文档库 最新最全的文档下载
当前位置:文档库 › 2017年全国高考文科全国3卷数学试题及答案-

2017年全国高考文科全国3卷数学试题及答案-

2017年全国高考文科全国3卷数学试题及答案-
2017年全国高考文科全国3卷数学试题及答案-

2017年普通高等学校招生全国统一考试

文科数学 卷3

注意事项:

1.答题前,考生务必将自己的、号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需

改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有

一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为

A .1

B .2

C .3

D .4

2.复平面表示复数(2)z i i =-+的点位于 A .第一象限

B .第二象限

C .第三象限

D .第四象限

3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至

2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加

C .各年的月接待游客量高峰期大致在7,8月

D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4

sin cos 3

αα-=

,则sin 2α=

A .79

-

B .29

-

C .

29

D .

79

5.设,x y 满足约束条件326000x y x y +-≤??

≥??≥?

,则z x y =-的取值围是

A .[-3,0]

B .[-3,2]

C .[0,2]

D .[0,3]

6.函数1()sin()cos()536

f x x x ππ

=

++-的最大值为 A .65 B .1 C .35

D .

15

7.函数2sin 1x

y x x

=++的部分图像大致为

A .

B .

C .

D .

8.执行右面的程序框图,为使输出S 的值小于91,则输入的正

整数N 的最小值为 A .5 B .4 C .3 D .2

9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个

球的球面上,则该圆柱的体积为 A .π

B .

34π C .

2

π

D .4

π

10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则

A .11A E DC ⊥

B .1A E BD ⊥

C .11A E BC ⊥

D .1A

E AC ⊥

11.已知椭圆22

22:1(0)x y C a b a b

+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径

的圆与直线20bx ay ab -+=相切,则C 的离心率为

A B

C .

3

D .13

12.已知函数2

1

1()2()x x f x x x a e

e --+=-++有唯一零点,则a =

A .12

-

B .13

C .

12

D .1

二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .

14.双曲线22

21(0)9x y a a -

=>的一条渐近线方程为35

y x =,则a = .

15.ABC ?的角,,A B C 的对边分别为,,a b c 。已知60,3C b c ==

=,则

A =_________。

16.设函数1,0,

()2,0,

x

x x f x x +≤?=?

>? 则满足1

()()12f x f x +->的x 的取值围是__________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,

每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)

设数列{}n a 满足123(21)2n a a n a n +++-=.

(1)求{}n a 的通项公式; (2)求数列{}21

n

a n +的前n 项和. 18.(12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,

未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。 (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进

货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.

19.(12分)

如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .

(1)证明:AC ⊥BD ;

(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 20.(12分)

在直角坐标系xOy 中,曲线2

2y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:

(1)能否出现AC ⊥BC 的情况?说明理由;

(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.(12分)

已知函数()2

(1)ln 2x ax a x f x =+++.

(1)讨论()f x 的单调性;

(2)当0a <时,证明3

()24f x a

≤-

-. (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第

一题计分。

22.[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy 中,直线1l 的参数方程为2,

x t y kt =+??=?(t 为参数),直线2l 的参数

方程为2,x m m

y k =-+???=??

(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:

(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l

(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.

23.[选修4—5:不等式选讲](10分)

已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;

(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值围.

2017年普通高等学校招生全国统一考试

文科数学参考答案

一、选择题

1.B 2.C 3.A 4.A

5.B

6.A

7.D 8.D

9.B

10.C 11.A 12.C

二、填空题

13.2 14.5

15.75°

16.1(,)4

-+∞

三、解答题 17.解:

(1)因为123(21)2n a a n a n ++

+-=,故当2n ≥时, 1213(23)2(1)n a a n a n -++

+-=-

两式相减得(21)2n n a -= 所以2

(2)21

n a n n =

≥- 又由题设可得12a = 从而{}n a 的通项公式为2

21

n a n =- (2)记{

}21

n

a n +的前n 项和为n S 由(1)知

211

21(21)(21)2121

n a n n n n n ==-++--+ 则1111112 (1335212121)

n n

S n n n =-+-++-=

-++ 18.解:

(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最

高气温低于25的频率为21636

0.690

++=,所以这种酸奶一天的需求量不超过300

瓶的概率的估计值为0.6

(2)当这种酸奶一天的进货量为450瓶时,

若最高气温不低于25,则64504450900Y =?-?=;

若最高气温位于区间[20,25),则63002(450300)4450300Y =?+--?=;

若最高气温低于20,则62002(450200)4450100Y =?+--?=- 所以,Y 的所有可能值为900,300,-100

Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为362574

0.890

+++=,因此Y 大于零的概率的估计值为0.8

19.解:

(1)取AC 的中点O ,连结,DO BO ,

因为AD CD =,所以AC DO ⊥ 又由于ABC ?是正三角形,故BO AC ⊥ 从而AC ⊥平面DOB ,故AC BD ⊥ (2)连结EO

由(1)及题设知90ADC ∠=,所以DO AO = 在Rt AOB ?中,2

2

2

BO AO AB += 又AB BD =,所以

222222BO DO BO AO AB BD +=+==,故90DOB ∠=

由题设知AEC ?为直角三角形,所以1

2

EO AC =

又ABC ?是正三角形,且AB BD =,所以1

2

EO BD =

故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1

2

,四面体ABCE 的体积为四面体ABCD 的体积的1

2

,即四面体ABCE 与四面体ACDE 的体积之比为1:1 20.解:

(1)不能出现AC BC ⊥的情况,理由如下:

设12(,0),(,0)A x B x ,则12,x x 满足2

20x mx +-=,所以122x x =-

又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为12111

2

x x --?=-,所以不能出现AC BC ⊥的情况 (2)BC 的中点坐标为21(

,)22x ,可得BC 的中垂线方程为221

()22

x y x x -=-

O

D

A

B

C

E

由(1)可得12x x m +=-,所以AB 的中垂线方程为2

m x =-

联立22

,21()22m x x y x x ?=-????-=-??又2

2220x mx +-=,可得,212m x y ?=-????=-??

所以过A,B,C 三点的圆的圆心坐标为1

(,)22

m --

,半径2r =

故圆在y

轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值。 21.解:

(1)f(x)的定义域为(0,)+∞,1(1)(21)

()221x ax f x ax a x x

++'=

+++=

若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增

若0a <,则当1(0,)2x a ∈-

时,()0f x '>;当1

(,)2x a

∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1

(,)2a

-+∞单调递减。

(2)由(1)知,当0a <时,()f x 在1

2x a

=-取得最大值,最大值为

111

()ln()1224f a a a -=---

所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11

ln()1022a a

-++≤

设()ln 1g x x x =-+,则1

()1g x x

'=-

当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<。 所以()g x 在(0,1)单调递增,在(1,)+∞单调递减。 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤ 从而当0a <时,11ln()1022a a -++≤,即3()24f x a

≤-- 22.解:

(1)消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程

21

:(2)l y x k

=

+ 设(,)P x y ,由题设得(2),1

(2).y k x y x k =-???=+??

消去k 得22

4(0)x y y -=≠ 所以C 的普通方程为2

2

4(0)x y y -=≠

(2)C 的极坐标方程为2

2

2

(cos sin )4(22,)ρθθθπθπ-=<<≠

联立222

(cos sin )4,(cos sin )0

ρθθρθθ?-=??+=??得cos sin 2(cos sin )θθθθ-=+

故1tan 3θ=-

,从而2

291cos ,sin 1010

θθ=

= 代入2

2

2

(cos sin )4ρθθ-=得2

5ρ=,所以交点M

23.解:

(1)3,1,()21,12,3,2x f x x x x -<-??

=--≤≤??>?

当1x <-时,()1f x ≥无解;

当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x > 所以()1f x ≥的解集为{|1}x x ≥

(2)由2

()f x x x m ≥-+得2

|1||2|m x x x x ≤+---+,而

22|1||2|||1||2||x x x x x x x x +---+≤++--+

235

(||)24x =--+

54

且当32x =

时,2

5|1||2|4

x x x x +---+= 故m 的取值围为5

(,]4

-∞

2018年全国统一高考数学试卷文科全国卷1详解版

2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则() A.A∩B={x|x<}B.A∩B=?C.A∪B={x|x<}D.A∪B=R 2.(5分)(2017?新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差 C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数 3.(5分)(2017?新课标Ⅰ)下列各式的运算结果为纯虚数的是() A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i) 4.(5分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 5.(5分)(2017?新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 6.(5分)(2017?新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C. D. 7.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 8.(5分)(2017?新课标Ⅰ)函数y=的部分图象大致为() A.B.C. D. 9.(5分)(2017?新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则() A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()

2017年高考全国卷一文科数学试题及答案

2017年普通高等学校招生全国统一考试全国卷一文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?

高考文科数学真题全国卷

2010年普通高等学校招生全国统一考试 文科数学(全国I 卷) 第I 卷 一、选择题 (1)cos300°= (A ) (B )12- (C )12 (D (2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ?(C ,M ) (A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5) (3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤? 则z =x-2y 的最大值为 (A )4 (B )3 (C )2 (D )1 (4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (A ) (B)7 (C)6 (5)(1-x )2(1 )3的展开式中x 2的系数是 (A)-6 (B )-3 (C)0 (D)3 (6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于 (A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 (A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞) (8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF = (A )2 (B)4 (C)6 (D)8 (9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 3 (B) 3 (C) 23 (D) 3 (10)设a =log 3,2,b =ln2,c =1 25 -,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的 最小值为 (A )- (B )- (C )- (D )-

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学 试题及答案 The document was prepared on January 2, 2021

年普通高等学校招生全国统一考试 文科数学卷3 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出 的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.4 2.复平面内表示复数(2) =-+的点位于 z i i A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 - B. 2 9 -C. 2 9 D. 7 9 5.设,x y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是 A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 6.函数 1 ()sin()cos() 536 f x x x ππ =++-的最大值为 A.6 5 B.1 C. 3 5 D. 1 5

2018年数学高考全国卷3答案

2018年数学高考全国卷3答案

参考答案: 13. 14. 15. 16.2 17.(12分) 解:(1)设的公比为,由题设得. 由已知得,解得(舍去),或. 故或. (2)若,则.由得,此方 程没有正整数解. 若,则.由得,解得. 综上,. 18.(12分) 解:(1)第二种生产方式的效率更高. 理由如下: (i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高. 12 3-3{}n a q 1 n n a q -=4 2 4q q =0q =2q =-2q =1 (2)n n a -=-1 2n n a -=1 (2) n n a -=-1(2)3 n n S --= 63 m S =(2) 188 m -=-1 2n n a -=21 n n S =-63 m S =2 64 m =6m =6m =

(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高. (iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下: 7981 802 m +==

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2017年全国高考文科全国3卷数学试题及答案-

2017年普通高等学校招生全国统一考试 文科数学 卷3 注意事项: 1.答题前,考生务必将自己的、号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为 A .1 B .2 C .3 D .4 2.复平面表示复数(2)z i i =-+的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至 2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4 sin cos 3 αα-= ,则sin 2α=

A .79 - B .29 - C . 29 D . 79 5.设,x y 满足约束条件326000x y x y +-≤?? ≥??≥? ,则z x y =-的取值围是 A .[-3,0] B .[-3,2] C .[0,2] D .[0,3] 6.函数1()sin()cos()536 f x x x ππ = ++-的最大值为 A .65 B .1 C .35 D . 15 7.函数2sin 1x y x x =++的部分图像大致为 A . B . C . D . 8.执行右面的程序框图,为使输出S 的值小于91,则输入的正 整数N 的最小值为 A .5 B .4 C .3 D .2 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个 球的球面上,则该圆柱的体积为 A .π B . 34π C . 2 π D .4 π

2018年高考数学全国卷III

2018年普通高等学校招生全国统一考试(理科数学全国卷3) 数 学(理科) 一、选择题:本题共12小题。每小题5分. 1.已知集合{} 10A x x =-≥,{}2,1,0=B ,则=?B A ( ) .A {}0 .B { }1 .C {}1,2 .D {}0,1,2 2.()()=-+i i 21 ( ) .A i --3 .B i +-3 .C i -3 .D i +3 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4. 若1 sin 3α= ,则cos2α= ( ) .A 89 .B 79 .C 79- .D 89- 5. 252()x x +的展开式中4x 的系数为 ( ) .A 10 .B 20 .C 40 .D 80 6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2 222x y -+=上,则ABP ?面积的取值范围是 ( ) .A []2,6 .B []4,8 .C 2,32?? .D 22,32?? 7.函数422y x x =-++的图像大致为 ( )

8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( ) .A 0.7 .B 0.6 .C 0.4 .D 0.3 9.ABC ?的内角C B A 、、的对边分别c b a 、、,若ABC ?的面积为222 4 a b c +-,则=C ( ) . A 2π . B 3π . C 4π . D 6 π 10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥ABC D -积的最大值为 ( ) .A 123 .B 183 .C 243 .D 543 11.设21F F 、是双曲线C : 22 221x y a b -=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一 条渐近线的垂线,垂足为P ,若16PF OP =,则C 的离心率为 ( ) .A 5 .B 2 .C 3 .D 2 12.设3.0log 2.0=a ,3.0log 2=b ,则 ( ) .A 0a b ab +<< .B 0ab a b <+< .C 0a b ab +<< .D 0ab a b <<+

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2017年高考新课标全国3卷文科数学

2017年普通高等学校招生全国统一考试(新课标Ⅲ) 文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A?B中元素的个数为 A.1 B.2 C.3 D.4 2.复平面内表示复数z=i(–2+i)的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至 2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图 . 根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 -B. 2 9 -C. 2 9 D. 7 9 5.设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z=x-y的取值范围是 A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]

6.函数f (x )=15sin(x +3π)+cos(x ?6π )的最大值为 A .6 5 B .1 C .35 D .15 7.函数y =1+x +2sin x x 的部分图像大致为 A . B . C . D . 8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4

2020年高考理科数学全国卷3

2020年普通高等学校招生全国统一考试·全国Ⅲ卷 理科数学答案解析 一、选择题 1.【答案】C 【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ??+=?≥,且x ,* y ∈N , 由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17, ,()26,,()35,,()44,,故A B 中元素的个数为 4.故选:C . 【考点】集合的交集运算,交集定义的理解 2.【答案】D 【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i += ==+--+,所以复数113z i =-的虚部为 3 10 .故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B 【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+?++?=, 方差为()()()()2 2 2 2 2 1 2.50.1 2 2.50.4 3 2.50.4 4 2.50.10.65A s =-?+-?+-?+-?=; 对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+?++?=, 方差为()()()()2 2 2 2 21 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-?+-?+-?+-?=; 对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+?++?=, 方差为()()()()2 2 2 2 21 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-?+-?+-?+-?=; 对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+?++?=, 方差为()()()()2 2 2 2 21 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-?+-?+-?+-?=. 因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C 【解析】将t t *=代入函数()() 0.23531t K I t e --= +结合() 0.95I t K * =求得t *即可得解. ()() 0.23531t K I t e --= +,所

2017全国卷文科数学高考大纲

文科数学 I、考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。 对知识的要求依次是了解、理解、掌握三个层次。 1、了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。 2、理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。 3、掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 1。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、

2017高考文科数学全国2卷试题与答案解析[]

2016年普通高等学校招生全国统一考试文科数学 注意事项: 一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。 (1)已知集合{123}A =, ,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, (2)设复数z 满足i 3i z +=-,则z = (A )12i -+(B )12i -(C )32i +(D )32i - (3) 函数=sin()y A x ω?+的部分图像如图所示,则 (A )2sin(2)6y x π=- (B )2sin(2)3y x π =- (C )2sin(2+)6y x π= (D )2sin(2+)3 y x π = (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π(B ) 32 3 π(C )8π(D )4π (5) 设F 为抛物线C :y 2 =4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12(B )1 (C )3 2 (D )2 (6) 圆x 2 +y 2 ?2x ?8y +13=0的圆心到直线ax +y ?1=0的距离为1,则a = (A )? 43(B )?3 4 (C )3(D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一 名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A ) 710(B )58(C )38(D )310 (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34 (10) 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

2018年高考真题理科数学全国卷3试题+答案

2018年高考真题理科数学全国卷3试题及参考答案 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =, ,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012, , 答案 C 解析:由A 得, 1≥x ,所以{1,2} A B = 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 答案 D 解析:原式i i i i i +=++=-+-=312222 ,故选D 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头, 凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的 木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 答案 A 4.若1 sin 3α=,则cos2α=( ) A .89 B . 79 C .79 - D .89- 答案 B 解析: 97 921sin 212cos 2 = -=-=αα 5.2 22x x ? ?+ ?? ?的展开式中4x 的系数为( ) A .10 B .20 C .40 D .80 答案C 解析:由r r r r r r r r r r r x C x x C x x C T 310521055251522)2 ()(----+?=??==令4310=-r ,则2=r 所以4022 2255==C C r r 6.直线20x y ++=分别与x 轴y 交于A ,B 两点,点P 在圆()2 222x y -+=上,则ABP △面积的取

相关文档