文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考文科数学分类汇编:专题九解析几何

2018年高考文科数学分类汇编:专题九解析几何

2018年高考文科数学分类汇编:专题九解析几何
2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》

2

x —2?y 2 =2上,贝U △ ABP 面积的取值范围是

和d 2,且d 1 d 2 =6,则双曲线的方程为

2 2

x

■丄=1

4 12

2

x

D —

9

、选择题 1.【2018全国一卷 4】

已知椭圆C :

第九篇:解析几何

X 2 V 2

評廿1的一个焦点为(2 ,0),则C 的离心率为

1

A.- 3 2.【2018全国二卷 6】

1 B.- 2

2

x 2

双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b

A . y 二 2x

B . y = 3x

D . y 3

x

2

3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 ,

且.乙PF 2F 1 =60,则C 的离心率为 A . J

2

B . 2-3 C. D . .3-1

4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A ,

B 两点,点P 在圆

A . 2,61

B . 4,8〕

D .

5.【2018全国三卷10】已知双曲线 C :

三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0)

到C 的渐近线的距离为

B . 2

C.

2

D . 2,2

2

x 6.【2018天津卷7】已知双曲线 —

a

=1(a 0, b 0)的离心率为2,过右焦点且垂直

于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为

d 1

12 4

=1

8.

4

2

7. 【

2018

浙江卷2

】双曲线「宀的焦点坐标是

之和为()

D.4魂

二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2

2^^0交于A ,B 两点,则

A ? (- 2 , 0), ( .2 , 0)

B ? (-2, 0), (2, 0)

C . (0, - . 2 ), (0 , ,2)

D . (0, -2), (0, 2)

8.【2018上海卷13】设P 是椭圆 呂+以=1

5

3

上的动点,贝U P 到该椭圆的两个焦点的距离

1.

2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若

I 被抛物线 y 2

= 4ax 截得的线

3. 段长为4,则抛物线的焦点坐标为

2 2

【2018北京卷12】若双曲线 笃-丿 1(a

0)的离心率为

a 4

-1,则

2

4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0)

1),( 2,0)的圆

的方程为 5.

2

x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线

2

与=1(a 0,b 0)的右焦点

b

6. F (c,0)到一条渐近线的距离为乜

2

12】在平面直角坐标系

则其离心率的值是 【2018江苏卷

xOy 中,A 为直线I: y = 2x 上在第一象限内的点,

B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标

7. 【2018浙江卷

17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则

4

当m= 时,点B 横坐标的绝对值最大.

1 2

9.【2018 上海卷 12】已知实数 x?、x?、y?、y?满足:X2 y?2 = 1 , X2 y?2=1 ,X?? y?y 2 则1 x?十f —1 +1 x?+$—1的最大值为 ______________

42

三、解答题

1. 【2018全国一卷20】设抛物线C : y 2

=2x ,点A 2 , 0,B -2

, 0

,过点A 的直线l 与C

交于M , N 两点.

(1) 当I 与x 轴垂直时,求直线 BM 的方程; (2) 证明:/ ABM =/ ABN .

2. 【2018全国二卷20】设抛物线C : y 2 =4x 的焦点为F ,过F 且斜率为k(k ■ 0)的直线I 与 C 交于A , B 两点,| AB | =8 .

(1) 求I 的方程;

(2) 求过点A , B 且与C 的准线相切的圆的方程.

2 2

3. 【

2018

全国三卷如已知斜率为k 的直线l 与椭圆

i =1交于A ,

段AB 的中点为 M (1,m)(m 0).

1

(1) 证明:k :::

2

2 2

4.【2018北京卷20】已知椭圆M :牛=1(a b 0)的离心率为

a b

斜率为k 的直线l 与椭圆M 有两个不同的交点 A , B.

(I)求椭圆M 的方程;

2

设F 为C 的右焦点,

P 为C 上一点,

且 FP ,FA FB 0 .证明:

2 |F P | |F A|

|FB |

B 两点?线

丄6,焦距为2 2.

3

(n)若k =1,求|AB |的最大值;

(川)设P(20),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个

7 1

交点为D若CD和点Q(-—,—)共线,求k.

4 4

x y

A,上顶点为B.已知椭圆5. 【2018天津卷19】设椭圆一2

2 =1(a^0)的右顶点为

a b

的离心率为—,| AB |=J13 .

3

(I)求椭圆的方程;

(II)设直线I : y二kx(k ::: 0)与椭圆交于P,Q两点,I与直线AB交于点M,且点P,

M均在第四象限?若△ BPM的面积是△ BPQ面积的2倍,求k的值.

_ 1

6. 【2018江苏卷18】如图,在平面直角坐标系xOy中,椭圆C过点(? 3,),焦点

2

斤(- .3,0), F2(-.3,0),圆O 的直径为F1F2 ?

(1) 求椭圆C及圆0的方程;

(2) 设直线l与圆O相切于第一象限内的点P.

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

不同的两点A, B满足

(I)设AB中点为M,证明:PM垂直于y轴;

②直线I与椭圆C交于

7.【2018浙江卷21】如图,

PA PB的中点均在C上.

2

(n)若P是半椭圆x2+_L = 1(x<0)上的动点,求△ PAB面积的取值范围.

4

8. 【2018上海卷20】(本题满分16分,第1小题满分4分,第2小题满分6分,第2 小题满分6分,第3小题满分6分)

设常数t>2,在平面直角坐标系xOy中,已知点F (2, 0),直线I: x=t,曲线?:

y2=8x(0三X W t,戶0) , I与x轴交于点A,与已交于点B, P、Q分别是曲线壬与线段AB上的动点.

(1 )用t为表示点B到点F的距离;

(2)设t=3, I FQ22,线段OQ的中点在直线FP上,求△ AQP的面积;

(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在?上?若存在,求点P的

坐标;若不存在,说明理由

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计 1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下: 支付 金额 支付方式 不大于 (Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数; (Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(Ⅰ)400人; (Ⅱ)1 25 ; (Ⅲ)见解析. 【解析】 【分析】 (Ⅰ)由题意利用频率近似概率可得满足题意的人数; (Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率; (Ⅲ)结合概率统计相关定义给出结论即可. 【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人, 所以样本中两种支付方式都使用的有1003025540 ---=,

所以全校学生中两种支付方式都使用的有 40 1000400100 ?=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元, 所以该学生上个月支付金额大于2000元的概率为 125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为1 25 , 因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元, 依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多. 【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力. 2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生 【答案】C 【解析】 【分析】 等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n =+()n *∈N , 若8610n =+,则1 5 n = ,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样. 3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

高考数学文科分类--集合与简易逻辑

2014年高考数学文科分类------集合与简易逻辑 (安徽)2命题“0||,2 ≥+∈?x x R x ”的否定是( ) A.0||,2<+∈?x x R x B. 0||,2≤+∈?x x R x C. 0||,2000<+∈?x x R x D. 0||,2000≥+∈?x x R x 北京1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 5.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 (福建卷)1若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P I 等于( ) A .}43|{<≤x x B .}43|{<

2018年全国各地高考数学试题及解答分类汇编大全

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换) 一、选择题 1.(2018北京文)在平面坐标系中,?AB ,?CD ,?EF ,?GH 是圆22 1x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .?A B B .?CD C .?EF D .?GH 1.【答案】C 【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线. 2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π 个单位长度,所得图象对应的函数( ) (A )在区间[,]44ππ - 上单调递增 (B )在区间[,0]4π 上单调递减 (C )在区间[,]42 ππ 上单调递增 (D )在区间[,]2 π π 上单调递减 2.【答案】A 【解析】由函数sin 25y x π? ?=+ ?? ?的图象平移变换的性质可知: 将sin 25y x π? ?=+ ?? ?的图象向右平移10π个单位长度之后的解析式为: sin 2sin 2105y x x ?ππ? ??=-+= ???? ???. 则函数的单调递增区间满足:()22222 k x k k ππ π-≤≤π+∈Z , 即()44 k x k k ππ π- ≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ?? -????,选项A 正确,B 错误; 函数的单调递减区间满足:()322222 k x k k ππ π+≤≤π+∈Z , 即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ?? ???? , 选项C ,D 错误;故选A .

【高考真题】2016---2018三年高考试题分类汇编

专题01 直线运动 【2018高考真题】 1.高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能() A. 与它所经历的时间成正比 B. 与它的位移成正比 C. 与它的速度成正比 D. 与它的动量成正比 【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷) 【答案】 B 2.如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。某一竖井的深度约为104m,升降机运行的最大速度为8m/s,加速度大小不超过,假定升降机到井口的速度为零,则将矿石从井底提升到井口的最短时间是 A. 13s B. 16s C. 21s D. 26s 【来源】浙江新高考2018年4月选考科目物理试题 【答案】 C

【解析】升降机先做加速运动,后做匀速运动,最后做减速运动,在加速阶段,所需时间 ,通过的位移为,在减速阶段与加速阶段相同,在匀速阶段所需时间为:,总时间为:,故C正确,A、B、D错误;故选C。 【点睛】升降机先做加速运动,后做匀速运动,最后做减速运动,根据速度位移公式和速度时间公式求得总时间。 3.(多选)甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A. 两车在t1时刻也并排行驶 B. t1时刻甲车在后,乙车在前 C. 甲车的加速度大小先增大后减小 D. 乙车的加速度大小先减小后增大 【来源】2018年普通高等学校招生全国统一考试物理(全国II卷) 【答案】 BD 点睛:本题考查了对图像的理解及利用图像解题的能力问题

4.(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次和第②次提升过程, A. 矿车上升所用的时间之比为4:5 B. 电机的最大牵引力之比为2:1 C. 电机输出的最大功率之比为2:1 D. 电机所做的功之比为4:5 【来源】2018年全国普通高等学校招生统一考试物理(全国III卷) 为2∶1,选项C正确;加速上升过程的加速度a1=,加速上升过程的牵引力F1=ma1+mg=m(+g),减速上升过程的加速度a2=-,减速上升过程的牵引力F2=ma2+mg=m(g -),匀速运动过程的牵引力F 3=mg。第次提升过程做功W1=F1××t0×v0+ F2××t0×v0=mg v0t0;第次提升过 程做功W2=F1××t0×v0+ F3×v0×3t0/2+ F2××t0×v0 =mg v0t0;两次做功相同,选项D错误。

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

2018年高考题分类汇编之立体几何

2018年数学高考题分类汇编之立体几何 1.【2018年浙江卷】已知四棱锥S?ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S?AB?C的平面角为θ3,则 A. θ1≤θ2≤θ3 B. θ3≤θ2≤θ1 C. θ1≤θ3≤θ2 D. θ2≤θ3≤θ1 2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是 A. 2 B. 4 C. 6 D. 8 3.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 A. 1 B. 2 C. 3 D.4 4.【2018年新课标I卷文】在长方体中,,与平面所成的角为,则该长方体的体积为 A. B. C. D. 5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A. B. C. D. 6.【2018年全国卷Ⅲ文】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 A. B. C. D. 7.【2018年全国卷Ⅲ文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 A. A B. B C. C D. D 8.【2018年全国卷II文】在正方体中,为棱的中点,则异面直线与所成角的正切值为 A. B. C. D. 9.【2018年天津卷文】如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为 __________. 10.【2018年江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

2018年高考语文真题分类汇编:文学类文本阅读(含详细答案)

2018年高考语文真题分类汇编:文学类文本阅读 一、现代文阅读(共7题;共113分) 1.(2018?卷)阅读下面文字,完成小题赵一曼女士 阿成 伪满时期的哈尔滨市立医院。如今仍是医院。后来得知赵一曼女士曾经在这里住过院,我便翻阅了她的一些资料。 赵一曼女士,是一个略显瘦秀且成熟的女性,在她身上弥漫着拔俗的文人气质和职业军人的冷峻。在任何地方,你都能看出她有别于他人的风度。 赵一曼女士率领的抗联活动在小兴安岭的崇山峻岭中,那儿能够听到来自坡镇的钟声。冬夜里,钟声会传得很远很远。钟声里,抗联的士兵在深林里烤火,烤野 味儿,或者唱着“烤火胸前暖,风吹背后寒……战士们呦”……这些都是给躺在 病床上的在赵一曼女士留下清晰的回忆。 赵一曼女士单独一间病房,由警察昼夜看守。 白色的小柜上有一个玻璃花瓶,里面插着丁香花。赵一曼女士喜欢丁香花,这束丁香花,是女护士韩勇义折来摆在那里的。听说,丁香花现在已经成为这座城市的“市花”了。 她是在山区中了日军的子弹后被捕的。滨江省警务厅的大野泰治对赵一曼女士进行了严刑拷问,始终没有得到有价值的回答,他觉得很没有面子。 大野泰治在向上司呈送的审讯报告上写道: 赵一曼是中国共产党珠河县委委员,在该党工作上有与赵尚志同等的权力,她是北满共产党的重要干部,通过对此人的严厉审讯,有可能澄清中共与苏联的关系。1936年初,赵一曼女士以假名“王氏”被送到医院监禁治疗。 《滨江省警务厅关于赵一曼的情况》扼要地介绍了赵一曼女士从市立医院逃走和 被害的情况。 赵一曼女士是在6月28日逃走的,夜里,看守董宪勋在他叔叔的协助下,将赵 一曼抬出医院的后门,一辆雇好的出租车已等在那里。几个人下了车,车立刻就开走了。出租车开到文庙屠宰场的后面,韩勇义早就等候在那里,扶着赵一曼女士上来雇好的轿子,大家立刻向宾县方向逃去。 赵一曼女士住院期间,发现警士董宪勋似乎可以争取。经过一段时间的观察、分析,她觉得有把握去试一试。 她躺在病床上,和蔼地问董警士:“董先生,您一个月的薪俸是多少?” 董警士显得有些忸怩:“十多块钱吧……” 赵一曼女士遗憾地笑了,说:“真没有想到,薪俸或这样少。” 董警士更加忸怩了。 赵一曼女士神情端庄地说:“七尺男儿,为着区区几十块钱,甘为日本人役使, 不是太愚蠢了吗?” 董警士无法再正视这位成熟女性的眼睛了,只是哆哆嗦嗦给自己点了一颗烟。 此后,赵一曼女士经常与董警士聊抗联的战斗和生活,聊小兴安岭的风光,飞鸟走兽。她用通俗的、有吸引力的小说体记述日军侵略东北的罪行,写在包药的纸上。董警士对这些纸片很有兴趣,以为这是赵一曼女士记述的一些资料,并不知道是专门写给他看的。看了这些记述,董警士非常向往“山区生活”,愿意救赵一曼女士出去,和她一道上山。 赵一曼女士对董警士的争取,共用了20天时间。 对女护士韩永义,赵一曼女士采取的则是“女人对女人”的攻心术。

2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 第九篇:解析几何 一、选择题 1.【2018全国一卷4】已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为 A .1 3 B .12 C D 2.【2018全国二卷6】双曲线22 221(0,0)x y a b a b -=>> A .y = B .y = C .y = D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥, 且2160PF F ∠=?,则C 的离心率为 A .1 B .2 C D 1 4.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆 () 2 222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48, C . D .?? 5.【2018全国三卷10】已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D . 6.【2018天津卷7】已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1 d

和2d ,且126d d +=,则双曲线的方程为 A 22 1412 x y -= B 22 1124 x y -= C 22 139 x y -= D 22 193 x y -= 7.【2018浙江卷2】双曲线2 21 3=x y -的焦点坐标是 A .(?2,0),(2,0) B .(?2,0),(2,0) C .(0,?2),(0,2) D .(0,?2),(0,2) 8.【2018上海卷13】设P 是椭圆 25x + 23 y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.2 B.2 C.2 D.4 二、填空题 1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线 段长为4,则抛物线的焦点坐标为_________. 3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为 5 2 ,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点

高考试题文科数学分类汇编导数

2012年高考试题分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为

(A)(-1,1] (B)(0,1] (C.)[1,+∞)(D)(0,+∞) 【答案】B 5.【2102高考福建文12】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 【答案】C. 6.【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q 的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8【答案】C 7.【2012高考新课标文13】曲线y=x(3ln x+1)在点)1,1(处的切线方程为________ 【答案】3 4- =x y 8.【2012高考上海文13】已知函数() y f x =的图像是折线段ABC,其 中(0,0) A、 1 (,1) 2 B、(1,0) C,函数() y xf x =(01 x ≤≤)的图像及x轴围成 的图形的面积为【答案】 4 1。

2018年高考数学分类汇编集合及答案详解

2018年高考数学分类汇集合 1、(2018年高考全国卷I文科1) (5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2} 【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2}, 则A∩B={0,2}. 故选:A. 2、(2018年高考全国卷I理科2) (5分)已知集合A={x|x2﹣x﹣2>0},则?R A=() A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0}, 可得A={x|x<﹣1或x>2}, 则:?R A={x|﹣1≤x≤2}. 故选:B. 3、(2018年高考全国卷II文科2) (5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7} 【解答】解:∵集合A={1,3,5,7},B={2,3,4,5}, ∴A∩B={3,5}. 故选:C. 4、(2018年高考全国卷II理科2) (5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.4 【解答】解:当x=﹣1时,y2≤2,得y=﹣1,0,1, 当x=0时,y2≤3,得y=﹣1,0,1, 当x=1时,y2≤2,得y=﹣1,0,1, 即集合A中元素有9个, 故选:A. 5、(2018年高考全国卷III文科2)

(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=() A.{0}B.{1}C.{1,2}D.{0,1,2} 【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2}, ∴A∩B={x|x≥1}∩{0,1,2}={1,2}. 故选:C. 6、(2018年高考全国卷III理科1) (5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=() A.{0}B.{1}C.{1,2}D.{0,1,2} 【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2}, ∴A∩B={x|x≥1}∩{0,1,2}={1,2}. 故选:C. 7、(2018年高考北京理科1) (5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2}, 则A∩B={0,1}, 故选:A. 8、(2018年高考北京理科8) (5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则() A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)?A C.当且仅当a<0时,(2,1)?A D.当且仅当a≤时,(2,1)?A 【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确; 当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D. 8、(2018年高考北京理科20)

2018年高考生物往年真题分类汇编

2018年高考生物往年真题分类汇编 专题1细胞及分子组成 1.(2016·高考全国卷乙)下列与细胞相关的叙述,正确的是() A.核糖体、溶酶体都是具有膜结构的细胞器 B.酵母菌的细胞核内含有DNA和RNA两类核酸 C.蓝藻细胞的能量来源于其线粒体有氧呼吸过程 D.在叶绿体中可进行CO2的固定但不能合成ATP 2.(2016·高考江苏卷)蛋白质是决定生物体结构和功能的重要物质。下列相关叙述错误的是() A.细胞膜、细胞质基质中负责转运氨基酸的载体都是蛋白质 B.氨基酸之间脱水缩合生成的H2O中,氢来自氨基和羧基 C.细胞内蛋白质发生水解时,通常需要另一种蛋白质的参与 D.蛋白质的基本性质不仅与碳骨架有关,而且也与功能基团相关 3.(2016·高考江苏卷)关于生物组织中还原糖、脂肪、蛋白质和DNA的鉴定实验,下列叙述正确的是() A.还原糖、DNA的鉴定通常分别使用双缩脲试剂,二苯胺试剂 B.鉴定还原糖、蛋白质和DNA都需要进行水浴加热 C.二苯胺试剂和用于配制斐林试剂的NaOH溶液都呈无色 D.脂肪、蛋白质鉴定时分别可见橘黄色颗粒、砖红色沉淀 专题2细胞的结构和物质运输 1.(2016·高考全国卷乙)离子泵是一种具有ATP水解酶活性的载体蛋白,能利用水解ATP释放的能量跨膜运输离子。下列叙述正确的是() A.离子通过离子泵的跨膜运输属于协助扩散 B.离子通过离子泵的跨膜运输是顺着浓度梯度进行的 C.动物一氧化碳中毒会降低离子泵跨膜运输离子的速率 D.加入蛋白质变性剂会提高离子泵跨膜运输离子的速率 2.(2016·高考全国卷丙)下列有关细胞膜的叙述,正确的是() A.细胞膜两侧的离子浓度差是通过自由扩散实现的 B.细胞膜与线粒体膜、核膜中所含蛋白质的功能相同

相关文档
相关文档 最新文档