文档库 最新最全的文档下载
当前位置:文档库 › 钢筋与混凝土间的黏结滑移在ANSYS中的模拟

钢筋与混凝土间的黏结滑移在ANSYS中的模拟

钢筋与混凝土间的黏结滑移在ANSYS中的模拟
钢筋与混凝土间的黏结滑移在ANSYS中的模拟

钢筋混凝土施工及验收规范(附图)

钢筋混凝土施工及验收规范(附图) 建筑是有生命的,如果说建筑设计代表“他”的外形,结构设计代表“他”的骨架,那么工程人所掌控的质量安全,就一定是代表“他”的身体素质了。如何才能知道我们身体素质的好坏呢?那就需要体检了,体检在日常生活中对我们很重要,当然对我们的建筑物来说也是重中之重。而质量验收就是对建筑工程最有效的体检。建筑工程质量检测,是每个工程环节必须的,一个环节出现问题,就会导致质量检测的不合格。 模板分项工程 模板安装: 主控项目 1、模板及支架用材料的技术指标应符合国家现行标准的规定。进场时应抽样检验模板和支架材料的外观、规格和尺寸。 检查数量:按国家现行相关标准的规定确定 检验方法:检查质量证明文件、观察、尺量 2、现浇混凝土结构模板及支架的安装质量,应符合国家现行有关标准的规定和施工方案的要求。 检查数量:按国家现行相关标准的规定确定 检验方法:按国家现行相关标准的规定确执行 3、后浇带处的模板及支架应独立设置。 检查数量:全数检查 检验方法:观察 4、支架竖杆和横向模板安装在土层上时,应符合下列规定:

a.土层应坚实、平整,其承载力或密实度应符合施工方案的要求 b.应有防水、排水措施;对冻胀土,应有预防冻融措施 c.支架竖杆下应有底座或垫板 检查数量:全数检查 检验方法:观察;检查土层密实度检测报告、土层承载力验算或现场检测报告 验收标准: 1、足够的强度、刚度和稳定性能可靠地承受新浇砼的重量和侧压力,以及在施工过程中所产生的荷载,从而在浇筑的过程中不发生变形。 2、架要横平竖直,间距均匀,挑出长度一致。模板接缝要严密,接缝不大于3mm的模板用胶带纸粘贴。 3、墙柱边弹300mm模板检查线,顶板模板施工完后,在顶板周边弹30 0mm检查线,电梯井内弹十字检查线。 4、裁切后的模板裁切面必须涂刷两遍红油漆。电梯井筒模专门定制,阳角处加订2mm铝板,两边各宽100mm。 现浇结构模板安装的允许偏差及检验方法:

钢筋与混凝土之间的粘结

第七章钢筋与混凝土之间的粘结 §7.1 概述 钢筋与混凝土的粘结是钢筋与其周围一定影响范围内混凝土的一 种相互作用,它是这两种材料共同工作的前提之一,也是对钢筋混凝土构件的承载力、刚度以及裂缝控制起重要影响的因素之一。粘结的退化和失效必然导致钢筋混凝土结构力学性能的降低和破坏。随着有限元法在钢筋混凝土结构非线性中的应用,钢筋与混凝土之间粘结和滑移的研究更显重要。 7.1.1 粘结应力及其分类 1.粘结应力的定义 粘结应力是指沿钢筋与混凝土接触面上的剪应力。它并非真正的钢筋表面上某点剪应力值,而是一个名义值(对于变形钢筋而言),是指在某个计算范围(变形钢筋的一个肋的区段)内剪应力的平均值,且对于变形钢筋来说,钢筋的直径本身就是名义值。 2.粘结应力分类 ·弯曲粘结应力 由构件的弯曲引起钢筋与混凝土接触面上的剪应力。可近似地按材料力学方法求得。由于在混凝土开裂前,截面上的应力不会太大,所以一般不会引起粘结破坏,对结构构件的力学性能影响不大。 该粘结主要体现混凝土截面开裂前钢筋与混凝土的协同工作机理。其大小与弯曲粘结应力及截面的剪力分布有关,即对于未开裂截面,弯曲粘结应力的分布规律与剪力分布相同。 ·锚固粘结应力 钢筋的应力差较大,粘结应力值高,分布变化大,如果锚固不足则会发生滑动,导致构件开裂和承载力下降。粘结破坏是一种脆性破坏。 ·裂缝间粘结应力 开裂截面的钢筋应力,通过裂缝两侧的粘结应力部分地向混凝土传递,使未开裂截面的混凝土受拉,也使得混凝土内的钢筋平均应变或

总变形小于钢筋单独受力时的相应变形,有利于减小裂缝宽度和增大构件的刚度,此即“受拉刚化效应”。 裂缝间粘结应力属于局部粘结应力范围。该粘结应力数值的大小反映了受拉区混凝土参与工作的程度。局部粘结应力应变分布复杂,存在着混凝土的局部裂缝和两者之间的相对滑移,平截面假定不再符合,且影响因素较多,如剪切破坏、塑性铰的转动能力以及结构中的弹塑性分析等。 7.1.2 研究现状 由于影响钢筋与混凝土之间粘结作用的因素较多,且差异性较大,较难给出理想的、普遍共同接受的计算理论。目前,还没有比较完整的、有充分论据的粘结滑动理论。各国规范处理方法各不相同,另外一方面,笼统的构造要求大大忽视了对粘结问题的进一步的研究。 7.1.3 研究的重要性 ·工程实践上的重要性——钢筋的锚固、搭接和细部构造; ·理论上的重要性——剪切破坏、裂缝宽度、塑性铰转动能力以及弹塑性分析问题的源头; ·有限元方法在钢筋混凝土结构中应用的要求,需给出粘结应力与相对滑动的数学模式; ·钢筋混凝土结构的动力反应,尤其是在大变形下的粘结性能的研究,在很大程度上取决于构件的连接部位的恢复力特性,粘结退化是使节点区强度丧失和刚度降低的主要原因。 §7.2 粘结性能试验 7.2.1 试验方法 结构中钢筋粘结部位的受力状态复杂,很难准确模拟。根据试验性质以及获取数据的内容,分为静力试验方法和动力试验方法。

钢筋混凝土案例

●某市路南区建设一综合楼,结构型式采用现浇框架—剪力墙结构体系,地上20层, 地下2层,建筑物檐高66.75米,建筑面积5.6万平方米,混凝土强度等级为C35,于2000年3月12日开工,在工程施工中出现了质量问题:试验测定地上3、4层混凝土标准养护试块强度未达到设计要求,监理工程师采用回弹法测定,结果仍不能满足设计要求,最后法定检测单位从3、4层钻取部分芯样,为了进行对比,又在试块强度检验合格的2层钻取部分芯样,检测结果发现,试块强度合格的芯样强度能达到设计要求,而试块强度不合格的芯样强度仍不能达到原设计要求。 1.针对该工程,施工单位应采取哪些质量控制对策来保证工程质量? 2.为避免以后施工中出现类似质量问题,施工单位应采取何种方法对工程质量进行控制? 3.简述该建筑施工项目质量控制的过程。 4.针对工程项目的质量问题,现场常用的质量检查方法有哪些? 问题解决 1、质量控制的对策主要有: 1)以人的工作质量确保工程质量; 2)严格控制投入品的质量; 3)全面控制施工过程,重点控制工序质量; 4)严把分项工程质量检验评定关; 5)贯彻“预防为主”的方针; 6)严防系统性因素的质量变异。 2、质量控制的方法:主要是审核有关技术文件和报告,直接进行现场质量检验或必要的试验等。 3、施工项目的质量控制过程是从工序质量到分项工程质量、分部工程质量、单位工程质量的系统控制过程;也是一个由投入原材料的质量控制开始,直到完成工程质量检验为止的全过程的系统过程。 4、现场质量检查的方法有目测法、实测法和试验法三种。 2002年7月,一天凌晨两点左右,某市联合大学学生宿舍楼发生一起6层悬臂式雨篷根部突然断裂的恶性质量事故,雨篷悬挂在墙上。幸好在凌晨,未造成人员伤亡。该工程为6层砖混结构宿舍楼,建筑面积2784平方米。经事故调查、原因分析,发现造成该质量事故的主要原因是施工队伍素质差。在施工时将受力钢筋位置放错,使悬臂结构受拉区无钢筋而产生脆性破坏。 ● 1.如果该工程施工过程中实施了工程监理,监理单位对该起质量事故是否承担责 任?原因是什么? ● 2.施工单位现场质量检查的内容有哪些? ● 3.施工单位现场质量检查目测法有哪些常用手段? ● 4.施工单位现场质量检查实测法有哪些常用手段? ● 5.钢筋工程隐蔽验收的要点有哪些? ● 6.质量事故处理的程序是怎样的? 问题解决 ● 1.如果该工程施工过程中实施了工程监理,监理单位对该起质量事故承担责任。原 因是:监理单位接受了建设单位委托,并收取了监理费用,具备了承担责任的条件,而施工过程中监理未能发现钢筋位置放错的质量问题,因此必须承担相应责任。 ● 2.现场质量检查的内容有:1)开工前检查;2)工序交接检查;3)隐蔽工程检查; 4)停工后复工前的检查;5)分项、分部工程完工后,就经检查认可,签署验收记录后,才允许进行下一工程项目施工;6)成品保护检查。

第三节钢筋和混凝土粘结强度对比试验.

第三节钢筋和混凝土粘结强度对比试验 第10.3.1条本节适用于直径大于10mm的各类非预应力钢筋的粘结强度对比试验,并根据对比试验结果评价钢筋和混凝土粘结性能。 第10.3.2条钢筋和混凝土的粘结强度应采用无横向钢筋的立方体中心拔出试件(简称拔出试件)确定。拔出试件应符合下列要求: 一、拔出试件应采用边长为10倍钢筋直径的混凝土立方体试件(图10.3.2)。钢筋放置在立方体的中轴线上,埋入部分长度和无粘结部分长度各为5d。钢筋伸出混凝土试件表面的长度:自由端为20mm,加载端应根据垫板厚度、穿孔球铰高度及加载装置的夹具长度确定,但不宜小于300mm; 二、钢筋表面不应有锈蚀、油污及不正常的横肋轧制标记,安装百分表的钢筋端面应加工成垂直于钢筋轴的平滑表面; 在混凝土中无粘结部分的钢筋应套上硬质的光滑塑料套管,套管末端与钢筋之间空隙应封闭; 三、试件的混凝土应采用普通骨料,粗骨料最大颗粒粒径不得大于1.25倍钢筋直径; 试件的混凝土强度等级为C30,混凝土立方体抗压强度允许偏差应为 ±3MPa。 四、拔出试件数量每组应制作六个。应同时制作混凝土立方体试件,每组三个,其振捣方法与养护条件应与拔出试件一致; 五、试件应在钢模或不变形的试模中成型。模板上应预留钢筋位置孔。宜用振动台振捣;

试件的浇注面应与钢筋纵轴平行。钢筋应与混凝土承压面垂直,并水平设置在模板内。钢筋的两纵肋平面应放置在水平面上; 六、试件应在标准养护室内进行养护。在试件龄期为28d时进行试验。 第10.3.3条试验装置承压垫板的边长不应小于拔出试件的边长,其厚度不应小于15mm。垫板中心孔径应为2倍钢筋直径(图10.3.3)。 第10.3.4条加载速度应根据各种钢筋的直径确定,每种钢筋施加荷载的速度应按下式计算: 式中V F——加载速度(kN/min); d——钢筋直径(mm)。 加载速度应均匀,不应施加冲击荷载。

注浆帷幕、钢筋混凝土护圈施工承台基础

浅谈注浆帷幕防水围堰、钢筋混凝土护圈在桥梁承台深水基础施工应用 ————兰武二线河口黄河特大桥13#墩承台基础施工 张家升 中铁大桥局集团第二有限公司江苏南京210015 提要:河口黄河特大桥13#墩位于主河道水位高,基础承台处在卵石及泥岩地质,上面是人工填土石筑岛,施工时在承台周围采用三排(或双排)孔注浆,形成防水帷幕;基坑每开挖 1.0m,浇注圆形钢筋混凝土护圈一次。避免使用下沉混凝土围堰,在这样高水位、地质复杂情况下采用注浆帷幕、钢筋砼护圈施工深水基础,该方法施工投资小、效率高,对类似的深水基础施工可以推广使用。 关键词:注浆帷幕护圈深水基础防水工效高 1.工程概况 兰新铁路兰州西至武威南增建二线工程,河口黄河特大桥位于兰州市西固区河口乡境内,在原老黄河桥上游约460m,黄河桥为于平面半径R=600m曲线上,全桥上部结构形式为6-32m(简支T梁)+4-24m(简支T梁)+ 一联(38.5m+4-56m+38.5m)连续弯箱梁+9-32m(简支箱梁)+3-32m(简T支梁)组成,全桥共29个桥墩台。11#-17#墩在水中,其中主桥12#-14#墩位于黄河主河槽内,其中13#墩为制动墩,墩基础为9根φ1.5m,桩长L=33米钻孔桩,13#墩平面尺寸为11.6*11.6m*4.0m,承台底标高为1547.72。设计施工方案均为人工填土铅丝笼防护筑岛围堰,承台均埋置于河床面以下,从岛面依次往下地质情况为人工填土和大块石、卵石层、风化泥岩。承台穿过卵石层置于泥岩之上,卵石层厚为3m~4m。桥址位于八盘峡水库影响区内,受水库调节影响,放水张落在1.0-2.5m左右,根据去年最高施工水位记载达到1557.76(十年一遇水位是1557.86),枯水季节水位约1554.5。 2.主要施工方案 由于黄河河道内无法通行大型船舶,水中墩基础全部采用便桥、筑岛围堰施工。其中13#墩承台埋置最深,承台基坑开挖深度达13m,同时13#墩又是最后筑岛施工的,因而对河道断面压缩大,冲刷严重,填筑时大块石很多,围堰填筑采用钢筋片石笼防护,并按1:1的坡度放坡填筑,钻孔桩施工完成后,对筑岛围堰进行注浆围幕加固防水,采用圆形钢筋混凝土撑圈护壁作为支护和挡水结构进行施工。基坑采用长臂挖掘机(臂

《混凝土结构设计规范》GB50010-2002

《混凝土结构设计规范》 GB50010-2002 3 基本设计和规定 1.1.8 未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1 根据建筑结构破坏后果的严重程度,建筑结构划分为 三个安全等级 。设计 时应根据具体情况,按照表 3.2.1 的规定选用相应的安全等级。 表 3.2.1 建筑结构的安全等级 安全等级 破坏后果 建筑物类型 一级 很严重 重要的建筑物 二级 严重 一般的建筑物 三级 不严重 次要的建筑物 注:对有特殊要求的建筑,其安全等级应根据具体情况另行确定。 1.1.3 混凝土轴心抗压、轴心抗拉强度标准值? ck 、?tk 应按表 4.1.3 采用。 表 4.1.3 混凝土强度标准值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ? 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 ck ? 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11 tk 、?应按表 4.1.4 1.1.4 混凝土轴心抗压、轴心抗拉强度设计值? c 采用。 t 表 4.1.4 混凝土强度设计值( N/mm 2 ) 强 混凝土强度等级 度 种 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 类 ?c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 ? 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 t 注: 1.计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于 300mm ,则表中混凝土 的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不 受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2 钢筋的强度标准值应具有不小于 95%的保证率。热轧钢筋的强度标准值系 根据屈服强度确定,用? yk 表示。预应力钢绞线、钢丝和热处理钢筋的强度标 准值系根据极限抗拉强度确定,用? ptk 表示。 普通钢筋的强度标准值应按表 4.2.2 -1 采用;预应力钢筋的强度标准值应按

钢筋与混凝土粘结——滑移关系

钢筋与混凝土粘结——滑移关系 混凝土与钢筋间粘结滑移性能向来作为钢筋混凝土结构的重要使用参考依据 ,它是钢筋与混凝土共同协调工作的基础和前提,正因为他们之间的界面存在相互的粘结力 ,促使两种材料能够实现应力的传递 ,从而实现承受外部荷载的作用,这足以显示它对钢筋混凝土结构的重要性。目前关于普通混凝土与钢筋间的粘结滑移性能进行了大量的研究,并已出台了相应的国家规范标准,而再生混凝土作为一种新型的绿色环保材料 ,其应用于实际工程前,还有许多性能有待研究解决,再生混凝土与钢筋间的粘结滑移性能就是其中亟待解决的问题之一。且再生混凝土区别于普通骨料混凝土之处在于其骨料采用废弃混凝土破碎产生,再生骨料与水泥砂浆的界面情况远远复杂于普通骨料 ,然而粘结滑移性能恰恰是钢筋与再生混凝土两种材料界面之间的相作用,由于骨料界面的差异导致它们之间粘结界面的差异是必然的,这就更增加了对两种材料间粘结滑移性能研究的必要。钢筋与混凝土间粘结锚固性能是混凝土结构工作的前提和基础 ,目前关于再生骨料混凝土与钢筋间的粘结性能,国内外仅仅进行了一些简单的拉拔试验研究。在对再生骨料混凝土与钢筋之间的粘结强度进行了试验研究,得出的结论认为与普通混凝土的差异不大;通过试验发现再生骨料混凝土与纵向钢筋的粘结强度远大于与横向钢筋的粘结强度与其他试验结论较为接近,认为再生骨料混凝土与钢筋间的粘结强度较普通混凝土稍低。 考虑不同再生粗骨料取代率、再生细骨料取代率、强度、保护层厚度等因素对再生混凝土一钢筋间的粘结滑移进行试验,发现随着再生粗骨料取代率的增加,粘结性能有所提高,且在60%达到最大;相反,随着再生细骨料取代率的增加,粘结性能有所降低。但以上试验研究均统一采用基于平均粘结应力假设的简单拉拔试验进行试探性研究,即假设认为钢筋在再生混凝土中锚固段内的粘结应力处处相等 ,显然这并不完全符合实际钢筋受力状况。通过钢筋内贴片试验方法,完成了18个锈前钢筋—再生混凝土试块的拉拔试验,分别研究了再生骨料取代率、钢筋种类、混凝土抗压强度对其粘结滑移性能的影响,同时对钢筋在再生混凝土中长锚和短锚两种情况下其粘结应力分布的差异进行了研究分析,最后通过量测的钢筋应力理论推导钢筋在再生混凝土中的粘结位置函数,从而确定其粘结一滑移本构关系。并得出以下结论:

天喻三维钢筋混凝土结构设计平台InteRDS

天喻三维钢筋混凝土结构设计平台InteRDS 天喻InteRDS3.0是面向工程建设行业而开发的三维钢筋混凝土设计平台,具有强大的参数化混凝土结构建模、配筋和二维钢筋施工详图的自动生成能力,使用户不仅能构造直观的三维混凝土结构,直接基于直观的三维结构进行配筋,而且能自动生成符合施工要求的钢筋详图,大大地降低工作强度,减少设计错误,提高设计效率。 系统主要功能 三维参数化的混凝土结构设计 通过基于历史的三维几何形状造型技术,用户随时可对结构形状尺寸进行更改,系统自动重构结构模型得到更新的混凝土结构形状。 (a)截面形状定义 (b)三维形状构造

(c) 三维参数化混凝土结构建模结果 三维可视化的配筋设计 基于三维结构设计结果,选择需要配筋的面,设置配置钢筋参数,自动根据结构形状生成三维形状钢筋,并自动根据钢筋形状自动分组,同时灵活方便的钢筋编辑工具。 (a) 配筋位置

(b) 配筋参数 (c) 钢筋自动生成与分组 (d) 三维结构配筋结果

二维钢筋施工详图自动生成 可在任意位置定义剖视图截面,并可自定义出图参数,自动生成输出到AutoCAD的钢筋详图和钢筋、材料表。 (a) AutoCAD平台上自动生成的二维钢筋施工详图 系统主要特色 无限级的Undo/Redo能力 无限级的Undo/Redo能力使设计过程更轻松。结构和钢筋设计可以从设计过程中的一个任意节点Undo/Redo到另外的一个任意节点。 灵活的变量表功能 在变量表中包含丰富的函数类型,可以定义用户自定义变量,给变量添加表达式,修改变量值,并对零件进行驱动。变量表中的变量会随着对模型的Undo/Redo自动进行Undo/Redo。 变量表

钢筋与混凝土的粘结

钢筋与混凝土的粘结 随着社会的发展,技术的进步,钢筋混凝土材料在住房、建筑、交通、军事、水利等领域被广泛应用,钢筋混凝土结构就是利用了钢筋的高抗拉强度和混凝土的高抗压强度,而钢筋和混凝土之间的足够粘结是保证两者共同受力的前提。目前,两者完美的结合,造就了许多建筑奇迹,满足了结构的高强性、耐久性、抗灾性、抗震性等实用要求,保证了结构的使用寿命和使用安全。同时,也给人们的生产生活带来了翻天覆地的变化,让人们享受到安全舒适的生存环境。由此可见,钢筋和混凝土的粘结非常重要,下面从以下几个方面加以论述。 一、粘结力的作用 粘结力是指粘结剂与被粘结物体界面上分子间的结合力,粘结力使得钢筋和混凝土两种性质不同的材料在一起共同受力、共同工作,并承受构件因受荷在两种材料之间产生的剪应力,两者不至于发生滑移。如果粘结力失效,钢筋混凝土构件就会发生破坏。可见,粘结力的大小,直接影响着构件的稳定性和使用寿命。 二、粘结力的组成及粘结机理 钢筋和混凝土的粘结力由三部分组成: 1、化学胶结力 混凝土在硬化过程中,水泥胶体与钢筋之间产生的吸附

胶着作用,这种吸附作用力来自浇筑时水泥浆体对钢筋表面氧化层的渗透,以及水化过程中水泥晶体的生长和硬化,这种作用力一般比较小,仅在受力阶段的局部无滑移区域起作用,当接触面发生相对滑移时,该力即消失。 2、摩阻力 由于混凝土凝固时的收缩,使钢筋周围的混凝土握裹在钢筋上,当钢筋和混凝土之间出现相对滑移的趋势,则此接触面上将产生摩阻力。 对于光圆钢筋表面轻度锈蚀有利于增加摩阻力,但摩阻作用也很有限;对于光面钢筋表面的自然凹凸程度很小,机械咬合也不大,因此,光面钢筋与混凝土的粘结强度是较低的,为保证光面钢筋的锚固,通常需要在钢筋端部弯钩、弯折或焊短钢筋,以阻止钢筋与混凝土间产生较大的相对滑动。 3、机械咬合力 即钢筋表面凹凸不平与混凝土之间产生的机械咬合力作用力,对于光圆钢筋这种咬合力来自表面的粗糙不平。将钢筋表面轧制出肋形成带肋钢筋,即变形钢筋,可显著增加钢筋与混凝土的机械咬合作用,从而大大增加了粘结强度。 三、粘结问题的分类及相应的试验方法

新旧混凝土规范对比

新旧混凝土规范对比 新老规范变化(一):材料变化1、混凝土强度等级逐步提升4.1.2条:素混凝土结构的混凝土强度等级不应低于C15;钢筋混凝土结构的混凝土强度等级不应低于C20;采用强度级别400MPa及以上的钢筋时,混凝土强度等级不应低于C25。 承受重复荷载的钢筋混凝土构件,混凝土强度等级不应低于C30。预应力混凝土结构的混凝土强度等级不宜低于C40,且不应低于C30。2、钢筋高强-高性能发展趋势普通钢筋:淘汰低强235MPa钢筋,以300MPa光圆钢筋替代;增加高强500MPa钢筋;限制并准备淘汰335MPa钢筋;最终形成300、400、500MPa的强度梯次,与国际接轨。新规范实施后的钢筋牌号及标志为:HPB300—ΦHRB335— B HRBF335—BFHRB400—C HRBF400—CFHRB500—D HRBF500—DFRRB400—C增加了以下几条:4.2.7条:构件中的钢筋可采用并筋的配置形式。直径28mm及以下的钢筋并筋数量不应超过3根;直径32mm的钢筋并筋数量宜为2根;直径36mm及以上的钢筋不应采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的等效直径应按截面面积相等的原则换算确定。4.2.8条:当进行钢筋代换时,除应符合设计要求的构件承载力、最大力下的总伸长率、

裂缝宽度验算以及抗震规定以外,尚应满足最小配筋率、钢筋间距、保护层厚度、钢筋锚固长度、接头面积百分率及搭接长度等构造要求。4.2.9条:当构件中采用预制的钢筋焊接网片或钢筋骨架配筋时,应符合国家现行有关标准的规定。新老规范变化(二):基本构造变化1、箍筋长度:图中1 号箍筋的计算公式(按外皮计算):老规范:L=2(b+h)- 8bhc+2×1.9d+2max(10d,75)+8d新规范:L=2 (b+h) - 8bhc+2×1.9d+2max(10d,75)2、钢筋锚固:新规范中增加了基本锚固lab的计算方式:lab=a*fy/ft*d但其中ft(混凝土轴心抗拉强度设计值)取值改为“当混凝土强度等级高于C60时,按C60取值”以适应混凝土强度的提高。设计锚固长度为基本锚固长度乘锚固长度修正系数ζa的数值,以反映锚固条件的影响:la=ζa*lab其中,la不应小于200mm,锚固长度修正系数ζa,对普通钢筋按规范第8.3.2条的规定取用,当多于一项时,可按连乘计算,但不应小于0.6;对预应力筋,可取1.0.3、筋端弯钩和机械锚固:新规范对钢筋弯钩和机械锚固的形式和技术要求做了更详细的规定,如下表:4、钢筋的连接:不宜采用绑扎搭接接头的规定改为:受拉钢筋直径不宜大于25mm,受压钢筋直径不宜大于28mm。钢筋机械连接区段的长度为35d,d改为连接钢筋的较小直径。纵向受拉钢筋绑扎搭接接头的搭接长度不应小于300mm。新老规范变化(三):结构构件基本规定

钢筋受压黏结滑移模型48-p3545-100159

第 42 卷第 11 期中南大学学报(自然科学版) V ol.42 No.11 2011年11月 Journal of Central South University (Science and Technology) Nov. 2011 钢筋受压黏结滑移模型 李海涛 1 ,Deeks A J 2 ,苏小卒 3 (1. 南京林业大学 土木工程学院,江苏 南京,210037; 2. School of Engineering and Computing Science, Durham University, Durham DH1 3LE,England; 3. 同济大学 建筑工程系,上海,200092) 摘要:为研究钢筋的受压黏结滑移关系,采用分辨率较高的激光位移计,对一批短锚长试件进行系列推出试验研 究,得到精确度较高的黏结滑移值及完整的试验黏结滑移关系曲线,描述钢筋在混凝土中的受压黏结滑移破坏全 过程:弹性阶段、局部滑移阶段、滑移上升段、滑移下降段和残余段。在对试验得到的较短锚长试件推出试验结 果分析的基础上,经统计回归和分析,提出钢筋的受压黏结滑移曲线模型,并与试验结果进行对比。 关键词:钢筋;推出试验;黏结滑移模型 中图分类号:TU398 文献标志码:A 文章编号:1672?7207(2011)11?3545?06 Compressive bond slip model of reinforcing bars LI Hai-tao 1 ,Deeks A J 2 , SU Xiao-zu 3 (1. School of Civil Engineering, Nanjing Forestry University, Nanjing210037, China? 2.School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, England? 3.Department of Building Engineering, Tongji University, Shanghai 200092, China) Abstract: In order to investigate the bond slip relationship of reinforcing bars under compressive condition, a series of push out tests of the specimens with short anchorage length were done using the Laser Displacement Sensor with high precision. The precise bond slip values and whole bond slip curves were gained from the tests. According to the test results, the failure process for the compressive bond slip of the bar in concrete was described in details, which can be divided into five stages: elastic stage, slip stage in some part, slip in ascent stage, slip in descent stage and remnant stage. After that, the model for compressive bond-slip relationship of reinforcing steels in concrete was proposed by statistical regression and analysis of the test results. Additionally, the comparison between the fitting curves and test curves were made. Key words:reinforcing bar?push out test?bond slip model 推出试验是研究钢筋在承受压力状况下黏结锚固 问题的试验方法之一。 截至目前, 国内外众多学者 [1?15] 对钢筋的受拉黏结锚固性能进行了大量的试验研究和 分析,提出了很多钢筋受拉黏结滑移本构模型。 Eligehausen 等 [1?3] 提出了变形钢筋数值分析的 BPE 模 型。徐有邻等 [4] 根据黏结锚固试验结果,将钢筋的黏 结滑移分成 5 个阶段:微滑移段、滑移段、劈裂段、 下降段和残余段。Nilson 等 [5?10] 提出了不同条件下钢 筋的受拉黏结滑移连续模型。不同的研究结果 [1?15] 相 差很大,这与混凝土结构本身的离散性较大有很大关 系。此外,这也说明,对本构关系的研究至今也没有 公认的确定关系,值得做更深入的探讨。而对于钢筋 收稿日期:2010?12?10;修回日期:2011?03?21 基金项目:澳洲 ARC Research grant 研究项目(DP0988940);江苏省属高校自然科学研究面上资助项目(11KJB60003);南京林业大学高学历人才基 金资助项目(163050072);中国博士后科学基金面上资助项目(2011M500930) 通信作者:李海涛(1982?),男,河南临颍人,博士,讲师,从事混凝土结构基本理论及应用、钢木结构等研究;电话:025-85428890;E-mail: lhaitao1982@https://www.wendangku.net/doc/fe19185208.html,

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图完整版

钢筋混凝土板式楼梯设计楼梯板及平台板配筋 图 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋, fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m

斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m 恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12

《混凝土结构设计规范》GB50010-2010

为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述如下:为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述 1 完善规范的完整性,完善规范的完整性从以构件计算为主适当扩展到整体结构的设计,补充结完整性,从以构件计算为主适当扩展到整体结构的设计,适当扩展到整体结构“ 构方案”和“结构抗倒塌设计”的原则,增强结构的整体稳固性。构方案”结构抗倒塌设计” 的原则,增强结构的整体稳固性。 3 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽 度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4 增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。完善耐久性设计方法,除环境条件外,提出环境作用等级概念除环境条件外,提出环境作用等级概念。 6 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。既有结构设计的基本规定 7 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求 8 补充并筋(钢筋束)的配筋形式及相关规定。补充并筋(钢筋束)的配筋形式及相关规定及相关规定。 9 结构分析内容适当得到扩展,提出非荷载效应分析原则。结构分析内容适当得到扩展提出非荷载效应分析原则。适当得到扩展, 10

对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。侧移二阶效应,提出有限元分析及增大系数的简化10 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12 补充、完善材料本构关系及混凝土多轴强度准则的内容。 “ 任意截面”“ 简化计算”13 构件正截面承载力计算:任意截面”移至正文,简化计算”移至附录。 截面设计中完善了构件自身挠曲影响的相关规定。14 截面设计中完善了构件自身挠曲影响的相关规定。 修改了受弯构件的斜截面的受剪承载力计算公式。15 修改了受弯构件的斜截面的受剪承载力计算公式。 改进了16 改进了双向受剪承载力计算的相关规定。 17 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定 修改了受冲切承载力计算公式。18 修改了受冲切承载力计算公式。 19 补充了预应力混凝土构件疲劳验算的相关公式。 20 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21 宽度大于 0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。挠度计算中增加按荷载效应准永久组合时长期刚增加按荷载效应准永久组合时长期刚度 23 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。增加了 24 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣适当调整了钢筋保护层厚度的规定,一股情况下稍 环境下大幅度增加。

火灾后钢筋混凝土节点钢筋粘结滑移模拟

火灾后钢筋混凝土节点钢筋粘结滑移模拟 钢筋混凝土节点在受到火灾作用后,钢筋与混凝土之间的粘结力出现了大幅度的下降,这就导致了两者之间较大的粘结滑移现象。在进行钢筋混凝土节点抗震性能研究的时候,其滞回曲线出现了大的滑移现象,这与两者之间粘结力下降导致的滑移量增大有着直接的关系。在ABAQUS中利用非线性弹簧单元来模拟两者间的粘结滑移是比较合适的,下面介绍弹簧单元及在本次模拟中的应用。 第一部分:弹簧单元 弹簧单元时一种连接单元,在ABAQUS中它具有以下的性质: 1.能够将力和相对位移联系起来 2.在ABAQUS/CAE中能够将相对转角和弯矩联系起来 3.可以是线性的也可以是非线性的 4.如果是线性弹簧,可以基于频率直接进行稳态动力分析 5.也可以基于温度和其他场变量的求解 6.可以通过虚拟的弹簧刚度来模拟理想状态下的结构阻尼因子 弹簧单元始终利用力和位移来描述。当弹簧与某一自由度上的位移相关时,相对位移和力这些变量就在弹簧单元中表现。如果弹簧单元与某一自由度上的转角相关,它就是扭转弹簧,相对转角通过弹簧转化成弯矩。 粘滞性弹簧的行为在ABAQUS/CAE中可以通过频变弹簧和频变阻尼的组合成功模拟。 典型应用 弹簧单元被用来模拟实际的物理弹簧和理想化的轴向扭转组件。还可以模拟阻止刚体运动的反力。它们还可以通过假设的弹簧刚度指定结构阻尼系数来模拟结构的阻尼。 选择适当的单元类型 Spring1,Spring2单元可以应用在隐式分析中,Spring1用在定义点和区域之间,Spring2用在定义点和点之间,这两种单元作用的都是以特定的方向。 SpringA可以应用在显示分析也可以应用在显式分析中,通过连接两个节点的作用线产生作用,因此在大的位移相应分析中这个作用线可能会产生旋转。 Spring1,Spring2弹簧单元都能够定义位移和旋转的自由度(后种情况被称为扭转弹簧)。然而,在大位移响应分析时应用扭转弹簧需要仔细考虑在节点上整体的转动情况。因此,在大位移响应分析时,连接单元应用的比扭转单元更加广泛。 Input 文件使用方法 使用下面的方式定义点和区域间的作用方向不变的弹簧 *Element,type=Spring1 使用下面的方式定义点和点的作用方向不变的弹簧 *Element,type=Spring2 使用下面的方式定义点和点的作用方向由两点间的作用线定义的弹簧 *Element,type=SpringA ABAQUS/CAE使用方法 在Property和Interaction模块中:点击SpecialSprings/DashpotsCreate,然后选择下列方式定义不同的弹簧单元: )Connect Points to Ground:选择点,然后定义弹簧刚度(等同于Spring1,然后定义弹簧刚度(等

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图

钢筋混凝土板式楼梯设计 楼梯板及平台板配筋图 Revised by Liu Jing on January 12, 2021

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋,fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m 斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m

恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12 ξ=1-(1-2ɑs)0.5=0.1282 As= fcbh ξ/fy=9.6×1000×0.1282×80/210=468.85mm2 受力钢筋选用10@150(As=604 mm2) 分布钢筋选用6@300 2、平台板计算 (1)荷载计算(取1米板宽计算) 假定板厚80mm,平台梁TL-1截面尺寸200×300mm,TL-2截面尺寸为150×300mm。 楼梯板及平台板配筋图 恒载:平台板自重 0.08×1.0×25=2 kN/m 20mm厚抹面: 0.02×1.0×20=0.4kN/m

混凝土钢筋验收规范

钢筋分项工程 5 〔说明〕钢筋分项工程是普通钢筋进场检验、钢筋加工、钢筋连接、钢筋安 装等一系列技术工作和完成实体的总称。钢筋分项工程所含的检验批可根据施工 工序和验收的需要确定。 5.1 一般规定 5.1.1 浇筑混凝土之前,应进行钢筋隐蔽工程验收,其内容应包括: 纵向受力钢筋的牌号、规格、数量、位置; 1 钢筋的连接方式、接头位置、接头数量、接头面积百分率、搭接长度、2锚固方式及锚固长度;箍筋、横向钢筋的牌号、规格、数量、间距,箍筋弯钩的弯折角度及平3直段长度; 预埋件的规格、数量、位置。4〔说明〕钢筋隐蔽工程反映钢筋分项工程施工的综合质量,在浇筑混凝土之 前验收是为了确保受力钢筋等的加工、连接、安装满足设计要求。钢筋隐蔽工程 验收可与钢筋分项工程验收同时进行。 钢筋验收时,首先检查钢筋牌号、规格、数量,再检查位置偏差,不允许钢 筋间距累计正偏差后造成钢筋数量减少。 5.1.2 钢筋进场检验,当满足下列条件之一时,其检验批容量可扩大一倍: 经产品认证符合要求的钢筋; 1 同一工程、同一厂家、同一牌号、同一规格的钢筋、成型钢筋,连续三 2 次进场检验均一次检验合格。 〔说明〕本条规定对于通过产品认证的钢筋及生产质量稳定的钢筋、成型钢 筋,在进场检验时,可比常规检验批数量扩大一倍。旨在鼓励使用通过产品认证 的材料或选取质量稳定的生产厂家的产品。 5.2 材料 主控项目 19 5.2.1 钢筋进场时,应按国家现行相关标准的规定抽取试件作屈服强度、抗拉强 度、伸长率、弯曲性能和重量偏差检验,检验结果必须符合相关标准的规定。 检查数量:按进场批次和产品的抽样检验方案确定。 检验方法:检查质量证明文件和抽样复验报告。 〔说明〕钢筋的进场检验,应按照现行国家标准《钢筋混凝土用钢第部分: 1 热轧光圆钢筋》、《钢筋混凝土用钢第部分:热轧带肋钢筋》GB1499.2 2GB1499.1 规定的组批规则、取样数量和方法进行检验,检验结果应符合上述标准的规定。 一般钢筋检验断后伸长率即可,牌号带的钢筋检验最大力下总伸长率。钢筋 E 的质量证明文件主要为产品合格证和出厂检验报告。 5.2.2 成型钢筋进场时,应抽取试件作屈服强度、抗拉强度、伸长率和重量偏差 检验,检验结果必须符合相关标准的规定。

相关文档