文档库 最新最全的文档下载
当前位置:文档库 › 高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(原稿)
高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文)

第一部分:统计

一、什么是众数。

一组数据中出现次数最多的那个数据,叫做这组数据的众数。

众数的特点。

①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。

3.众数与平均数的区别。

众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。

二、.中位数的概念。

一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。

三 .众数、中位数及平均数的求法。

①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。

四、中位数与众数的特点。

⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;

⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数;

⑶中位数的单位与数据的单位相同;

⑷众数考察的是一组数据中出现的频数;

⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;

(6)众数可能是一个或多个甚至没有;

(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

五.平均数、中位数与众数的异同:

⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位;

⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;

⑷中位数不受个别偏大或偏小数据的影响; ⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?

思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设

样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:

七、简单随即抽样的含义

一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽 样.

八、根据你的理解,简单随机抽样有哪些主要特点? (1)总体的个体数有限;

(2)样本的抽取是逐个进行的,每次只抽取一个个体; (3)抽取的样本不放回,样本中无重复个体;

(4)每个个体被抽到的机会都相等,抽样具有公平性.

九、抽签法的操作步骤?

第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 第二步,将号签放在一个容器中,并搅拌均匀

第三步,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本.

12||||||

n x x x x x x n

-+-++-L 22212()()()n x x x x x x s n -+-++-=

L

十一、抽签法有哪些优点和缺点?

优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.

缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.

十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?

第一步,将总体中的所有个体编号.

第二步,在随机数表中任选一个数作为起始数.

第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.

简单随机抽样一般采用两种方法:抽签法和随机数表法。

思考:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?

解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。

解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本。

小结、

简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体

的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.

抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.

简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个

体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.

解题应用

如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作? 第一步,将这600件产品编号为1,2,3, (600)

第二步,将总体平均分成60部分,每一部分含10个个体.

第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).

第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.(如8,18,28, (598)

十二、系统抽样的定义:

一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.

由系统抽样的定义可知系统抽样有以下特征: (1)当总体容量N 较大时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此系

统抽样又称等距抽样,这时间隔一般为k =[n N

].

(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.

思考.下列抽样中不是系统抽样的是 ( C )

A 、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样

B 工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验

C 、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的

调查人数为止

D 、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下

来座谈

十三、系统抽样的一般步骤

用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号. 如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成

60部分,应先从总体中随机剔除5个个体,再均衡分成60部分. 一般地,用系统抽样从含有N 个个体的总体中抽取一个容量为n 的样本,其操作步骤如何? 第一步,将总体的N 个个体编号.

第二步,确定分段间隔k ,对编号进行分段.

第三步,在第1段用简单随机抽样确定起始个体编号l.

第四步,按照一定的规则抽取样本.

十四:分层抽样的定义:

若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.

分层抽样又称类型抽样

十五. 应用分层抽样应遵循以下要求及具体步骤:

(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。

(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。

一般地,分层抽样的操作步骤如何?

第一步,计算样本容量与总体的个体数之比.

第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.

第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.

第四步,将各层抽取的个体合在一起,就得到所取样本.

十六、简单随机抽样、系统抽样和分层抽样三种抽样的类比学习

简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?

共同

方法

适应范围

相互联系

抽样特征

特点

类别

简单随

机抽样

系统抽样分层抽样抽样过

程中每

个个体

被抽取

的概率

相等

将总体分成

均衡几部

分,按规则

关联抽取

将总体分

成几层,

按比例分

层抽取

用简单随

机抽样抽

取起始号

总体中

的个体

数较少

总体中

的个体

数较多

总体由

差异明

显的几

部分组

从总体中

逐个不放

回抽取

用简单随

机抽样或

系统抽样

对各层抽

对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.

十七 列频率直分布表的步骤

列出一组样本数据的频率分布表可以分哪几个步骤进行? 第一步,求极差.

第二步,决定组距与组数.

第三步,确定分点,将数据分组. 第四步,列频率分布表.

十八、绘制频率分布直方图的步骤

频率分布直方图中

小长方形的高组距

频率

样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布 直方图的作图步骤如何? 第一步,画平面直角坐标系.

第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.

第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.

小结

1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的 频率分布规律.我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.

2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况.

十九、如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数? (1)众数:最高矩形下端中点的横坐标.

月均用水量/t

频率

组距

0.50.4

0.3

0.20.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 O

(2)中位数:直方图面积平分线与横轴交点的横坐标.

(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和.

二十:什么是茎叶图

茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

第二部分:概率

一、随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;

(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试

验中事件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比例

fn(A)=n n A

为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数

的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数

n 的比值n n A

,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次

数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

二、 概率的基本性质 1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;

(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立

事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);

3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A

事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。 三、古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;

②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数A

四、几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:

P (A )=积)的区域长度(面积或体试验的全部结果所构成积)

的区域长度(面积或体构成事件A ;

(1) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每

个基本事件出现的可能性相等.

第三部分: 统计案例

1.线性回归方程

①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系

③线性回归方程:a bx y +=∧

(最小二乘法)

1

221

n

i i i n

i i x y nx y b x nx a y bx

==?

-?

?=??-??=-??∑∑ 注意:线性回归直线经过定点),(y x 。 2. 相关系数(判定两个变量线性相关性):∑∑∑===----=

n

i n

i i i

n

i i i

y y x x

y y x x

r 1

1

2

21

)()()

)((

注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;

(2)||r 越接近于1,两个变量的线性相关性越强;||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定: ⑴总偏差平方和:

∑=-n

i i

y y

1

2

)(⑵残差:∧

∧-=i i i y y e ;

⑶残差平方和:21

)(∑=∧

-n

i yi yi ;

⑷回归平方和:∑

=-

n

i

i

y

y

1

2

)

(-2

1

)

(

=

-

n

i

yi

yi;⑸相关指数

=

=

-

-

-

=

n

i

i

i

n

i

i

i

y

y

y

y

R

1

2

1

2

2

)

(

)

(

1。

注:①2

R得知越大,说明残差平方和越小,则模型拟合效果越好;

②2

R越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):

随机变量2

K越大,说明两个分类变量,关系越强,反之,越弱。

22列联表

y1y 2总计

x1 a b a+b

x2 c d c+d

总计a+c b+d a+b+c+d K2=

高中数学统计与概率知识点

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三.众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

2019年中考数学统计与概率试题分类解析

2019年中考数学统计与概率试题分类解析 以下是中国教师范文吧()为您推荐的2015年中考数学统计与概率试题分类解析,希望本篇对您学习有所帮助。 2015年中考数学统计与概率试题分类解析 一、选择题 1.数据8、8、6、5、6、1、6的众数是【】 【答案】c。 【考点】众数。 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。故选c。 2.吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是【】 A.普查 B.抽样调查c.在社会上随机调查D.在学校里随机调查 【答案】B。 【考点】统计的调查方式选择。 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。

因此,要了解人们被动吸烟的情况,由于人数众多,意义不大,选普查不合适,在社会上和在学校里随机调查,选择的对象不全面,故选抽样调查。故选B。 3.某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的【】 A.总体 B.个体 c.样本 D.以上都不对 【答案】B。 【考点】总体、个体、样本、样本容量的概念。 【分析】根据总体、个体、样本、样本容量的定义进行解答: ∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体。故选B。 4.数据8、8、6、5、6、1、6的众数是【】 【答案】c。 【考点】众数。 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。故选c。 7.某校羽毛球训练队共有8名队员,他们的年龄分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为【】 【答案】B。

小学数学统计与概率知识整理

小学数学统计与概率知识整理 4、可能性(p44)六年级上册 7、扇形统计图(p96)六年级下册 4、统计(p68)五年级下册 6、统计(p122)二年级下册 1、数据收集与整理(p2)一年级下册 3、分类与整理(p27)三年级下册三年级下册四年级下册 7、统计(p108)三年级下册 3、统计(p38)三年级下册 3、统计(p38)四年级上册 7、条形统计(p94)统计 一、内容联系及特色 (一)教学内容关系梳理: (二)教学内容编排特色:起点低、分布广、循序渐进、螺旋上升,以统计为主,概率为辅。 二、教学内容安排情况:第一学段目标: 1、能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系。 2、经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画、表格等)呈现整理数据的结果。

3、通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴含信息。侧重于统计直观的培养第二学段目标: (一)简单数据统计过程 1、经历简单的收集、整理、描述和分析数据的过程。 2、会根据实际问题设计简单的调查表,能选择恰当的方法收集数据。 3、认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观且有效地表示数据。 4、体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义。 5、能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。 6、能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。 (二)随机现象发生的可能性 1、在具体情境中,通过实例感受简单的随机现象;能列出简单的随机现象中所有可能发生的结果。 2、通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性的大小作出定性描述,并能进行交流。侧重于数据统计过程和可能性,是一种理性思考的培养统计与概率年级册数单元内容单元说明一下3

北师版小学数学总复习《统计与概率》知识点归纳

统计与概率 一统计表 (一)意义 * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。 (二)组成部分 * 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。 (三)种类 * 单式统计表:只含有一个项目的统计表。 * 复式统计表:含有两个或两个以上统计项目的统计表。 * 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。 (四)制作步骤 1搜集数据 2整理数据: 要根据制表的目的和统计的内容,对数据进行分类。 3设计草表: 要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。 4 正式制表: 把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。 二统计图 (一)意义 * 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。 (二)分类 1 条形统计图 用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。 制作条形统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。(4)按照数据的大小画出长短不同的直条,并注明数量。 2 折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。 制作折线统计图的一般步骤: (1)根据图纸的大小,画出两条互相垂直的射线。 (2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。 (3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。 3扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。优点:很清楚地表示出各部分同总数之间的关系。制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几。 (2)再算出表示各部分数量的扇形的圆心角度数。(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。 第五章简单的统计 一统计表 (一)意义 * 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。 (二)组成部分 * 一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。 (三)种类 * 单式统计表:只含有一个项目的统计表。 * 复式统计表:含有两个或两个以上统计项目的统计表。 * 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。 (四)制作步骤 1搜集数据 2整理数据: 要根据制表的目的和统计的内容,对数据进行分类。 3设计草表:

(完整版)2018年中考数学统计与概率专题复习

2018年中考数学统计与概率专题复习 2018年九年级数学中考统计与概率专题复习 一、选择题: 1.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是() A.0.1B.0.15.0.25D.0.3 2.自水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,,D,E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( ) A.18户B.20户.22户D.24户 3.已知a,b,,d,e的平均分是,则a+5,b+12,+22,d+9,e+2的平均分是( ) A.-1B.+3.+1 0D.+12 4.如图是交警在一个路口统计的某个时段往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()

A.8,6B.8,5.52,53D.52,52 5.已知5名学生的体重分别是41、50、53、49、67(单位:kg),则这组数据的极差是() A.8B.9.26D.41 6.下列说法正确的是() A.“打开电视机,正在播《民生面对面》”是必然事件 B.“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是随机事件 .“概率为0.0001的事件”是不可能事件 D.“在操场上向上抛出的篮球一定会下落”是确定事件 7.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是() A.平均数和众数B.众数和极差.众数和方差D.中位数和极差 8.在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是() A.众数是90B.平均数是90.中位数是90D.极差是15

中考数学总复习讲义03:统计与概率

中考数学总复习:.统计与概率 考点1 . 统计的方法――普查与抽样调查: 1)普查:为一特定目的而对所有考察对象做的全面调查叫普查; 2)抽样调查:为一特定目的而对部分考察对象做的调查叫抽样调查。 说明: 1)下列的情形常采用抽样调查: ①当受客观条件限制,无法对所有个体进行普查时; ②当调查具有破坏性,不允许普查时。 2)抽样调查的要求:①抽查的样本要有代表性;②抽查的样本不能太少。

考点2 与统计有关的概念: 1)总体:所要考查的对象的全体叫总体; 2)样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本中个体的数目叫做样本容量。使总体的每一个个体有同等的机会被选中,这样的样本称为简单随机样本; 3)个体:总体中每一个考查的对象叫做个体; 4)频数:统计时,每个对象出现的次数叫频数,频数之和等于总数; 5)频率:每个对象出现的次数与总次数的比值叫频率,频率之和等于1。 注意:考查对象不是笼统的某人某物,而是某人某物的某项数量指标。 考点3 统计图表: 1)扇形统计图是用圆代表总体,圆中各个扇形分别代表总体中不同部分的统计图,它可以直观地反映部分占总体的百分比大小,一般不表示具体的数量; 2)条形统计图能清楚地表示每个项目的具体数目及反映事物某一阶段属性的大小变化,复合条形图的描述对象是多组数据; 3)折形统计图可以反映数据的变化趋势; 4)频数分布表和频数分布直方图,能直观、清楚地反映数据在各个小范围内的分布情况。 说明:绘制频数分布直方图的一般步骤:①计算最大值与最小值的差;②决定组距与组数(当数据在100个以内时,一般取5~12组);③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直观图; 考点4 数据的代表:反映数据集中趋势的特征数 1)平均数:一组数据中所有数据之和再除以数据的个数称为这组数据的平均数; ①算术平均数:一般地,如果n 个数321,,x x x …,n x , 那么n x x x x x n ++++= 321叫做这n 个数的平均数; ②加权平均数:一般地,如果n 个数321,,x x x …,n x 中,11f x 出现次,22f x 出现次,…, k x 出现k f 次(+++321 f f f …n f +=n ),那么n f x f x f x f x x k k ++++= 332211 叫做321,,x x x …,个数的加权平均数这n x n ,其中、、、321f f f …k f 、叫做 321,,x x x …,k x 的权; 2)中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数,就是这组数据的中位数; 3)众数:一组数据出现中出现次数最多的数据叫做这组数据的众数。

人教版数学《统计与概率》专题说课稿

人教版数学《统计与概率》专题说课稿 大家好! 深入其境方知教材别有洞天,品尝其味才知教材魅力无限。深入解读课标,明晰知识结构,就会在教学实践中找到切入点、结合点,有的放矢地进行教学,实现课堂的高效。 今天我说课的内容是人教版小学数学第一学段“统计与概率”专题。下面我主要从以下三个方面与大家进行交流。一,说课标,说《统计与概率》专题的总体目标和第一学段目标及第一学段课程内容;二,说教材,说教材的编写特点、编排体例、知识和技能的立体式整合;三,说建议,说教学建议、评价建议及课程资源的开发和利用。 一、说课标: 1、总体目标: 经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。体会统计方法的意义,发展数据分析观念,感受随机现象,获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。积极参与数学活动,对数学有好奇心和求知欲。体会数学的特点,了解数学的价值。 2、第一学段目标: 知识与技能:

经历简单的数据收集、整理和分析的过程,了解简单的数据处理方法。(新课标将“掌握”变成了“了解”,降低了要求。而且把“初步感受不确定现象”这一目标放在了第二学段。) 数学思考: 能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。(原课标中要求学生能选择有用信息进行类比,此处降低了要求。) 问题解决: 能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决,体验与他人合作交流解决问题的过程。 情感态度:对身边与数学有关的事物有好奇心,能参与数学活动,了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。 3、第一学段课程内容: 1、能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系。(原课标中要求对物体进行比较、排列,新课标此处不做要求) 2、经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画、表格等)呈现整理数据的结果。 3、通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息。(原课标中要求学生会求简单的平均数,新课标中此处不做要求,而且新课标中把可能性的知识放在了第二学段。) 新课程标准根据“统计与概率”部分第一、二学段内容和要求的变化,对“统计与概率”部分的教学顺序进行重新设计,并对具体内容进行了修订。

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

中考数学统计与概率单元测试

统计与概率单元测试 1.将100个数据分成8个组,如下表: 则第六组的频数为() A.12 B.13 C.14 D.15 2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85, 9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是() A.9.79 B.9.78 C.9.77 D.9.76 3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有() A.4个B.3个C.2个D.1个 (第3题) (第4题) 4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是() A.数据75落在第2小组 B.第4小组的频率为0.1

C .心跳为每分钟75次的人数占该班体检人数的 1 12 ; D .数据75一定是中位数 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是( ) A .22.5元 B .42.5元 C .2 56 3 元 D .以上都不对 (第5题) (第9题) 6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( ) A . 78 B . 67 C . 17 D . 18 7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下: 那么这20名男生鞋号数据的平均数是 ,中位数是 ,在平均数、中位数和众数中,鞋厂最感兴趣的是 . 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有 人. 9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为 . 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,

小学数学统计与概率知识点汇总

小学数学统计与概率知识点汇总 一、数据分析观念的内涵 1. 在实验稿《课标》中“统计观念”是核心概念,现在为什么改名为“数据分析观念”呢? 在《不列颠百科全书》中关于统计学是这样定义:统计学是关于收集和分析数据的科学和艺术。 的确,统计学的一个研究对象是数据,它是通过收集数据,以及对数据的分析来帮我们解决问题的。在义务教育阶段我们处理的数据都是有实际背景的,正如课表组组长史宁中教授所述:“数据是信息的载体,这个载体包括数,也包括言语、信号、图像,凡是能够承载事物信息的东西都构成数据,而统计学就是通过这些载体来提取信息进行分析的科学和艺术。” 可见,统计学的一个核心是数据分析,实验稿中叫统计观念,现在叫数据分析观念,这两点并没有本质性的不同,而是用这样的语言更加点出了统计的核心就是数据分析让人一目了然。 2. 数据分析观念的内涵 在课标当中,对于数据分析观念,有这样的描述:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面说明只要有足够的数据就可能从中发现规律。数据分析是统计的核心。 3. 如何发展学生的“数据分析观念”?

第一,就是让学生去经历这个数据分析的过程,体会数据中蕴含的信息。 例如,清华附属小学安华老师执教的一年级《统计》。安老师为学生提供了四部动画片,选出大家最喜欢看的一部进行播放。学生的想法各不相同,这可怎么办呢?老师启发学生自己去想办法,让学生感悟到我们是为了解决问题而来做统计的。统计什么?怎样统计呢?学生自始至终都在思考中,他们最先想到举手表决,却没有准确统计出结果,然后又继续想办法,有的学生说站起来这样数的更清楚了,还有说在小组内去统计,然后我们再汇总,最后大家都统一到用投票表决的方法来统计。当数据统计上来以后,如何让学生体会数据中蕴含的信息呢?安老师让学生利用数据来推断,看哪部动画片,要用数据来说话。恰巧当时这个班正好有一个孩子是请假没来,老师提出问题:如果这名同学也来投票表决,还是去看“多啦 A 梦”吗?学生根据数据利用简单推理也做出了判断。 第二,鼓励学生掌握数据分析的方法,根据问题的背景能选择合适的方法。 例如,体育课上 11 名男同学 100 米跑的成绩: 13 秒 2 17 秒 13 秒 5 15 秒 8 12 秒 17 秒 1 16 秒 7 15 秒 6 17 秒 16 秒 6 16 秒 7 。 平均数: 15 秒 6 ,中位数: 16 秒 6 (1)如果选择参加一项比赛,希望有一半的男同学可以参加,选择哪个成绩作为标准? (2)如果希望确定一个较高的标准,选择哪个成绩作为标准?(答案不唯一) (3)如果要确定一个标准,你如何确定?为什么? 第三,通过数据分析,让学生感受数据的随机性。 史宁中说:“统计与概率领域的教学重点是发展学生的数据分析意识,培养

统计初步与概率初步知识点总结

第五章 统计初步及概率初步 考点一、平均数 (3分) 1、平均数的概念 (1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。 (2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为 n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。 2、平均数的计算方法 (1)定义法 当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n x +++= (2)加权平均数法: 当所给数据重复出现时,一般选用加权平均数公式:n f x f x f x x k k ++=2211,其中n f f f k =++ 21。 (3)新数据法: 当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。 其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。)'''(1'21n x x x n x +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。 考点二、统计学中的几个基本概念 (4分) 1、总体 所有考察对象的全体叫做总体。 2、个体 总体中每一个考察对象叫做个体。 3、样本 从总体中所抽取的一部分个体叫做总体的一个样本。 4、样本容量 样本中个体的数目叫做样本容量。 5、样本平均数 样本中所有个体的平均数叫做样本平均数。 6、总体平均数 总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。 考点三、众数、中位数 (3~5分) 1、众数 在一组数据中,出现次数最多的数据叫做这组数据的众数。 2、中位数 将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。 考点四、方差 (3分)

高中数学概率与统计测试题

概率与统计 1.如果一个整数为偶数的 概率为 (1)a+b 为偶数的概率; (2)a+b+c 为偶数的概率。 0.6 ,且 a,b,c 均为整数,求 2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率 43 均为,每位男同学能通过测验的概率均为,求55 (1)选出的 3 位同学中,至少有一位男同学的概率; (2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。 3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。试求 (1)甲获胜的概率; (2)甲,乙成平局的概率。 4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过 1 元 8 角的概率。 5.有 10 张卡片,其号码分别位 1,2,3?,10,从中任取 3 张。 (1)求恰有 1 张的号码为 3 的倍数的概率; (2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。 6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球 1 的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率2 1 2 3 2 分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5 N,n ≥1) 次按下后,出现红球的概率为P n

(1)求P2的值; (2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式; (3)求P n关于 n 的表达式。 7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字 1 ,三张写有数字 2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的 3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。 8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球, 2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取 (1) 求甲摸球次数不超过三次就获胜的概率; (2) 求甲获胜的概率。 9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格 品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。若 A 、 B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。 (1) 产品甲为正品的概率P1是多少? (2)产品乙为正品的概率P2 是多少? (3)试比较P1与P2的大小。 10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。 (1) 求前二次取出的都是二等品的概率; (2) 求第二次取出的是二等品的概率; (3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学

中考数学 统计与概率真题精选

第一部分第八章第28讲 命题点统计图的认识与分析(5年6考,其余试题与其他知识点结合考查) 1.(2019·江西4题3分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是(C) A.扇形统计图能反映各部分在总体中所占的百分比 B.每天阅读30分钟以上的居民家庭孩子超过50% C.每天阅读1小时以上的居民家庭孩子占20% D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108° 2.(2018·江西4题3分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是(C) A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍 C.全班共有50名学生 D.最喜欢田径的人数占总人数的10% 3.(2017·江西18题8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. (1)参与本次问卷调查的市民共有__800__人,其中选择B类的人数有__240__人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图; (3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数. 解:(1)800,240.【解法提示】参与本次问卷调查的市民共有200÷25%=800(人),则选择B类的人数为800×30%=240(人). (2)∵选择A类出行方式的人数所占百分比为1-(30%+25%+14%+6%)=25%, ∴α=360°×25%=90°,选择A类出行方式的人数为800×25%=200(人). 补全条形统计图如答图. (3)12×(25%+30%+25%)=9.6(万人). 答:估计该市“绿色出行”方式的人数为9.6万人. 4.(2016·江西16题6分)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”“日常学习”“习惯养成”“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图. (1)补全条形统计图. (2)若全校共有3 600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长? (3)综合以上调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?

高中文科数学(统计与概率)综合练习

《概率与统计》练习 求:(Ⅰ)年降雨量在) 200 , 100 [范围内的概率; (Ⅱ)年降雨量在) 150 , 100 [或) 300 , 250 [范围内的概率; (Ⅲ)年降雨量不在) 300 , 150 [范围内的概率; (Ⅳ)年降雨量在) 300 , 100 [范围内的概率. > · 2.高三某班40名学生的会考成绩全部在40分至100分 之间,现将成绩分成6段:) 50 , 40 [、) 60 , 50 [ 、) 70 , 60 [、 ) 80 , 70 [、) 90 , 80 [、] 100 , 90 [.据此绘制了如图所示的频率分布直方图。在这40名学生中, (Ⅰ)求成绩在区间) 90 , 80 [内的学生人数; (Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间] 100 , 90 [内的概率. " @

3.已知集合}1,1(},2,0,2{-=-=B A . ; (Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ; (Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区 域D :?? ? ??-≥≤-+≥+-10202y y x y x 内的概率. . 4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组 C 组 ? 疫苗有效 673 x y 疫苗无效 77 90 z > 已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0. (Ⅰ)求x 的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444443 ==?? A 1所含样本点数:24234=?? A 2所含样本点数: 36342 3=??C A 3所含样本点数:4433=?C 注:由概率定义得出的几个性质: 1、0

推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性:贝努里公式(n 重贝努里试验概率计算公式):课本P24

中考数学统计和概率专题训练

中考数学统计和概率专题训练 1. (2012福建)“六?一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图; 类别 儿童玩具 童车 童装 抽查件数 90 请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图; (2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少? 【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135; 儿童玩具占得百分比是(90÷300)×100%=30%。童装占得百分比1-30%-25%=45%。 补全统计表和统计图如下: 类别 儿童玩具 童车 童装 抽查件数 90 75 135 (2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中 合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是 8163.75108 84.25% 300++=。

2.(2012湖北)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D粽的人数; (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率. 【答案】解:(1)60÷10%=600(人). 答:本次参加抽样调查的居民有600人。 (2)喜爱C粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A粽的频率:180÷600=30%。 据此补充两幅统计图如图: (3)8000×40%=3200(人). 答:该居民区有8000人,估计爱吃D粽的人有3200人。 (4)画树状图如下:

统计和概率知识点总结

数据的收集、整理与描述 1、全面调查:考察全体对象的调查方式叫做全面调查。 2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3、总体:要考察的全体对象称为总体。 4、个体:组成总体的每一个考察对象称为个体。 5、样本:被抽取的所有个体组成一个样本。 6、样本容量:样本中个体的数目称为样本容量。 7、样本平均数:样本中所有个体的平均数叫做样本平均数。 8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。 9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 10、频率:频数与数据总数的比为频率。 11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。 数据的分析 1、平均数:一般地,如果有n 个数 ,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。 2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次 (这里n f f f k =++ 21)。那么,根据平均数的定义,这n 个数的平均数可以表示为 n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。 3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。 5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,

高中数学必修三:概率与统计

高中数学必修三:概率与统计 1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ). A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32 2.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A .300克 B .360千克 C .36千克 D .30千克 3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为 ( ) A .2,5 B .5,5 C .5,8 D .8,8 4.为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x 和y 的数据的平均值都分别相等,且值分别为s 与t ,那么下列说法正确的是( ). A .直线l1和l2一定有公共点(s ,t)B .直线l1和l2相交,但交点不一定是(s ,t) C .必有直线l1∥l2 D .直线l1和l2必定重合 5..设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是( ).A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x , y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm , 则可断定其体重比为58.79kg 6.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大 B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大 C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小 D .以上说法都不对 7、.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标 准差分别为sA 和sB,则( ) (A) A x >B x ,sA >sB(B) A x <B x ,sA >sB (C) A x > B x ,sA <sB(D) A x <B x ,sA <sB 8.山东采用系统抽样方法从960人中抽取32人做问卷

相关文档
相关文档 最新文档