文档库 最新最全的文档下载
当前位置:文档库 › 高二物理磁现象和磁场的知识点详解

高二物理磁现象和磁场的知识点详解

高二物理磁现象和磁场的知识点详解

高中物理是一门联系很广泛的学科,在高二的物理学习中会学习到很多知识点,下面店铺的小编将为大家带来关于磁现象和磁场的知识点的介绍,希望能够帮助到大家。

高二物理磁现象和磁场的知识点

1、磁现象

2、磁场:一种特殊物质,对放入其中的磁体具的力的作用,

3、磁感线:为了方便研究磁场假想的曲线

1)磁感线是闭合的曲线,在磁体外部由N极指向S极,内部则相反

2)曲线上任一点的切线方向就是该点的磁场方向

3)在磁场中任一点小磁针静止时N极所指方向就是该点磁场方向

4)曲线的疏密程度表示该点磁场的强弱(矢量),越密越强,所以磁感线不能相交

4、电流周围的磁场:电流周围存在磁场,其方向由安培定则判定

安培定则:1)通电直导线:右手握住导线,大姆指指向电流的方向,四指的指向就是周围磁场的方向

2)通电螺线管:右手握住线圈,四指指向电流的方向,大姆指的指向就是磁场的方向

附:地磁场的NS极和地理NS极方向相反

磁现象简介:

磁场磁铁吸引铁、钴、镍等物质的性质称为磁性。磁铁两端磁性强的区域称为磁极,一端为北极(N极),一端为南极(S极)。实验证明,同性磁极相互排斥,异性磁极相互吸引。

什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。

在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们

称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。单位截面上穿过的磁力线数目称为磁通量密度。

运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉(Tesla,N)(1886~1943)是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。

物质的磁性不但是普遍存在的,而且是多种多样的,并因此得到广泛的研究和应用。近自我们的身体和周边的物质,远至各种星体和星际中的物质,微观世界的原子、原子核和基本粒子,宏观世界的各种材料,都具有这样或那样的磁性。

种类

世界上的物质究竟有多少种磁性呢?一般说来,物质的磁性可以分为弱磁性和强磁性,再根据磁性的不同特点,弱磁性又分为抗磁性、顺磁性和反铁磁性,强磁性又分为铁磁性和亚铁磁性。这些都是宏观物质的原子中的电子产生的磁性,原子中的原子核也具有磁性,称为核磁性。但是核磁性只有电子磁性的约千分之一或更低,故一般讲物质磁性和原子磁性都主要考虑原子中的电子磁性。原子核的磁性很低是由于原子核的质量远高于电子的质量,而且原子核磁性在一定条件下仍有着重要的应用,例如现在医学上应用的核磁共振成像(也常称磁共振CT,CT是计算机化层析成像的英文名词的缩写),便是应用氢原子核的磁性。

磁性材料可分为软磁性材料如铁和硬磁性材料如钢。

磁现象的本质

其实就是核外的电子作绕核运动时,形成了环绕原子核的电流圈,这个电流圈产生了磁场,原子就具有了磁性。组成物质的每个原子都

是一个小磁体。一般的物体内部无数个相当于小磁体的原子的排列是杂乱无章的,它们的磁性都互相抵消了,所以整个物体不具有磁性。当物体内部的小磁体(原子)的N、S极首尾相接整齐排列时,物体的两端就形成了N极和S极,就具有了磁性。物体磁化的过程就是使物质内部的原子按一定方向排列的过程。

一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。许多物质容易磁化。机械表磁化后,走时不准;彩电显像管磁化后,色彩失真,等等。信用卡,银行卡也带有磁性。

高二物理漫谈热力学第二定律的知识点

一、热力学第二定律建立的历史过程

19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。

1824年,法国陆军工程师卡诺在他发表的论文论火的动力中提出了著名的卡诺定理,找到了提高热机效率的根本途径。但卡诺在当时是采用热质说的错误观点来研究问题的。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。热动说的正确观点也普遍为人们所接受。1848年,开尔文爵士(威廉汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。

1850年,克劳修斯从热动说出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的克劳修斯表述。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的开尔文表述。

上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。

二、热力学第二定律的实质

1.可逆过程与不可逆过程

一个热力学系统,从某一状态出发,经过某一过程达到另一状态。若存在另一过程,能使系统与外界完全复原(即系统回到原来的状态,同时消除了原来过程对外界的一切影响),则原来的过程称为可逆过程。反之,如果用任何方法都不可能使系统和外界完全复原,则称之为不可逆过程。

可逆过程是一种理想化的抽象,严格来讲现实中并不存在(但它在理论上、计算上有着重要意义)。大量事实告诉我们:与热现象有关的实际宏观过程都是不可逆过程。

2.对于开氏与克氏的两种表述的分析

克氏表述指出:热传导过程是不可逆的。开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。

两种表述其实质就是分别挑选了一种典型的不可逆过程,指出它所产生的效果不论用什么方法也不可能使系统完全恢复原状,而不引起其他变化。

请注意加着重号的语句:而不引起其他变化。比如,制冷机(如电冰箱)可以将热量Q由低温T2处(冰箱内)向高温T1处(冰箱外的外界)传递,但此时外界对制冷机做了电功W而引起了变化,并且高温物体也多吸收了热量Q(这是电能转化而来的)。这与克氏表述并不矛盾。

3.不可逆过程的几个典型例子

例1(理想气体向真空自由膨胀) 如图1所示,容器被中间的隔板分为体积相等的两部分:A部分盛有理想气体,B部分为真空。现抽掉隔板,则气体就会自由膨胀而充满整个容器。

例2(两种理想气体的扩散混合) 如图2所示,两种理想气体C和D 被隔板隔开,具有相同的温度和压强。当中间的隔板抽去后,两种气体发生扩散而混合。

例3 焦耳的热功当量实验。

这是一个不可逆过程。在实验中,重物下降带动叶片转动而对水做功,使水的内能增加。但是,我们不可能造出这样一个机器:在其循环动作中把一重物升高而同时使水冷却而不引起外界变化。由此即可得热力学第二定律的普朗克表述。

再如焦耳-汤姆生(开尔文)多孔塞实验中的节流过程和各种爆炸过程等都是不可逆过程。

4.热力学第二定律的实质

对上面所列举的不可逆过程以及自然界中其他不可逆过程,我们完全能够由某一过程的不可逆性证明出另一过程的不可逆性,即自然界中的各种不可逆过程都是互相关联的。我们可以选取任一个不可逆过程作为表述热力学第二定律的基础。因此,热力学第二定律就可以有多种不同的表达方式。

但不论具体的表达方式如何,热力学第二定律的实质在于指出:一切与热现象有关的实际宏观过程都是不可逆的,并指出这些过程自发进行的方向。

三、热力学第二定律的统计意义

热现象是与大量分子无规则热运动相联系的。我们以上述不可逆过程(如例1中理想气体的真空自由膨胀)为例,来简单说明热力学第二定律的统计意义。

如图1所示,拉开隔板后,A部分的理想气体将进入B(原为真空)中,从而充满A、B整个空间。这个过程是不可逆的,我们从没有见过这种现象:气体自动地由整个容器收缩到A部分,而使B部分成为真空。这是为什么呢?

设容器中有1个分子,它退回到A部分的几率为1/2;设容器中有2个分子,它们全部退回到A部分的几率为1/22=1/4;设容器中有3个分子,它们全部退回A部分的几率为1/23=1/8;设容器中有1mol某种理想气体(约6.021023个分子)。打一个有

趣的比喻:假若从动物园中逃出一只黑猩猩,溜进了计算机室,用爪子在键盘上乱按。而将打印出的纸张按顺序装订,恰巧是一部数百万字的巨著大英百科全书。上述几率比这个笑话的几率还要小得不

可比拟。

通过对上述简单例子的分析,事实上是有一般意义的,即热力学第二定律的统计意义是:一个不受外界影响的孤立系统,其内部发生的过程,总是由几率小的状态向几率大的状态进行,由包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行。

四、热力学第二定律的适用范围

(1)热力学第二定律是宏观规律,对少量分子组成的微观系统是不适用的。

(2)热力学第二定律适用于绝热系统或孤立系统,对于生命体(开放系统)是不适用的。早在1851年开尔文在叙述热力学第二定律时,就曾特别指明动物体并不像一架热机一样工作,热力学第二定律只适用于无生命物质。

(3)热力学第二定律是建筑在有限的空间和时间所观察到的现象上,不能被外推应用于整个宇宙。19世纪后半期,有些科学家错误地把热力学第二定律应用到无限的、开放的宇宙,提出了所谓热寂说。他们声称:将来总有一天,全宇宙都是要达到热平衡,一切变化都将停止,从而宇宙也将死亡。要使宇宙从平衡状态重新活动起来,只有靠外力的推动才行。这就会为上帝创造世界等唯心主义提供了所谓科学依据。

热寂说的荒谬,在于把无限的、开放的宇宙当做热力学中所说的孤立系统。热力学中的孤立系统与无所不包、完全没有外界存在的整个宇宙是根本不同的。事实上,科学后来的发展已经提供了许多事实,证明宇宙演变的过程不遵守热力学第二定律。正如恩格斯在《自然辩证法》中指出了热寂说的谬误。他根据物质运动不灭的原理,深刻地指出:放射到太空中去的热一定有可能通过某种途径指明这一途径,将是以后自然科学的课题转变为另一运动形式,在这种运动形式中,它能重新集结和活动起来。热力学第二定律和热力学第一定律一样,是实践经验的总结,它的正确性是由它的一切推论都为实践所证实而得到肯定的。

高中物理磁场知识点总结

高中物理磁场知识点总结 一、磁场 磁体是通过磁场对铁钴镍类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在的。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。 磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有力的作用。 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布 与条形磁铁周围的磁场分布情况相似。 3.指南针 放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角 地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 说明: ①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。 ③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。 规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。 磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线 在磁场中画出有方向的曲线表示磁感线。 磁感线特点: (1)磁感线上每一点切线方向跟该点磁场方向相同。 (2)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。 (3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。 ①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。 ②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。 四、几种常见磁场 1.通电直导线周围的磁场 (1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。 说明: ①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。 ②直线电流的磁场无磁极。 ③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。 ④图中的“×”号表示磁场方向垂直进入纸面,“·”表示磁场方向垂直离开纸面。

(完整版)高二物理磁场知识点(经典)

一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场 (一)、 磁感线 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线???→→极极磁体的内部极 极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。 5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· 7、 *熟记常用的几种磁场的磁感线: (二)、匀强磁场 1、 磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。 2、 磁感应强度的大小和方向处处相同的区域,叫匀强磁场。其磁感线平行且等距。 例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。 3、 如用B=F/(I ·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位 置的磁场为匀强。 (三)、磁通量(Φ) 1.磁通量Φ:穿过某一面积磁力线条数,是标量.

高二下册物理磁现象及磁场的知识点归纳-高二磁场知识点

高二下册物理磁现象及磁场的知识点归纳:高二磁场知识点 高中物理与九年义务教育物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,研究的重点是力学。小编为大家推荐了高二下册物理磁现象和磁场知识点,请大家仔细阅读,希望你喜欢。 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。 磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》)

高中物理磁场知识点归纳

高中物理磁场知识点归纳 高中物理磁场知识点 1.磁场 1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用. 3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相互作用. 4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体. 5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的指向就是那一点的磁场方向. 2.磁感线 1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线. 2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交. 3几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱. ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场. ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱. ④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线. 3.磁感应强度 1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/A•m.

2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过 该点的磁感线的切线方向. 3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感 应强度也照样存在,因此不能说B与F成正比,或B与IL成反比. 4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方 向就是该处的磁场方向,并不是在该处的电流的受力方向. 4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个: 1地磁场的N极在地球南极附近,S极在地球北极附近. 2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在 南半球垂直地面向上,在北半球垂直地面向下. 3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北. 5.安培力 1安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度. 2安培力的方向由左手定则判定. 3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也 可以为零,而不像重力和电场力那样做功总为零. 点击查看:高中物理知识点总结 6.洛伦兹力 1洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0. 2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功. 3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定. 4在磁场中静止的电荷不受洛伦兹力作用. 7.带电粒子在磁场中的运动规律 在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计,

高二物理磁现象和磁场的知识点详解

高二物理磁现象和磁场的知识点详解 导读:我根据大家的需要整理了一份关于《高二物理磁现象和磁场的知识点详解》的内容,具体内容:高中物理是一门联系很广泛的学科,在高二的物理学习中会学习到很多知识点,下面的我将为大家带来关于磁现象和磁场的知识点的介绍,希望能够帮助到大家。高二物理磁现象和磁场的知识点...高中物理是一门联系很广泛的学科,在高二的物理学习中会学习到很多知识点,下面的我将为大家带来关于磁现象和磁场的知识点的介绍,希望能够帮助到大家。 高二物理磁现象和磁场的知识点 1、磁现象 2、磁场:一种特殊物质,对放入其中的磁体具的力的作用, 3、磁感线:为了方便研究磁场假想的曲线 1)磁感线是闭合的曲线,在磁体外部由N极指向S极,内部则相反 2)曲线上任一点的切线方向就是该点的磁场方向 3)在磁场中任一点小磁针静止时N极所指方向就是该点磁场方向 4)曲线的疏密程度表示该点磁场的强弱(矢量),越密越强,所以磁感线不能相交 4、电流周围的磁场:电流周围存在磁场,其方向由安培定则判定 安培定则:1)通电直导线:右手握住导线,大姆指指向电流的方向,四指的指向就是周围磁场的方向 2)通电螺线管:右手握住线圈,四指指向电流的方向,大姆指的指向就是磁场的方向

附:地磁场的NS极和地理NS极方向相反 磁现象简介: 磁场磁铁吸引铁、钴、镍等物质的性质称为磁性。磁铁两端磁性强的区域称为磁极,一端为北极(N极),一端为南极(S极)。实验证明,同性磁极相互排斥,异性磁极相互吸引。 什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。 在磁极周围的空间中真正存在的不是磁力线,而是一种场,我们称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。单位截面上穿过的磁力线数目称为磁通量密度。 运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉(Tesla,N)(1886~1943)是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。 物质的磁性不但是普遍存在的,而且是多种多样的,并因此得到广泛的研究和应用。近自我们的身体和周边的物质,远至各种星体和星际中的物质,微观世界的原子、原子核和基本粒子,宏观世界的各种材料,都具有这样或那样的磁性。

高二物理电磁场知识点全

高二物理电磁场知识点全 导读:我根据大家的需要整理了一份关于《高二物理电磁场知识点全》的内容,具体内容:电磁场理论一直都是高二物理的难点与重点,下面是我给大家带来的,希望对你有帮助。高二物理电磁场知识点一、磁场磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空... 电磁场理论一直都是高二物理的难点与重点,下面是我给大家带来的,希望对你有帮助。 高二物理电磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流

-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点: (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: (1)条形磁铁。

高中物理磁场知识点总结

在高中学习任务日益繁重的生活中如何学好物理,有什么好的方法呢。以下是由编辑为大家整理的“高中物理磁场知识点总结”,仅供参考,欢迎大家阅读。 高中物理磁场知识点总结 一、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 二、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 三、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极 (2)磁感线是闭合曲线 (3)磁感线不相交 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强 3.几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;

(完整版)高二物理选修3-1第三章磁场知识点总结复习,推荐文档

第三章磁场教案 3.1 磁现象和磁场 第一节、磁现象和磁场 1.磁现象 磁性:能吸引铁质物体的性质叫磁性。 磁体:具有磁性的物体叫磁体。 磁极:磁体中磁性最强的区域叫磁极。 2.电流的磁效应 磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。 3.磁场 磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。 磁场的基本性质:对处于其中的磁极和电流有力的作用. 磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的。 磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场。 4.磁性的地球 地球是一个巨大的磁体,地球周围存在磁场---地磁场。地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角。 地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。 宇宙中的许多天体都有磁场。月球也有磁场。 例1、以下说法中,正确的是() A、磁极与磁极间的相互作用是通过磁场产生的 B、电流与电流的相互作用是通过电场产生的 C、磁极与电流间的相互作用是通过电场与磁场而共同产生的 D、磁场和电场是同一种物质

例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动? 例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大? 例4、如图所示,两块软铁放在螺线管轴线上, 当螺线管通电后,两软铁将(填“吸引”、 “排斥”或“无作用力”),A端将感应出极。

高中物理选修3磁现象和磁场知识点

高中物理选修3磁现象和磁场知识点 一、规律方法指导: 1、条形磁铁有两个磁极,而中间的磁性最弱,几乎感受不到。 2、利用磁体间的相互作用规律——同名磁极相互排斥,异名磁极相互吸引,可以推断未知磁体的磁极。 3、利用磁体的指向性可以制成指南针,反过来,假如已知南北方向,可以通过悬挂法找到未知磁体的南极和北极。 4、磁场是真实存在于磁体四周的一种特别物质,而磁感线是人们为了直观、形象地描述磁场的方向和分布状况而引入的带方向的曲线,它并不是客观存在于磁场中的真实曲线。因此在磁场中标磁感线时,应将其画成虚线。 5、磁感线分布的疏密可以表示磁场的强弱。磁体两极处磁感线最密,表示其两极磁场最强。 6、磁感线是一些闭合的曲线。即磁体四周的磁感线都是从磁体的北极出来,回到磁体的南极,在磁体的内部,都是从磁体的南极指向北极。 二、学问点分析: 现有外观一样的两段钢棒,一根有磁性,而另一根没有磁性,如何区分它们?

方法1:依据磁体的吸铁性来推断,找来一些小铁件,如图钉,能够吸起它们的有磁性。 方法2:依据磁体的指向性来推断,分别把两根钢棒用细线水平吊起,若有南北指向的具有磁性。 方法3:依据磁极间的相互作用来推断,取来一根小磁针,若能和小磁针有排斥状况发生,则具有磁性;若小磁针放在钢棒四周不同位置始终表现为相吸,那么这根钢棒没有磁性。 方法4:若没有任何其他材料,也可以进展推断。拿A棒的一端去接触B棒的中间,若相互间无作用力,那么B棒有磁性;若相互间有吸引,那么B棒无磁性,A棒有磁性。 如何正确理解磁体和磁极? 每个磁体都有两个磁极,一个叫南极(S极),一个叫北极(N极),是磁体上磁性最强的局部,位于磁体的两端。自然界中不存在只有单个磁极的磁体,磁体上的磁极总是成对消失的,而且一个磁体也不能有多于两个的磁极。假如某人不慎将一个条形磁铁从空中落向地面分成两段,则每段将各有两个磁极,如图甲所示;假如再让这两段磁铁相互吸引合为一体,则靠近的两个磁极便不存在,整个磁体仍旧只有两个磁极,如图乙所示。 怎样正确熟悉磁场? (1)磁场是客观存在的物质。磁场虽然看不见、摸不着,但可以依据磁场的根本性质来推断它的存在。在磁场中放入磁体,只是讨论磁场的一

高二物理磁场的知识点总结

高二物理磁场的知识点总结 高二物理磁场的知识点总结 磁场部分是高二物理知识的重点,经常会与电学或者力学挂钩出大题。以下是高二物理磁场的知识点总结,希望对大家有帮助。 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 三、磁场的方向

规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极 (2)磁感线是闭合曲线 (3)磁感线不相交 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强 3.几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向; b.其磁感线是内密外疏的同心圆 (3)环形电流磁场 a.安培定则:让右手弯曲的'四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 b.所有磁感线都通过内部,内密外疏 (4)通电螺线管 a.安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向; b. 通电螺线管的磁场相当于条形磁铁的磁场 五、磁感应强度 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度l的乘积Il的比值叫做通电导线处的磁感应强度。 2.定义式:

2021年高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体性质叫磁性。具备磁性物体叫磁体,磁体中磁性最强区域叫磁极。 二、磁极间互相作用规律:同名磁极互相排斥,异名磁极互相吸引.(与电荷类比) 三、磁场 1.磁体周边有磁场 2.奥斯特实验启示: ——电流可以产生磁场, 运动电荷周边空间有磁场 导线南北放置 3.安培研究:磁体能产生磁场,磁场对磁体有力作用;电流能产生磁场,那么磁场对电流也应当有力作用。 磁场基本性质 ①磁场对处在场中磁体有力作用。 ②磁场对处在场中电流有力作用。

第三章第3节几种常用磁场 一、磁场方向 物理学规定: 在磁场中任一点,小磁针北极受力方向,亦即小磁针静止时 北极所指方向,就是该点磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出一系列曲线 ①磁感线上任意点切线方向与该点磁场方向一致; (小磁针静止时N极所指方向) ②磁感线疏密限度表达磁场强弱。 2.常用磁场磁感线 永久性磁体磁场:条形,蹄形 直线电流磁场 剖面图(注意“”和“×”意思) 箭头从纸里到纸外看到是点 从纸外到纸里看到是叉 环形电流磁场(安培定则:让右手弯曲四指和环形电流方向一致,伸直大拇指所指方向

就是环形导线中心轴线上磁感线方向。) 螺线管电流磁场(安培定则:用右手握住螺旋管,让弯曲四指所指方向跟电流方向一致,大拇指所指方向就是螺旋管内部磁感线方向。) 常用图示: 磁感线特点: 1、磁感线疏密表达磁场强弱 2、磁感线上切线方向为该点磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常用磁感线是立体空间分布 7、磁场在客观存在,磁感线是人为画出,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质分子中都存在环形电流——分子电流,分子电流使每个分子都成为一种微小磁体。 2.安培分子环流假说对某些磁现象解释: 未被磁化铁棒,磁化后铁棒 永磁体之因此具备磁性,是由于它内部环形分子电流本来就排列整洁. 永磁体受到高温或剧烈敲击会失去磁性,这是由于在激烈热运动或机械振动影响下,分子电流取向又变得杂乱无章了。

高二物理磁场知识点总结大全 物理高中磁场知识点

高二物理磁场知识点总结大全物理高中磁 场知识点 下面是我整理的高二物理磁场知识点总结大全物理高中磁场知识点,以供参考。 高二物理电磁场知识点大家觉得不知道如何去归纳,感觉要归纳电磁场知识点很难。以下是我整理的物理电磁场知识点,希望可以分享给大家提供参考。 一、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。

3.磁现象的电本质 运动的电荷产生磁场,磁场对运动电荷有磁场力的作用,所有的磁现象都可以归结为运动电荷通过磁场而发生相互作用。 二、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 三、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极 磁感线是闭合曲线 磁感线不相交

2020高中物理磁场知识点总结

2020高中物理磁场知识点总结 1、磁现象: 磁性:物体能够吸引钢铁、钻、線一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用s表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。 磁场的基木性质:对放入其中的磁体产生磁力的作用。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这

样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,木身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的'极出发,回到S极。在磁体内部正好相反。④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球木身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》) 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度1的乘积II的比值叫做通电导线处的磁感应强度。 2.定义式: 3.单位:特斯拉(T), 1T=1N/A.m 4.磁感应强度是矢量,其方向就是对应处磁场方向。 5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电流强度的大小、导线的长短等因素无关。 6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的lm2面积上的磁感线条数跟那里的磁感应强度一致。 7.匀强磁场 (1)磁感应强度的大小和方向处处相等的磁场叫匀强磁场。 (2)匀强磁场的磁感线是均匀且平行的一组直线。 磁场对电流的作用力通常称为安培力,为纪念法国物理学家安培研

新人教版物理第二十章 电与磁 知识点归纳

第二十章电与磁知识归纳 第1节磁现象磁场 一、磁现象 ★1、磁体:磁体能够吸引铁、钴、镍等物质,(不能吸引铜、铝) ★2、磁极:磁体上吸引能力最强的两个部位叫磁极(每个磁体都有两个磁极)S极:能够自由转动的磁体,静止时指南的那个磁极叫南极或S极, N极:能够自由转动的磁体,静止时指北的那个磁极叫北极或N极。 注意:如果磁体被分割成两段或几段后,每一段磁体上仍然有N极和S极。如图★3、磁极间相互作用的规律:同名磁极相互排斥,异名磁极相互吸引。 4、磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 二、磁场 1、磁场:磁体周围存在的一种看不见、摸不着的物质,称为磁场。 注意:磁场虽然看不见摸不着但是客观存在的 ★2、方向: 物理学中把小磁针静止时北极所指的方向规定为该点的磁场方向(即磁场对小磁针作用力的方向)3、磁感线:我们把小磁针在磁场中的排列情况,用一根带箭头的曲线画出来,可以方便、形象地描述磁场,这样的曲线叫做磁感线。 条形磁体U形磁体异名磁极同名磁极 ●4、磁感线的特点 1)磁感线只是假想的曲线,是人们为了直观、形象地描述磁场而画的一些带有箭头的曲线(模型法),实际并不存在。但磁场是客观存在的。 2)磁感线上任意一点的切线方向,就是该点的磁场方向。即该点小磁针静止时北极所指的方向 3)磁感线是一些闭合的曲线。在磁体外部的磁感线都是从磁体的N极出发,回到S极。在磁体的内部,磁感线是从S极指到N极。 4)磁感线的疏密程度表示该点磁场的强弱。 5)任何两条磁感线都不会相交。 三、地磁场 1.地球本身是一个巨大的磁体,地球周围存在的磁场叫做地磁场。 ★2.研究表明地磁场的形状与条形磁体的磁场很相似。 ★3.地磁场的特点 1)地磁N极在地理的南极附近;地磁S极在地理的北极附近。 2)地理两极与地磁两极相反,但并不完全重合。(存在一个磁偏角) 3)这一现象最早由我国宋代学者沈括发现 第2节电生磁 一、电流的磁效应 ★1、奥斯特实验(如图) 2、结论:电流的周围存在磁场,电流的磁场方向跟电流方向有关。 ★3、电流的磁效应:通电导线周围存在与电流方向有关的磁场,这种现象叫做电流的磁效应。地理北极地磁北极

高中物理磁场知识点总结

磁场复习 一、磁场及其描述 磁现象:1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。 2.磁极:磁体的各部分磁性强弱不同,磁性最强的区域叫磁极。任何磁体都有两个磁极,无论怎么分割,磁极总是成对出现,不存在磁单极。 3.磁极间的相互作用:同名磁极相互排斥,异名磁极相互吸引。 4.磁化:使原来没有磁性的物体获得磁性的过程叫做磁化。 电流的磁效应(电生磁):通电导体的周围有磁场,它能使放在导体周围的小磁针发生偏转,且磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。 ○1奥思特实验:导线通电后,其下方与导线平行的小磁针会发生偏转。 ○2奥思特实验的意义:第一个揭示了电与磁之间是有联系的。 磁场 (1)磁场:磁体、电流和运动电荷周围存在的一种物质, 磁场的基本性质:对放入其中的磁体有力的作用。磁体对磁体的作用,磁铁对通电导线的作用以及电流和电流之间的相互作用都是通过磁场来实现的,所有磁现象都起源于电荷运动。 (2)磁场的方向:规定在磁场中任一点小磁针北极受力的方向,亦即小磁针静止时的北极所指的方向; 磁场方向也和磁感应强度方向、磁感线在该处的切线方向一致。 磁感线 (1)磁感线:为了形象的研究磁场而引入的一束假想曲线,并不客观存在,但有实验基础。 (2)磁感线特点: ①磁感线的疏密程度能定性的反映磁场的强弱分布。 ②磁感线上任一点的切线方向反映该点的磁场方向。 磁感线是不相交的闭合曲线。磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到 N极,磁感线是闭合曲线;磁感线不相交. 几种常见的磁场的磁感线 ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱. ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场. ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱. ④匀强磁场:磁感应强度大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.

高中物理磁场知识点总结及物理学习方法

高中物理磁场知识点总结及物理学习方法 一、磁场 磁体是通过磁场对铁钴镍类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在的。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。 电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。 磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有力的作用。 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场

地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布 与条形磁铁周围的磁场分布情况相似。 3.指南针 放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角 地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 说明: ①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。 ③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。 规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。 磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。

高中物理磁场知识点(详细总结)

磁场基本性质 一、磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感线 为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线. 1.疏密表示磁场的强弱. 2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向. 3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· *熟记常用的几种磁场的磁感线: 【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A) A.带负电; B.带正电; C.不带电; D.不能确定 解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度 1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。 2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度. ①表示磁场强弱的物理量.是矢量. ②大小:B=F/Il(电流方向与磁感线垂直时的公式). ③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. ④单位:牛/安米,也叫特斯拉,国际单位制单位符号T. ⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. ⑥匀强磁场的磁感应强度处处相等. ⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁

相关文档
相关文档 最新文档