形成的。当果糖与蔗糖分子中的果糖基1碳位相连便形成1-蔗果三糖(1-kestose)或异果三糖(isokest-ose);当果糖与蔗糖分子中果糖基6碳位相连接便形成6-蔗果三糖(6-kestose)或蔗果三糖(kestose)。这两种果聚三糖均含有一个末端葡萄糖和一个末端果糖。当一个果糖基于蔗糖分子中的葡萄糖基6碳位连接便形成新蔗果三糖。近年来,已发现了多种果聚糖合成酶基因,其中果聚糖蔗糖酶基因(sacB)是较早被克隆的基因。1995年Pilon-Smits 等[14]研究发现,转sacB基因的烟草在正常条件下,与对照作物无明显差异;而

在干旱胁迫下,转基因烟草的果聚糖含量比对照高7倍,其鲜重和干重分别比对照重35%和59%,特别是转基因的烟草的根比对照重73%。由此可以推测植物体内果聚糖增加,刺激了植物根系生长发育,因而提高了植物吸收水分的能力。随后Hellwage[15]在GenBank上发表了洋蓟(Cynarascolymus)的果聚糖果糖基转移酶基因(FFT)的mRNA序列(AJ0-00481)。果聚糖果糖基转移酶由617个氨基酸残基组成。

3.5 甘露醇抗旱机理及相关基因

糖醇是一种多元醇,含有多个羟基,亲水性能力强,能有效的维持细胞内水活度。甘露醇(mann-itol)是一种六碳糖醇(图3),在芹菜和块根芹中,占韧皮部所运输的光合同化物的50%。甘露醇不仅是韧皮部运输的一种重要的光合同化产物,也是介导耐盐和耐渗透的一种重要的溶质。因此,人们试图通过基因工程手段使不含甘露醇的植物产生它,从而使植物具有耐胁迫的能力。

已有研究将编码细菌1-磷酸-甘露糖醇脱氢酶基因(mtlD)与35S启动子融合后转入本身不能合成甘露糖醇的烟草和拟南芥中,结果转基因植株能积累甘露糖醇且耐盐性提高。

3.6 渗调蛋白

渗调蛋白(osmotin,OSM)是和脯氨酸等小分子物质有所不同的另一种渗透调节物质,是在盐胁迫、脱水或低水势条件下,植物在对渗透压力适应过程中所合成的一类蛋白。渗调蛋白是一种阳离子蛋白,多数以颗粒状存在。可能在渗透胁迫下,其本身吸附水分或改变膜对水的透性,减少细胞失水,维持细胞膨压;或鳌合细胞脱水过程中浓缩的离子,减少离子毒害作用。还可能通过与细胞膜上的离子通道的静电相互作用,减少或增加液泡膜对某些离子的吸入,改变离子在细胞和液泡中的浓度,来传递胁迫信号,诱导胁迫相关基因的表达,从而增加植物对胁迫的适应性[16]。

4 离子区域化和水通道蛋白

4.1 离子区域化

离子区域化是指植物将过量的有毒离子阻隔于细胞内某些部位(如液泡中)或其它生命活动影响小的器官(如老叶)中的现象,这也是植物能够产生耐盐和避盐的根本原因[17]。离子区域化依赖于离子跨膜运输。

4.2 离子通道

离子通道是由蛋白质大分子组成的的跨膜孔道系统,它的开关是由化学信号或环境信号控制的。目前已知的阳离子通道有K+通道和Ca2+通道;阴离子通道有Cl-通道以及供有机离子通过的有机离子通道。Guggenheim发现,植物受到胁迫时,由于Cl-的积累,能降低对NO3-的利用,从而致使P的利用率降低。而Dutt 发现,盐胁迫时,Na+的积累,将降低植物体内K+、Ca2+和Mg2+的利用率。不过在Cl-和Na+可能引起的胁迫中,Cl-导致的盐害症状首先出现[18,19]。

5 植物抗旱基因工程

5.1 基于细胞信号转导和基因调控的抗旱基因工程

目前,利用 cDNA和寡核苷酸基因芯片技术在植物受到各种胁迫时的基因表达模式的研究,已经逐步揭示了植物在各种逆境条件下的调控网络[20]。在拟南芥中已经发现了许多干旱应答基因,基本可以分为干旱应答基因rd ( respon-sive to dehydration gene)和早期干旱应答基因erd ( early re-sponse to dehydration gene)两类[21-23]。植物在水分胁迫下,基因表达水平上的应答至少包括四条途径,其中两条不依赖于 ABA,另外两条依赖于 ABA。在ABA 缺陷型 ( aba)和ABA非敏感型 ( abi)拟南芥突变株中,一些基因也能够由干旱、高盐和低温诱导表达,表明这些基因在低温或干旱诱导下的表达并不需要ABA 的参与,但却能够应答外源ABA的作用[24]。这类基因包括 rd29A ( lti78 ,cor78) ,kin1, cor616 ( kin2)及 cor47 ( rd17),而在这些基因的上游启动子区,都存在一个干旱应答顺式作用元件DRE /CRT( dehydration - responsive element/C - repeat),这个顺式作用元件不但与植物的干旱应答有关,而且与低温和高盐应答基因的表达密切相关。在拟南芥中过量表达 DRE /CRT结合蛋白 DREB1 /CBF,使转基因拟南芥植株内 40多个逆境诱导基因的表达发生了变化,从而导致了转基因植株对干旱、高盐、低温的耐受性[25-27]。

5.2 渗透保护物积累的基因工程

渗透保护物质是在一定摩尔浓度下对细胞无毒的一类中性小分子,是一种能够抵抗渗透胁迫对细胞功能所造成的变性作用,稳定蛋白和细胞膜的物质。渗透保护物质是在能够耐受胁迫的生物体中自然积累的,而许多主要的农作物缺乏合成这种特殊物质的能力。由此,国内外学者设想利用基因工程的方法将这种渗透保护物的合成途径导入植物细胞中很可能是一种提高农作物胁迫耐受性的有效方法[28]。目前,通过遗传工程操作改变植物体内渗透保护物质的代谢途径而生成这类物质,如甘露醇、果聚糖、海藻糖、脯氨酸、糖胶甜菜碱等的积累,使植物提高抗旱性已经成为可能。但是这些渗透保护物质如何提供保护的机理还不是完全清楚[29]。

通常这些渗透保护物质都是定位在植物细胞质中的,渗透保护物质积累的激活会减少细胞的渗透潜力,使细胞维持膨胀。但是,对于渗透保护物质积累的分子调控并不是使植物一直处在应对胁迫的渗透调节状态。另外一些应答也发生在干旱胁迫中,如胞内 ROS( reactive oxygen species)的清除,具有保护蛋白结构的分子伴侣及类似活性物质的诱导以及代谢解毒等[30]。

6 前景展望

目前通过对植物转录水平,蛋白水平和代谢水平的研究,已经鉴定分离得到一些能够被干旱胁迫诱导的植物基因并且阐明了与其相关的信号转导和调控途径,此外,近年来在干旱胁迫和其他主要非生物胁迫信号转导途径之间交互关系上取得的研究成果为植物多重胁迫耐受提供了可行性。在过去 20年的时间里,我们在与抗干旱相关的基础研究中取得了很大的进步,如胁迫信号感知和转导,逆境相关的分子调控网络和高通量转化技术等,这些进步使得利用基因叠加或共转化获得多抗胁迫植株成为可能;近年来对调控元件遗传工程的研究不仅增加了植物在干旱条件下的存活率,还提高了作物在水分缺失环境下的产量;此外,组织特异性和干旱诱导启动子的获得和研究也为生产抗旱的转基因作物提供有利的支持。

但是抗旱是由多基因控制的数量性状,其生理生化过程是各基因间以及基因

和环境间相互作用、共同调节的结果。现在对于植物抗旱基因工程的研究仅仅是一个开始,在植物抗旱性研究中还存在一些问题,比如大部分的研究都是利用模式植物,而农作物的抗旱基因工程还处在早期研究阶段,在自然缺水条件下进行田间试验或正在检测的转基因农作物的数量还相当少;大部分对于干旱耐受的基础和应用的研究都是集中在植物发育阶段,而不是开花前后,但是,作物的生殖器官才跟产量相关,所以未来在生产干旱耐受作物的同时还应该对提高作物繁殖率进行更深入的研究。此外,对干旱胁迫下主要代谢途径的根本了解可以为将来耐旱作物的代谢工程提供方向和理论基础。最后,通过基因工程培育的抗旱作物最终还是需要通过田间种植来证明它们的应用价值。

水资源正日益成为全球战略性资源,2世纪,水资源和能源一样,成为直接影响经济结构和布局,直接关系到经济、社会生态的可持续发展的核心资源。我国中长期科学和技术发展规划纲要 (2006-202年)已经把水资源列到重点领域及其优先主题上。为了减小水资源危机,通过基因工程改良作物的抗旱性具有非常重要的战略意义。随着分子生物学技术及研究手段的不断发展,以及各国对此研究的重视及资助力度的加大,用基因工程方法提高植物的抗旱性,必将会取得可喜的进展。

参考文献:

[1] Urao T,Yamaguchi-Shinozaki k,Urao S. Plant Cell,1993,5(11):1528~1539.

[2] ChavesM M, Maroco J P, Pereira J S1 Understanding p lant respon2ses to drought - from genes to the whole p lant1 Funct Plant B iol,2003, 30: 239 - 264 [3] 王志琴,杨建昌,朱庆森1 土壤水分对水稻光合速率与物质运转的影响 1 中国水稻科学,1996, 10 (4) : 235 - 240

[4] Crowe J H, Carpenter J F, Crowe L M1 The role of vitrification in an-hydrobiosis1 Annu Rev Physiol 1998, 60: 73 - 103

[5] V illadsen D, Rung J H, N ielsen T H1 O smotic stress changes carbo2hydrate partitioning and fructose - 2, 6 - bisphosphate metabolism inbarley leaves1 Funct Plant B iol, 2005, 32: 1033 - 1043

[6] Blum A. Drought resistance, water2use efficiency,andyield potentia-are they compatible, dissonant, ormutu-ally exclusive [J] . Austral J Agricult Research,2005,56(11) :1 15921 168

[7] Liu Q,Kasuga M,Sakuma Y,Abe H,Miura S,Yamaguchi-ShinozakiK,Shinozaki K. Plant Cell,1998,10(8):1391~1406.

[8] 林栖凤,李冠一.生物工程进展,2000,(2):20~25.

[9] 卢静君,多立安,刘祥君.植物研究,2004,24(1):115~119.

[10] 刘宁,高玉葆,贾彩霞.植物生理学通讯,2000,36(1):11~14.

[11] Kavikishor PB,Hong Z,Miao GH. Plant Physiol,1995,108:1387~1394.

[12] 张树珍.华南热带农业大学学报,2000,(3):22~29.

[13] 王关琳主编,植物基因工程原理.北京:科学出版社,2002:62~63.

[14] Pilon-Smits E,Ebskamp M,Paul MJ,Jeuken M,Weisbeek PJ,Smeekens S. Plant Physiol,1995,107(1):125~130.

[15] Hellwege EM,Raap M,Gritscher D,Willmitzer L,Heyer AG.FEBS Letters,1998,427(1):25~28.

[16] 张宏一,朱志华.植物遗传资源学报,2004,5(3):268~270.

[17] Shinozaki K, Yamaguchi - Shinozaki K, SekiM1 Regulatory networkof gene exp ression in the drought and cold stress responses1 CurrOp in Plant B iol, 2003, 6: 410 – 417

[18] 王胤,杨章旗.广西林业科学,2006,35(3):117~122.

[19] John M,Ward,et al. Trends in Plant Science,2003,8(5):200~201.

[20] Denby K, Gehring C1 Engineering drought and salinity tolerance in p lants: lessons from genome - wide exp ression p rofiling in A rabidop2sis1 Trends Plant Sci, 2005, 23: 547 - 552

[21] Shinozaki K, Yamaguchi-Shinozaki K1 Molecular responses todrought and cold stress1 Curr Op in B iotechnol, 1996, 7: 161 - 167

[22] Thomashow M F1 A rabidop sis thaliana as a model for studying mecha2nism s of p lant cold tolerance1 Cold Sp ring Harbor Laboratory Press,Cold Sp ring Harbor, 1994, NY

[23] Shinozaki K, Yamaguchi-Shinozaki K1 Molecular responses todrought and cold stress1 Curr Op in B iotechnol, 1996, 7: 161 - 167

[24] B ray E A1 Plant responses to water deficit1 Trends Plant Sci, 1997,2: 48 - 54

[25] SekiM, Narusaka M, Abe H, Kasuga M, Yamaguchi - Shinozaki K,Carninci P, Hayashizaki Y, Shinozaki K1 Monitoring the expressionpattern of 1300 A rabidop sis genes under drought and cold stresses by

[26] Fowler S, Thomashow M F1 A rabidop sis transcrip tome p rofiling in2dicates that multip le regulatory pathways are activated during cold ac2climation in addition to the CBF cold response pathway1 Plant Cell2002, 14: 1675 - 1690

[27] Maruyama K, SakumaY, Kasuga M,Ito Y, SekiM, Goda H, Shi2mada Y, Yoshida S, Shinozaki K, Yamaguchi - Shinozaki K1 Identi2fication of cold - inducible downstream genes of the A rabidop sisDREB1A /CBF3 transcrip tional factor using two m icroarray system s1Plant J, 2004, 38: 982 - 993

[28] Rathinasabapathi B1 Metabolic engineering for stress tolerance: in2stalling osmop rotectant synthesis pathways1 Ann Bot 2000, 86: 709 -716

[29] Ramanjulu S, BartelsD1 D rought - and desiccation - induced mod2ulation of gene exp ression in p lants1 Plant Cell Environ, 2002, 25:141 - 151

[30] Serraj R, Sinclair T R1 O smolyte accumulation: can it really helpincrease crop yield under drought conditions? Plant Cell Environ,2002, 25: 333 - 341

植物抗旱基因工程的研究进展1

来稿日期:20080831 基金项目:邯郸学院硕士博士启动基金(S2006002) 作者简介:葛水莲(19802),女,河北保定人,邯郸学院生物科学系教师,硕士. 植物抗旱基因工程的研究进展 葛水莲1,薛晶晶1,陈建中2 (11邯郸学院生物科学系,河北邯郸056005;21邯郸市植物研究所,河北邯郸056005) 摘要:就植物的抗旱基因包括渗透调节,保护酶体系,抗旱基因及遗传特性等方面对植物抗旱机理的研究进行了综述.研究植物的抗旱性基因,有助于了解植物的抗旱机制,为中国节水抗旱农业的研究提供一些新的思路和新的手段. 关键词:抗旱机理;水分胁迫;基因工程中图分类号:S 33214 文献标识码:A 文章编号:167321492(2008)0620028204 干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位.显然,对植物抗旱机理的研究显得尤为重要.在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫.这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面.随着现代分子生物学与生物技术的发展,植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家研究的热点[1].本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作. 1 渗透调节中脯氨酸的调节 111 植物体内脯氨酸的合成 脯氨酸是一种小分子的渗透物质,是水溶性最大的氨基酸,许多植物受到盐渍时积累高水平的脯氨酸.植物的脯氨酸合成、累积及代谢是一个受非生物胁迫细胞内脯氨酸浓度调控的生理生化过程[2].脯氨酸积累可能是植物受到胁迫的一种信号.遭受胁迫的植物细胞内大量积累脯氨酸,已证明植物体内存在2条脯氨酸合成途径,根据起始氨基酸命名为Glu 途径和Orn 途径[3].胁迫导致水分亏缺时植物体内脯氨酸积累主要依靠Glu 途径,谷氨酸途径发生在胞质中,但脯氨酸降解为吡咯琳252羧酸(P5C )却发生在线粒体中,由脯氨酸脱氢 酶(ProD H )催化,这种代谢的区室化分布避免 了物质的无效循环.在正常情况下,脯氨酸作为一种反馈调节物质抑制了P5CS 的基因表达而诱导了ProD H 的基因表达.在胁迫条件下,P5CS 基因的表达活性超强,而ProD H 基因的表达活性却受到抑制.植物体内另一条脯氨酸合成途径为Orn 途径.鸟氨酸是在鸟氨酸6-氨基转移酶(62OA T )的作用下,生成谷氨酸半醛(GSA ),后通过Glu 途径生成脯氨酸[4]. 两条途径因植物和生长时期不同而各自起着重要的作用.从整体来说,在个体发育的早期阶段,异养型营养占优势,Orn -Pro 途径在脯氨酸合成中起重要作用,而谷氨酸作为脯氨酸合成的起始底物显然存在于个体发育的整个阶段,具体来说脯氨酸合成过程究竟是哪条途径居于主导地位有待研究.Roo sens [5]等研究表明,在盐胁迫和正常条件下,幼小植株的62OA T 活性和mRNA 都稍微高于较老植株,且该基因的表达与盐胁迫和脯氨酸产物密切相关.在拟南芥幼小植株中,游离脯氨酸含量、62OA T 活性以及62OA TmRNA 都受到盐胁迫处理而增加,这些结果表明对于拟南芥植物来说,在渗透胁迫过程中鸟氨酸途径和谷氨酸途径一样在脯氨酸的累积中发挥着重要的作用.另一方面4周龄的拟南芥植物虽然游离氨基酸的水平在盐胁迫条件下有所增加,但62OA T mRNA 的表达却没有检测到,相反P5CS mRNA 表达却达到较高水平.因此对于成年植株来说,游离脯氨酸的增加似乎只 ? 82?第24卷第6期2008年12月 (自然科学版)Journal of Hebei North University (Natural Science Edition ) Vol 124No 16 Dec.2008

提升植物抗旱性

提高植物抗旱性的有效途径 【摘要】:干旱、盐碱和低温(冷害)是强烈限制作物产量的3大非生物因素,其中干旱造成的损失最大,其损失量超过其他逆境造成损失的总和。干旱对植物生长和繁殖、农业生产和社会生活有着极其重要的影响,其对世界作物产量的影响,在诸多自然逆境中占首位,其危害程度相当于其他自然灾害之和。因此,干旱是制约植物生长发育的主要逆境因素,研究植物的抗旱性对农业生产实践及稳定荒漠生态具有极其重要的作用。另外,抗干旱植物对抵御风沙等自然灾害、稳定干旱区环境,亦起着不容忽视的作用。 【关键词】:植物水分抗旱性干旱诱导蛋白渗透调节物质干旱胁迫水分胁迫 【引言】:作为生态系统的一分子,植物无时尤刻小在同环境进行着物质、信息和能量的交流。环境中与植物相关的因子多种多样,且处于动态变化之中,植物对每一个因子都有一定的耐受限度,一旦环境因子的变化超越r这一耐受限度,就形成了逆境。因此,植 物的生长过程中,逆境足不可避免的。植物在长期的进化过程中,形成了相应的保护机制:从感受环境条件的变化到调整体内代谢,直至发生有遗传性的改变,将抗性传递给后代。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也为人类控制植物的生艮条件提供了可能性。 【正文】: 在植物生理学发展史上,植物水分与抗旱性当属最早开展的研究领域之一,一直备受关注。特别是近年来由于世界范围的干旱缺水日趋严重,加之分子生物学思想和方法的不断渗入,致使该领域的研究工作进入一个充满活力的新时期,但从旱区农业发展和改善环境的需求看,植物水分与抗旱的研究前路仍然很广阔。

一.逆境对植物的影响 1.逆境引起的膜伤害 1.1影响膜透性及结构 细胞膜作为联系植物细胞与外界的介质,它的组成、性质与细胞所处的环境息息相关,而外界环境对植物的胁迫危害,首先在膜系中有所表现。干旱、低温、冻害等几种胁迫,无论是直接危害或是间接危害,都首先引起膜透性的改变。至于膜上酶蛋白的变化以及脂类的组成也可随着胁迫的深化而有所改变,目前,这方面研究最深入的是低温引起膜脂相变的假说。1970年,Lyoll8和Raison提出,低温敏感植物的膜脂相变可能由于膜脂肪酸的不饱和程度较低,或饱和膜脂较多,低温下,膜脂以液晶相向凝胶相转变,造成细胞膜膜相分离,从而引起细胞生理活动的紊乱。在此之后,大最试验证明,膜脂的组分和结构与抗冷力密切相关。 1.2 发生膜脂过氧化作用 逆境对膜的伤害,还表现在膜脂过氧化上。20世纪60年代末,Fridovic提 出生物自由基伤害假说,植物在逆境条件下,细胞内产生过量自由基,这些自由基能引发膜脂过氧化作用,造成膜系统的伤害。主要反应是,活性氧促使膜脂中不饱和脂肪酸过氧化产生MDA。后者能与酶蛋自发生链式反应聚合,使膜系统变性晗。有多位研究者报道,当植物受到低温或高温等逆境的胁迫时,其细胞内自由基清除剂含量下降,而MDA含量上升;另一方面,热锻炼、冷锻练或外源激素处理提高植物的抗逆性也表现在彤汀的活性提高,膜稳定性增强。 1.3 影响离子载体功能的实现 在细胞膜上存在着一些离子载体或通道,当外界刺激作用于细胞时,除了膜结构变化影响内部代谢紊乱外,膜上的离子载体首先接受了环境变化的信号,并通过刺激一信

六种植物抗旱性的研究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract:Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 植物的地理分布,生长发育以及产量形成等均受到环境的制约。干旱是对植物生长影响最大的环境因素之一。世界上干旱半干旱区遍及50多个国家和地区,其总面积约占陆地总面积的三分之一,且有逐年增加的趋势。在我国华北、西北、内蒙古和青藏高原绝大部分地区属于干旱半干旱地区,约占全国土地总面积的45﹪。由于全球荒漠化

植物与病原菌互作和抗病性的分子机制

中国农业科学 1999,32(增刊):94~102 Scientia A gricultrua Sinica 植物与病原菌互作和抗病性的分子机制3 刘胜毅1 许泽永1 何礼远2 (1中国农业科学院油料作物研究所,武汉 430062;2中国农业科学院植物保护研究所) 提要 概述了近几年在寄主植物抗病基因与防卫反应基因、病原菌毒性基因、寄主抗病性机制和抗病基因工程策略等方面取得的主要进展,重点分析了抗病反应的一般过程、毒性基因 产物胞外水解酶和毒素的作用与关系、作物抗毒素基因工程策略。 关键词 植物;抗病基因;防卫基因;毒性基因;基因工程策略 早在40年代末50年代初,F lo r(1947;1955)在对亚麻和亚麻锈菌互作的遗传规律研究中,提出了基因对基因假说(gene2fo r2gene hypo thesis)〔4,5〕,这标志着对植物与病原菌互作的认识深入到了基因水平,从而为应用分子生物学手段研究植物抗病性奠定了基础。本文概要地综述近几年在寄主植物抗病基因、病原菌致病基因、寄主抗病机制等方面取得的主要进展,并试图侧重分析概括抗病反应的一般过程及毒素的作用与基因工程策略。 1 抗病相关基因 根据基因的作用性质,可把抗病反应过程中起作用的基因分为两类:抗病基因和防卫反应基因。抗病基因是决定寄主植物对病原菌的专化性识别,并激发抗病反应的基因。即按F lo r的基因对基因理论,它与病原菌的无毒基因互补;按Keen(1990)提出的用来解释基因对基因理论分子机制的配体2受体模型〔6〕,它的产物是抗病反应信号传导链的起始组分,即信息链的前端,当它与病原菌的无毒基因直接或间接编码产物互补结合后,启动信号传导激发植物的抗病反应。防卫反应基因是一类在抗病机制中最终起作用的基因,它们的编码产物直接或间接地作用于病原。除此之外,抗病基因和防卫反应基因的区别还有:(1)抗病基因编码产物具有特异性,而防卫反应基因编码产物具有普遍性,即不同的寄主植物中有一套类似的防卫反应基因,如植保素合成链中的酶基因、病程相关(PR)蛋白基因、植物细胞壁成分合成酶基因等。(2)抗病基因产物是植物防卫反应基因表达的直接或间接调节因子。防卫反应基因一般是受病原菌诱导表达的,编码产物比较容易分离的一类基因,而抗病基因是组成型表达的,编码产物不容易分离的一类基因。因此在基因克隆、基因编码产物的结构和功能分析等方面的研究工作中,防卫反应基因均早于抗病基因。所以植物防卫基因既有普遍性,又有特殊性。除有一部分是相似的外,还有一部分是不同的,如对真菌、细菌毒素的解毒基因,因毒素不同而不同。而人工赋予植物的解毒基因则可能更加不同,有动物源的,也有微生物源的。 1.1 抗病基因 接收病原菌信号,启动植物抗病反应信号转导的是植物抗病基因的编码产物,这是分子植物病理学研究寄主植物的重点和难点。自1992年应用转座子标签法分离出第一个抗病基  收稿日期 1999207215

植物抗旱研究进展

植物抗旱性研究进展 摘要:本文主要总结了一些与植物抗旱相关的因素,比如叶片结构、小分子代谢物、激素以及抗旱相关的基因等,探讨植物抗旱研究的进展、存在问题及发展趋势。 关键词:抗旱叶片小分子代谢物植物激素抗旱基因 Abstract:This article mainly talks about the factors of drought-resistant, such as leaf structure, small molecule metabolites, phytohormone, and other drought-related genes and exploring the progress of the study, existing problems and developing trends. Key words: drought-resistant leaf small molecule metabolites phytohormone drought-related genes 干旱是一个长期存在的世界性难题,全球干旱半干旱地区约占陆地面积的35%,遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52. 5%,其中干旱地区占30.8%,半干旱地区占21.7%。而干旱胁迫造成农作物减产,给农业生产带来极大的经济损失。因而对植物抗旱性的研究就显得尤为重要。 1. 植物叶片与抗旱性 植物吸收的水分主要是通过叶片蒸腾作用散失到体外,因此叶片的结构以及生理特征对植物的抗旱有着重要的作用。不同的植物筛选出的抗旱性评价指标不尽相同,通常认为,叶片的角质层越厚,表皮层越发达,栅栏组织越厚且排列紧密,气孔密度大,栅栏组织/海绵组织厚度比值较大,叶片组织结构紧密,上表皮细胞较小者抗旱性较强[1][2]。肖冰雪等[3]对牧草叶片解剖结构与抗旱性关系研究中表明,“阿坝”硬秆仲彬草、“阿坝”垂穗披碱草旱生结构特点明显:角质层厚、气孔下陷、维管束导管发达,具有较强的抗旱能力。刘红茹等[4]对延安城区10种阔叶园林植物叶片结构及其抗旱性研究中表明10种植物叶片均具备抵抗干旱环境的解剖结构,表皮、角质层、栅栏组织、叶脉、维管束等较为发达,气孔主要分布在下表皮。另外,叶片的一些其它结构也与抗旱相关,比如泡状细胞在植物缺水时,发生萎蔫,叶片内卷成筒状以减少水分蒸腾作用[5],发达的叶脉促进植物吸水率从而有利于植物贮藏水分[6]。

最新植物抗旱性生理生化机制的研究进展

植物抗旱性生理生化机制的研究进展 李宏富 (宁夏大学生命科学学院,宁夏银川,750021) 摘要:本文通过对植物的干旱类型、旱害机理、抗旱类型和特征以及在干旱逆境条件下的生理、生化上的变化进行总结,并对其研究前景进行了展望,以期为选育植物抗逆品种的研究提供参考,旨在促进植物抗旱机理方面的研究工作。 关键词:抗旱生理生化机制研究进展 Research Progress on Physiological and Biochemical Mechanism of Plant Drought Resistance LI Hong-fu (College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021) Abstract: The type and mechanism of plant drought, the type and characteristics drought resistance and the changes of stress conditions on plant physiological and biochemical function were summarized. The research prospect was prospected, in order to provide some reference for breeding anti-adversity varieties, and advance the research on mechanism of plant drought resistance. Key Words: Drought resistance; Physiological and biochemical mechanism; Research progress 干旱、低温、高温、盐渍等不良环境是影响植物生长的重要因子,其作用于植物会引起植物体内一系列生理、生化和分子生物学上的变化,主要包括生物膜结构与组成的改变,许多特异性蛋白、糖、渗透调节物质(甜菜碱和脯氨酸等)的

抗旱育种

抗旱育种:随着全球性生态环境破坏不断加剧,提高植物自身抗旱性和水分利用效率来发展农业存在着较大的潜力,发展前景十分广阔。研究表明,不同植物适应干旱的方式是多种多样的,一些植物具有综合性的、几种机理共同起作用的抗旱特性。探讨作物的抗旱机理,力求认识作物抗旱的本质,提高水分利用效率,改良作物的抗旱性已成为目前倍受关注的研究内容。 目前,培育耐旱作物品种的主要途径有:①将野生耐旱植物驯化成作物;②建立在形态(如株高、生长以及根系发达程度等)、生理(如渗透调节等)、分子标记(RFLP、RAPD等)选择基础之上的传统育种;③利用组织培养和诱变生物技术产生突变表型进行培育;④传统育种方式;与基因工程培育等。毫无疑问,今后工作的重点应从分子水平上阐明作物抗旱性的物质基础及其生理功能,通过基因工程手段进行抗旱基因重组,应用常规育种与遗传工程相结合的方法培育耐旱与高水分利用效率的抗旱新品系。 PCR引物设计原则 PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在这一区域设计引物。现在可以在这一保守区域里设计一对引物。一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。让我们先看看P1引物。一般引物序列中G+C含量一般为40%~60%。而且四种碱基的分布最好随机。不要有聚嘌呤或聚嘧啶存在。否则P1引物设计的就不合理。应重新寻找区域设计引物。同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。 引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。 综上所述我们可以归纳十条PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。 ⑩引物3′端要避开密码子的第3位。 PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。 1.引物的特异性 引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。 2.避开产物的二级结构区 某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。

植物抗旱机理研究进展

植物抗旱机理研究进展 水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。 1植物形态结构特征对其耐旱机制的影响 1.1根系 植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。 1.2叶片 作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

植物抗病基因研究进展

植物抗病基因研究进展 摘要:植物抗病基因的研究是目前植物病理学科的热点及难点之一。近年来,通过基因工程技术培育抗病毒植物已经成为抵抗植物病毒的有效手段。本文简要讨论了近年来植物抗病毒基因工程的方法策略, 并对植物抗病基因工程的研究取得的成绩、存在的问题及展望进行了简介。 关键词植物病毒、抗病基因、基因工程、前景 一、植物抗病基因工程原理 植物抗病基因工程指的是用基因工程(遗传转化)的手段提高植物的抗病能力,以此获得转基因植物的方法。植物抗病基因工程主要包括:抗病及其他相关基因的分离和克隆、与合适的载体及标记基因构成适于转化的重组质粒、用不同的转化方法向受体植物导入重组质粒、筛选转化因子并鉴定转基因植株。此外,还有一种可以获得抗病转基因植物的方法即把具有抗病能力的植物或微生物的DNA 直接导入受体植物,从后代中筛选具有抗病能力的个体,经过稳定转化得到转基因抗病植株。 植物病毒每年给世界各地的农作物生产造成严重损失,每年全世界的农作物因病毒侵害的损失数百亿美元,传统的防治方法已远远无法满足现代农业的生产要求。病毒侵染之所以复杂,在于一方面病毒的高突变率所致的植物抗病品种抗性丧失速度远高于常规植物抗病育种速度;另一方面病毒在隐症野生植物中的储存;第三,无亲缘关系的病毒复合侵染以及病毒侵染的持久性,特别是以线虫和真菌传播的植物病毒能在土壤中存活许多年。因此,在适宜病毒介体生长的温度条件下,大面积连作缺乏抗病基因的植物,造成的经济损失会更高。Hamilton[1]于 20 世纪 80 年代初首先提出了基因工程保护的设想,在转基因植物中表达病毒基因组序列可能是防御病毒侵染的途径之一。近 20 多年来,基因工程的发展,为防治病毒病开辟了新途径。 二、利用非病毒来源的基因策略 1.植物自身基因介导的病毒抗性 一些植物在病毒侵染的时会启动主动防御机制,最普遍最常见的主动防御机制就是通常所说的过敏反应,也就是那些最初被病原侵染点周围的细胞发生程序性死亡最终在病原最初侵染点周围形成坏死斑。如番茄中的 Tm-1 或 Tm-2 和Tm-22基因,马铃薯的 Rx,Ry,烟草中的 N 基因等等[2]。这类基因通常称为 R 基因。根据其抗性水平的不同还分为:真实免疫指病毒复制完全不能发生、阈下侵染指病毒的复制仅局限于受侵染的细胞。不管 R 基因是在模式植物还是在

植物抗旱性处理方式

植物抗旱性干早处理方法 干旱是世界范围内普遍存在的问题,全球约三分之一的土地面积处于干早和半干旱地区,因此,国内外学者在植物对干早胁迫响应方面进行了大量的研究。根据试验内容和对试验进度控制的需求,干旱处理方法大致分为以下几种:(l)‘盆栽法通过人为控制盆栽植物的土壤含水量,以达到模拟植物所处的干旱环境。草坪护栏根据控制水分的方式的不同,又分为控水法和缓慢干旱法。①控水法,即控制土壤含水量,使植物处于几种水分胁迫梯度下,以监测、对比不同水分胁迫梯度植物的生长和生理活动情况,从而分析植物对不同水分梯度的响应情况;②缓慢干旱法,根据植物的生长发育阶段,人为控制土壤含水量每日的脱水量和速率,经一定时间达到干旱程度,从而根据时段进行观测植物对干旱环境的响应。目前盆栽方法的优点是试验进程较容易控制,结果可靠,但由于室内外环境差异,势必与田间植物生长存在差异.东莞护栏。 (2)大气干早处理法研究外界干旱气候环境对植物产生的影响中,空气湿度是造成干早环境的主要因子,此方法主要通过使植物生长在能控制空气湿度的干旱室中,或给作物叶面喷施化学干燥剂等方法模拟干早环境,经过设置不同时间的处理,形成不同程度的干旱环境,从而分析植物对外界空气湿度变化的响应情况。此方法的优点是制造干旱环境较为精确,但需要的资金也相对较多,难以大面积、大批量进行试验,同时依旧存在与田间自然环境条件存在差异的问题.(3)高渗溶液处理法使用不同浓度的高渗溶液如聚乙二醇、甘露醇、蔗糖、生理盐水等,对植株进行处理,形成植物生理干早,从而进行测定相应的生理指标。目前此方法存在争议较大。 (4)田间试验鉴定法此方法是指在田间进行栽植和测定指标试验,根据控水方式的不同分为两类,一类是将供试种在不同地区的试验地上栽种,以自然降水造成干旱胁迫,直接按照植物产量或生长状况来评价植物种的抗旱性;另一类是将供试种直接种于一个地区的田间试验地,以人工灌水来控制土壤含水量,形成有差异的水分环境,使植物生长受到影响,以此来评价植物种的抗旱性。这种方法主要以产量指标来评价植物的抗旱性。 此方法较简便易行,即能反映出植物在真实地田间干旱环境下的生长情况,又有产量指标,结果较有说服力,但受环境的影响较大,尤其是降水,年际间变幅较大,使每年鉴定的结果难以重复。 (5)分子生物学方法分子生物学法是近年来主要研究的方法,结果精确,其主要特点是不需要经过干早胁迫,直接找出标记指示植物抗旱的基因,或与抗旱性状相近的基因,用基因追踪技术(如限制性片段长度多态性盯LP),对抗旱基因进行定位和标记,通过基因鉴别来反映植物抗旱性。但此方法目前尚处于研究阶段,成本较高

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

最新六种植物抗旱性的研究

六种植物抗旱性的研 究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安 271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种 植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机 理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力 强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract: Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 仅供学习与交流,如有侵权请联系网站删除谢谢13

植物抗病、抗虫及抗除草剂基因与基因工程

植物抗病、抗虫及抗除草剂基因与基因工程 张永强 (西南大学植物保护学院, 重庆 400716) 摘 要:病虫草害历来是植物保护工作的重中之重,农药为病虫草害防治立下了汗马功劳。近来由于大量使用、滥用农药给环境带来了巨大的负面影响。20世纪70年代兴起的基因工程为这一问题的解决带来了新的途径。本文就植物抗病基因分类、最新报道的相关基因;抗虫基因的来源、最新报道的抗虫基因及试验结果;抗除草剂基因以及基因工程技术在现代农业中的应用予以综述。 关键词:植物抗病;植物抗虫;抗除草剂;基因工程 农药伴随人类改造自然,征服自然已经有100多年的历史,在促进农业发展和对人类发展做出卓越贡献的同时,也不可避免的带来许多负面影响,如:对非靶标生物的毒害、对环境的污染、对生态系统的破坏以及病虫草抗药性的产生等。特别是化学农药对动物和人类健康的影响,已经成为全人类普遍关心和急需解决的全球性问题。诞生在20世纪70年代的基因工程技术为这些问题的解决提供了一条新的途径。进入20世纪90年代具有实用价值的转基因生物品种因其诸多的优势,逐渐被人们所接受,而迅速走向商品化和产业化。 1 植物抗病基因与基因工程 植物受病原菌侵染时,会诱导相关的基因产生一系列参与植物防御反应的拮抗物质,阻止病害的传播和病原菌的进一步侵入。将这些参与植物防御反应的相关基因导入植物,使其在植物体内表达,可以提高植物的抗病能力。植物抗病基因在进化中形成了几种共有的进化形式。植物祖先抗病基因的复制创造了新基因座。基因间和基因内重组导致了变异,也导致了新特异性抗病基因的产生;另外,与特异性识别相关的富含亮氨酸重复区顺应于适应性选择;同样,类转座元件在抗病基因座中的插入加速了抗病基因的进化(庄军等,2004)。 1.1 植物抗病基因的分类 植物中许多抗病基因已被克隆,根据抗病蛋白(R蛋白)将抗病基因(R基因)分为以下几类。第一类,玉米抗圆斑病的基因Hml,其编码的解毒酶能钝化病原真菌所产生的HC 毒素,代表着抗病基因中与病原物亲和性因子作用的一类基因。 第二类,番茄抗细菌叶斑病的基因pto,其编码蛋白Pto是一种丝氨酸/苏氨酸激酶。AvrPto 蛋白是病原菌假单胞杆菌Pseudomonas进入植物细胞中通过Ⅲ型分泌系统分泌的,现已证实Pto激酶噜噗结构域中204位苏氨酸决定着Pto对AvrPto的特异性识别。具有自动磷酸化能力的Pto激酶与AvrPto相互作用从而产生了过敏性反应。 第三类抗病基因所编码的蛋白显示出与细胞间信号转导蛋白具有结构相似性。这些蛋白所共有的基元是富含亮氨酸重复序列(Leucine-rich repeat,LRR),一般由24个氨基酸残基组成,其共同蛋白序列是LXXLXXLXXLXLXXNXLSGXIPXX(氨基酸的单字符号,X代表任何一种氨基酸)。这一类型基因的共同结构是LRR-TM,它们编码的蛋白包括胞外N端LRR 重复区、膜锚定蛋白和胞质内C末端部分(如图1所示)。 第四类是水稻抗白叶枯病Xanthomonas oryzae pv.oryzae,Xoo的基因xa27。这一基因所编码的Xa21蛋白具有3个受体激酶特征的主要结构域:胞外LRRs结构、跨膜结构域及胞内激

植物抗旱抗旱机理及其相关基因研究进展

植物抗旱机理及其相关基因研究进展 摘要:提高植物的抗旱能力已经成为现代植物研究工作中的关键问题之一。近年来,随着分子生物学的应用与发展,该领域的研究也已引起国内外学者广泛的兴趣和重视,在抗旱机理研究及相关基因克隆及表达调控方面已取得可喜进展。本文综述了植物对于干旱胁迫在细胞水平、生理生化水平以及基因表达调控水平上的响应,重点介绍了基于细胞信号转导和基因调控的抗旱基因工程以及渗透保护物质积累的抗旱基因工程的新进展,最后对通过基因工程改善植物抗旱性所存在的问题进行了探讨,并对其前景进行了展望。 关键词:抗旱机理;渗透调节;信号转导;基因调控;渗透保护物积累。Progress of the Research on Plant Drought-resistant Mechanism and Related Genes Abstract: In recent years,with the application and development of molecular biology,the research in the drought-resistant mechanism and the relevant gene cloning and expression regulation have aroused wide interest and attentionamong domestic and foreign scholars,which has made gratifying progress. In this article, the plant responses to drought stress at cell, physiological and biochem ical levels as well as geneexp ressed and regulated levels, and mainly introduced the latest advances of drought stress tolerance engineering of plantbased on signal transduction, gene regulation and accumulation of osmotic adjustments1were summarized. In addition, the problem s of improving drought stress tolerance of plant through gene engineering were discussed, and the outlook was alsoanalyzed in paper1 Key words: Drought-resistant mechanism; Osmotic regulation; signal transduction; gene regulation; accumulation of os-motic adjustments 干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位。显然,对植物抗旱机理的研究显得尤为重要。在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫。这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面. 随着现代分子生物学与生物技术的发展, 植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家[1]研究的热点。本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作。 1 植物对干旱生理生化上的响应 干旱胁迫的环境下,通常会造成植物在生理、生化代谢途径上的改变,在细胞水平上主要表现为:细胞膨胀的消失,细胞膜流动性的改变,细胞内可溶物浓度的变化,以及蛋白和蛋白,蛋白和脂类间的相互作用[2]。植物也能通过自身的调节和适应来避免体内水分的丧失。例如,光合作用效率降低[3],细胞内有

相关文档
相关文档 最新文档