文档库 最新最全的文档下载
当前位置:文档库 › 小学五年级数学上册知识点汇总

小学五年级数学上册知识点汇总

小学五年级数学上册知识点汇总
小学五年级数学上册知识点汇总

第一单元小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

? ?1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;?一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:

?????加法交换律:a+b=b+a ? ?

? ? ?加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a ?

? ? ?乘法结合律:(a×b)×c=a×(b×c)

? ? ?乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c) ?

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元位置

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

第三单元小数除法

10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。?循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。

第四单元可能性

16、事件发生有三种情况:可能发生、不可能发生、一定发生。

17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。

第五单元简易方程

18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

19、a×a可以写作a·a或a ,a 读作a的平方? 2a表示a+a

特别地1a=a这里的:“1“我们不写

20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。

21、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

22、10个数量关系式:加法:和=加数+加数?一个加数=和-另一个加数?

减法:差=被减数-减数? ? 被减数=差+减数? ? ?减数=被减数-差? ?

乘法:积=因数×因数? ? ? ? ?一个因数=积÷另一个因数

除法:商=被除数÷除数? 被除数=商×除数? ?除数=被除数÷商

23、所有的方程都是等式,但等式不一定都是等式。

24、方程的检验过程:方程左边=……? ? ? ? ? ? ? ? ? ? ? ?

25、方程的解是一个数;解方程式一个计算过程。=方程右边? 所以,X=…是方程的解。第六单元多边形的面积

26、公式:

27、平行四边形面积公式推导:剪拼、平移?

平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;?长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。? ?

28、三角形面积公式推导:旋转?

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;

平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2

29、梯形面积公式推导:旋转? ? ? ? ? ? ? ? ? ? ? ? ? ?

30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

31、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

? ?等底等高的平行四边形面积是三角形面积的2倍。

32、长方形框架拉成平行四边形,周长不变,面积变小。

33、组合图形面积计算:必须转化成已学的简单图形。

当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。

当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。

第七单元植树问题?

34、不封闭栽树问题:

(1)一条路的一边两端都栽树=路长÷间隔+1;

?已知间隔数,树的棵树,求路长。路长=间隔数×(树的棵树-1)

(2)一条路的两边两端都栽树=(路长÷间隔+1)×2

(3)一条路的一边两端不栽树=路长÷间隔-1

(4)一条路的两边两端不栽树=(路长÷间隔-1)×2

(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)

35、封闭图形四周栽树问题:栽树棵树=周长÷间隔

36、鸡兔同笼问题:(龟鹤问题、大船小船问题)

(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子),先求鸡的只数

?鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数)

兔的只数:总头数-鸡的只数

算术假设法2:假设几只都是鸡,(都是脚少的鸡),先求兔子的只数

兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)

鸡的只数:总头数-兔子的只数

(2)方程法:设兔子有x只,则兔子脚有2x只。那么鸡有(总头数-x)只

根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数,再算出鸡的只数。

即:4x+2×(总头数-x)=总脚数

补充内容:观察物体

36、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。(习惯上我们从左面、正面、上面看,把这三种视图统称三视图)37、图形的运动:轴对称图形。

(1)沿一条直线对折后,两边完全重合的图形叫做轴对称图形,这条直线叫做对称轴。圆有无数条对称轴。正方形有4条对称轴。等边三角形有3条对称轴。长方形有2条对称轴。等腰三角形和等腰梯形有1条对称轴。

(2)轴对称图形的特点:?沿对称轴对折,两边完全重合。?每一组对应点到对称轴距离度相等。对应点之间的连线与对称轴互相垂直。

(3)要能根据对称轴画出对称图形的另一半。

38、数字编码:

(1)数不仅可以用来表示数量和顺序,还可以用来编码。

(2)邮政编码由6位数字组成,前2位表示省;前3位表示邮区,前4位表示县市,最后2位表示投递局(大地基乡投递局)

(3)身份证18位:第7至14位表示出生年月日??倒数第二位的数字表示性别,单数-男,双数-女

? (4)根据卡号信息、运动员编号信息、门牌信息填写编码规律。

小学五年级数学知识点归纳整理

小学五年级数学知识点归纳 五年级上册 知识点概念总结 1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 2.小数乘法法则 先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。 3.小数除法 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 4.除数是整数的小数除法计算法则 先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。 5.除数是小数的除法计算法则 先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 6.积的近似数: 四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。 7.数的互化 (1)小数化成分数 原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 (2)分数化成小数 用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 (4)小数化成百分数 只要把小数点向右移动两位,同时在后面添上百分号。 (5)百分数化成小数 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 (6)分数化成百分数 通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (7)百分数化成小数 先把百分数改写成分数,能约分的要约成最简分数。 8.小数的分类 (1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 41.7 、 25.3 、 0.23 都是有限小数。 (2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: 4.33 …… 3.1415926 ……(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 (4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 …… 0.0333 …… 12.109109 ……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: 3.99 ……的循环节是“ 9 ”,0.5454 ……的循环节是“ 54 ”。 9. 循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。 10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。 11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可) 方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。 12.方程的解 使方程左右两边相等的未知数的值,叫做方程的解。

部编版五年级上册知识点汇总

部编版小学语文五年级上册知识点汇总 ◆◆第一单元◆◆ 一、难读的字 长喙(huì) 玻璃框(kuànɡ) 镜匣(xiá) 嗜好(shì) 榨油(zhà)半亩(mǔ) 茅亭(tínɡ) 爱慕(mù) 糕饼(bǐnɡ) 叶蔓(màn) 眼睑(jiǎn) 眸子(móu) 二、难写的字 匣:被包部分是“甲”,不要写成“田”。 鹤:左边是“隺”,不要写成“隹”。 浇:右边是“尧”,上面不要多写一点。 缠:右边不是“厘”,不要少写一点。 三、形近字组词 宜(适宜) 宣(宣传) 嫌(嫌弃) 谦(谦虚) 框(画框) 眶(眼眶) 浇(浇水) 烧(发烧) 吩(吩咐) 纷(纷乱) 慕(爱慕) 幕(银幕) 浸(沉浸) 侵(侵犯) 捡(捡起) 检(检查) 杭(杭州) 抗(反抗) 豪(文豪) 毫(丝毫) 享(享受) 亨(亨通) 咂(咂嘴) 砸(砸碎) 四、多音字组词

散sǎn(散文诗) sàn(分散) 便pián(便宜) biàn(方便) 挨āi(挨近) ái(挨打) 笼lónɡ(鸟笼) lǒnɡ(笼罩) 五、重点词语 精巧色素配合身段生硬寻常常见忘却结构青色清晨安稳 悠然黄昏恩惠播种浇水收获食品吩咐天色好处榨油爱慕 成熟体面桂花台风糕饼至少完整茶叶流线型散文诗木兰花美中不足 六、近义词 精巧——精美寻常——平常 忘却——忘记恩惠——恩泽 爱慕——羡慕完整——完好

七、反义词 忘却——牢记寻常——特别 安稳——危急成熟——幼稚 完整——残缺美中不足——十全十美 八、词语搭配 ( 精巧)的诗( 优美)的歌(细腻)的绒毛( 美好)的境界( 使劲)地摇( 仔细)地寻找(开辟)空地睡得(好熟) ( 摇落)桂花( 放开)胆子 九、课文重点理解: 1.《白鹭》通过对白鹭的描写,突出了白鹭的平凡而美好、朴素而高洁的特点, 赞颂了白鹭的美。 2.《落花生》采用了借物喻人的写法,赞美了花生不图名利,默默奉献的品格, 说明做人要做有用的人,不要做只讲体面,而对别人没有好处的人。 3.《桂花雨》表现了儿时生活的乐趣,字里行间充满了对家乡、对童年生活的 无比怀念。 4.《珍珠鸟》一文写出了珍珠鸟由怕人到信赖人的变化过程,让我们深刻地体

人教版五年级上册数学知识点整理

五年级上册数学知识点整理 一、小数的乘法 (1)小数乘法计算法则: ①先按整数乘法算出积,再给积点上小数点。 ②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。 ③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。 (2)一个数(0除外)乘大于1的数时,积比原来的数大。 一个数(0除外)乘小于1的数时,积比原来的数小。 一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。 一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。 (3)四舍五入后的数字末尾的0不能去掉。 小数4.7 “四舍五入”前的最大两位小数是4.74,最小是4.65 (4)简便运算:运算定律乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c 25×4=100,125×8=1000 (5)小数的四则运算顺序跟整数是一样的。 先乘除,后加减,有括号,先算括号里面的;连乘,连加按从左到右的顺序计算。 二、位置 (1)用数对表示,先表示出几列,再表示出几行。如(3,5)表示3列5行。 (2)平移时数对中后面的数字不变。上下移动时数对中前面的数字不变。 三、小数的除法 (1)小数除以整数的计算方法: ①按整数除法的方法去除。 ②商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上小数点。 ③如果有余数,要添0再除。 (2)一个数除以小数的算理

一看---看除数中一共有几位小数。二移---把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,当被除数的位数不足时,用“0”补足。三算---按照除数是整数的小数除法的方法计算。, (3)被除数和除数同时扩大(缩小)相同的倍数,商不变。 被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。 被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。 (4)商的近似数 小数除法所得的商可以根据需要用“四舍五入”法保留一定的小数位数,求商的近似数。计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。 (5)循环小数 一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像5.3333…和7.14545…都是循环小数。 一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。例如:5.3333…的循环节是3。 简便记法5.3333…可以记做--- 7.14545…可以记做---小数部分的位数是有限的小数,叫做有限小数。例如:0.9375是一个有限小数。小数部分的位数是无限的小数,叫做无限小数。例如,0.2142854142857…就是一个无限小数. 循环小数一定是无限小数,无限小数不一定是循环小数。 (6)解决问题 在解决实际问题中,根据实际需要取商的近似数,用(去尾法,进一法) 例如:装水或装油等用进一法,做衣服,包装礼盒用去尾法。 (7)求近似数的方法一般有三种: ⑴四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。 ⑵进一法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都要向它的前一位进1。如:把400千克粮食装进麻袋,如果每条麻袋只能装75千克,至少需要几条麻袋?因为400÷75=5.33……就是说,400千克粮食装5条麻袋还余25千克,这25千克还需要用一条麻袋来装,所以一共需要6条麻袋。即:400÷75=5.33……≈6(条)这种求近似数的方法,叫做进一法。

五年级数学知识点整理

第一单元小数除法 1、小数除法的意义: 与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另个因数的运算。 2、小数除法的计算法则: (1)除数就是整数:①按照整数除法的法则去除;②商的小数点要与被除数的小数点对齐(重点!) ③每一位商都要写在被除数相同数位的上面。④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。 ⑤除得的商的哪一数位上不够商,就在那一位上写0占位。 (2)除数就是小数: ①先瞧除数中有几位小数,就把除数与被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足; ②然后按照除数就是整数的小数除法计算。 3、商不变的规律: 被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。简言之,被除数与除数同时扩大或者同时缩小相同的倍数,商不变。 4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。 被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。 5、被除数比除数大的,商大于1。被除数比除数小的,商小于1。 6、一个数(0除外)除以1,商等于原来的数。(一个数除以1,还等于这个数) 一个数(0除外)除以大于1的数,商比原来的数小。一个数(0除外)除以小于1的数,商比原来的数大。 0除以一个非零的数还得0 。0不能作除数。 7、 8、近似值相关知识点: (1)求商的近似值:计算时要比保留的小数多一位。 求积的近似值:计算出整个积的值后再去近似值。 (2)取商的近似值的方法:“四舍五入”法、“进一法”与“去尾法” 在解决问题的时候,可以根据实际情况选择“进一法”与“去尾法” 取商的近似值。 (3)保留商的近似值,小数末尾的0不能去掉。 9、循环小数相关知识点: (1)小数分类:可以分为无限小数与有限小数。小数部分的位数就是有限的小数,叫做有限小数。小数部分就是无限的小数叫做无限小数。循环小数就就是无限小数中的一种。 (2)循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

五年级(上册)数学知识点归纳

人教版小学数学五年级(上册)各单元【知识点】 第一单元《小数乘法》 一、小数乘整数的计算方法: 1、先将小数转化成整数 2、再按照整数乘法的计算方法算出积 3、最后确定积的小数点的位置。 4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。 二、小数乘小数的算理及计算方法: 注意:乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。 例如:25×4=100; 250×4=1000;125×8=1000; 125×80=10000 3、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。 用字母表示:(a+b)×c=a×c+b×c ,或者是:a×c+b×c=(a+b)×c 注意:简便计算中乘法分配律及其逆运算是运用最广泛的一个,一定要掌握它和它的逆运算。 4、个数相乘,如果有接近整十、整百、整千……的数,可以将其转化成整十、整百、整千数……加(或减)一个数的形式,再用乘法分配律进行计算。

八、整数乘法运算定律在小数乘法中的应用: 1.整数乘法的交换律、结合律和分配律,对于小数乘法也适用。 2.计算连乘时可应用乘法交换律、结合律将乘积是整数的两个数先乘,再乘另一个数;计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。 3.对于不符合运算定律的算式,可通过变形再进行应用。 错点警示:小数乘整数的积的末尾有0时,一定要 先点积中的小数点,再去掉积中小数部分 末尾的0。 规避策略:牢记计算方法和解题过程,先按整数乘 法计算,再数小数位数,确定小数点的位 置,最后去掉 小数部分末 尾的0。 第二单元《位置》 一、对行和列的认识。 1、横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。 二、对数列的认识和表示方法。 1、用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。 2、用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。 3、写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开。写作:(列,行)。 4、数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。 5、一组数对只能表示一个位置。 6、表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。 8、表示位置有绝招,一组数据把它标。竖线为列横为行,列先行后不可调。 一列一行一括号,逗号分隔标明了。 三、物体移动引起数对的变化。 1、在方格纸或田字格上,物体左、右移动(向左或向右平移),行数不变,列数等于减去或加上平移的格数;物体上、下移动(向上或向下平移),列数不变,行数等于加上或减去平移的格数。

五年级数学下册全册知识点总结

五年级数学下册全册知识点总结 第一单元观察物体 1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。 2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。 3、从一个方向看到的图形摆立体图形,有多种摆法。 4、从多个角度观察立体图形 先根据平面图分析出要拼搭的立体图形有几层; 然后确定要拼搭的立体图形有几排; 最后根据平面图形确定每层和每排的小正方体的个数。 第二单元因数和倍数 1、整除:被除数、除数和商都是自然数,并且没有余数。 大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,最小的倍数是它本身。 2、自然数按能不能被2整除来分:奇数、偶数 奇数:不能被2整除的数 偶数:能被2整除的数。 最小的奇数是1,最小的偶数是0. 个位上是0,2,4,6,8的数都是2的倍数。 个位上是0或5的数,是5的倍数。 一个数各位上的数的和是3的倍数,这个数就是3的倍数。 能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1. 质数:有且只有两个因数,1和它本身 合数:至少有三个因数,1、它本身、别的因数 1:只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 4、分解质因数 用短除法分解质因数(一个合数写成几个质数相乘的形式) 5、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。 用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况: 1和任何自然数互质;相邻两个自然数互质;两个质数一定互质; 2和所有奇数互质;质数与比它小的合数互质; 如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 6、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

最新人教版小学五年级数学上册知识点归纳汇总

精选教育类相关文档,希望能帮助到您! 最新人教版小学五年级数学上册知识点归纳汇总 温馨提示:同学们,一个学期的学习已经结束,你记住咱们本学期学习的东西了吗?让我们一起来回顾下我们这学期各单元重要知识点吧!最后,祝各位同学们在期末的考试里取得好成绩。 第一单元小数乘法 1、小数乘整数: @意义——求几个相同加数的和的简便运算。 如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。 @计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 2、小数乘小数:

@意义——就是求这个数的几分之几是多少。 如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。 @计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。 3、规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 4、求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。 6、小数四则运算顺序和运算定律跟整数是一样的。 7、运算定律和性质: @ 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

@ 减法: a-b-c=a-(b+c) a-(b+c)=a-b-c @ 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 @ 除法: a÷b÷c=a÷(b×c) a÷(b×c) =a÷b÷c 第二单元位置 1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。 2、作用:一组数对确定唯一一个点的位置。经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

新人教版五年级数学上册知识点归纳

新人教版五年级数学上册知识点归纳 第一单元《小数乘法》 1.小数乘整数 先按整数乘法来计算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。 积的小数末尾有0的把0去掉。 2.小数乘小数 先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。 积的小数位数不够时,需要添0补位。积的小数末尾有0的要把0去掉。(积的末尾与因数的末尾对齐) 乘法中的规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 3.积的近似数 (1)用“四舍五入”法求积的近似数。首先明确要保留的小数位数;再把保留的小数位数下一位的数字“四舍五入”(大于等于5向前一位进1,小于5舍去)。(2)进一法(3)去尾法 计算钱数时, 保留两位小数,表示精确到分。 保留一位小数,表示精确到角。 4.连乘、乘加、乘减运算顺序 (1)小数连乘,按照从左往右的顺序依次运算。 (2)乘加、乘减运算顺序: 无括号的,先算乘法,再算加减; 有括号的,先算括号里面的,再算括号外面的。 5.整数乘法运算定律推广到小数 加法:加法交换律:a+b=b+a 加法结合律: (a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c - b×c 除法: 除法性质:a÷b÷c=a÷(b×c) a÷b÷c= a÷c÷b 第二单元《位置》 1.竖排为列,横排为行。 2.列数,一般从左往右数;行数,一般从前往后数。 数列数和行数时,数的起始点和方向不要弄错。 3.数对表示一个确定的位置。列在前,行在后,两数之间用逗号隔开,如(列数,行数)。 第三单元《小数除法》 1.小数除法计算法则 (1)小数除以整数,按照整数除法的计算法则计算,商的小数点要和被除数的小数点对齐,有余数时可在余数后补0继续除。 被除数的整数部分比除数小,不够商1要商0,点上小数点继续除。 (2)一个数除以小数,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够时,在被除数的末尾用0补足),然后按照除数是整数的计算法则计算。 (3)除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大或缩小,商随着扩大或缩小。(同大同小) ③被除数不变,除数缩小或扩大,商反而扩大或缩小。(大小相反) 除法中的规律: 一个数(0除外)除以大于1的数,商比原来的数小; 一个数(0除外)除以小于1的数,商比原来的数大。 2.商的近似数 求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。 3.循环小数 (1)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

人教版五年级数学下册知识点归纳复习总结

人教版五年级数学下册知识点归纳总结 第一单元观察物体(三) 1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。 2、不可能一次看到长方体或正方体相对的面。 注意点 1)这里所说的正面、左面和上面,都是相对于观察者而言的。 2)站在任意一个位置,最多只能看到长方体的3个面。 3)从不同的位置观察物体,看到的形状可能是不同的。 4)从一个或两个方向看到的图形是不能确定立体图形的形状的。 5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。 6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。 7)要确定一个图形形状需要观察三个面才可以,分别是正面、上面和侧面。 第二单元因数和倍数 1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。 2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 例:12是6的倍数,6是12的因数。 (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。这里的倍数和因数都是指整数。 (2)一个数的因数的求法:成对地按顺序找。比如18的因数有1x18=18,2x9=18,3x6=18;因此18的因数有1.2.3.6.9.18.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 (3)一个数的倍数的求法:依次乘以自然数。比如2的倍数有2x1=2,2x2=4,2x3=6,2x4=8,2x5=10……..等,那么2.4.6.8.10…….等就是2的倍数。一个数的倍数的个数是无限的,最小的倍数是它本身。 (4)2、3、5的倍数特征 1)个位上是0,2,4,6,8的数都是2的倍数。 2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。 3)个位上是0或5的数,是5的倍数。 4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。 5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。 3、自然数按能不能被2整除来分:奇数、偶数。 奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。 最小的奇数是1,最小的偶数是0. 关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

人教版五年级下册数学知识点整理

第一单元 图形的变换 一、平移 物体或图形平移后本身的形状、大小和方向都不会改变。 二、轴对称1、轴对称图形: 把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直; ③对称轴两边的图形大小、形状完全相同。 3、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形 三、旋转 1、物体旋转时应抓住三点: ① 旋转中心;② 旋转方向;③ 旋转角度。 2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。 第二单元 因数和倍数 1、像0、1、 2、 3、 4、 5、6……这样的数是自然数。 因数和倍数 所指的是整数,不包括0。因为0和任何数相乘都等于0;0除以任何数都等于0。 如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。 因数和倍数是相互依存的,不能单独存在。 二、因数 1、一个数的因数的个数是有限的。一个数的最小因数是1,最大的因数是它本身。 2、一个数的因数的求法:成对地按顺序找。 三、倍数 1、一个数的倍数的个数是无限的。一个数的最小倍数是它本身,没有最大的倍数。 2、一个数的倍数的求法:依次乘以自然数。 四、2、5、3的倍数的特征 1、2的倍数的特征:个位上是0、 2、4、6、8的数,都是2的倍数。2、偶数与奇数: ①自然数中,是2的倍数的数叫做偶数(0也是偶数);最小的偶数是0。 ②不是2的倍数的数叫做奇数;最小的奇数是1。3、5的倍数的特征:个位上是0或5的数,都是5的倍数。 4、3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 5、如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。 五、质数和合数 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),最小的质数是2。 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,最小的合数是4。1既不是质数,也不是合数。 质数只有两个因数;而合数至少有三个因数。 六、 1 按是否是2的倍数来分:分为奇数和偶数两类; 按因数的个数来分:分为质数、合数和1三类。 2、奇数+奇数=偶数 偶数+偶数=偶数 奇数+偶数=奇数 奇数×奇数=奇数 质数×质数=合数 第三单元 长方体和正方体

最新人教版小学五年级语文上册全册知识点总结

最新人教版小学五年级语文上册全册知识点总结 ◆◆第一单元◆◆ 一、难读的字 长喙(huì) 玻璃框(kuànɡ) 镜匣(xiá) 嗜好(shì) 榨油(zhà) 半亩(mǔ) 茅亭(tínɡ) 爱慕(mù) 糕饼(bǐnɡ) 叶蔓(màn) 眼睑(jiǎn) 眸子(móu) 二、难写的字 匣:被包部分是“甲”,不要写成“田”。 鹤:左边是“隺”,不要写成“隹”。 浇:右边是“尧”,上面不要多写一点。 缠:右边不是“厘”,不要少写一点。 三、形近字组词 宜(适宜) 宣(宣传) 嫌(嫌弃)谦(谦虚) 框(画框) 眶(眼眶)浇(浇水) 烧(发烧) 吩(吩咐)纷(纷乱)慕(爱慕)幕(银幕)浸(沉浸) 侵(侵犯) 捡(捡起) 检(检查) 杭(杭州) 抗(反抗) 豪(文豪)毫(丝毫)享(享受) 亨(亨通)咂(咂嘴)砸(砸碎)

四、多音字组词 散sǎn(散文诗) sàn(分散) 便pián(便宜) biàn(方便) 挨āi(挨近) ái(挨打) 笼lónɡ(鸟笼)lǒnɡ(笼罩) 五、重点词语 精巧色素配合身段生硬寻常常见忘却结构青色清晨安稳 悠然黄昏恩惠播种浇水收获食品吩咐天色好处榨油爱慕 成熟体面桂花台风糕饼至少完整茶叶流线型散文诗 木兰花美中不足 六、近义词 精巧——精美寻常——平常 忘却——忘记恩惠——恩泽 爱慕——羡慕完整——完好 七、反义词 忘却——牢记寻常——特别安稳——危急成熟——幼稚 完整——残缺美中不足——十全十美 八、词语搭配

( 精巧)的诗( 优美)的歌(细腻)的绒毛( 美好)的境界 ( 使劲)地摇( 仔细)地寻找(开辟)空地睡得(好熟) ( 摇落)桂花( 放开)胆子 九、课文重点理解: 1.《白鹭》通过对白鹭的描写,突出了白鹭的平凡而美好、朴素而高洁的特点,赞颂了白鹭的美。 2.《落花生》采用了借物喻人的写法,赞美了花生不图名利,默默奉献的品格,说明做人要做有用的人,不要做只讲体面,而对别人没有好处的人。 3.《桂花雨》表现了儿时生活的乐趣,字里行间充满了对家乡、对童年生活的无比怀念。 4.《珍珠鸟》一文写出了珍珠鸟由怕人到信赖人的变化过程,让我们深刻地体会到:无论是人与鸟,人与人之间,都需要真诚的信赖。信赖,是创造美好境界的基础。 ◆◆第二单元◆◆ 一、难读的字: 渑池(miǎn)和氏璧(bì)抵御(yù)廉颇(lián ) 推辞(cí)蔺相如(lìn )游隼(sǔn )上卿(qīng )

新人教版小学五年级数学上册知识点总结

新人教版小学五年级上册数学知识点总结 第一单元小数乘法 1、小数乘整数:意义——求几个相同加数的和的简便运算。 如:1.5×3表示3个1.5的和的简便运算。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 2、小数乘小数:意义——就是求这个数的几分之几是多少。 如:1.5×0.8就是求1.5的十分之八是多少。 1.5×1.8就是求1.5的1.8倍是多少。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小 用0占位。 3、规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法 5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。 6、(P11)小数四则运算顺序跟整数是一样的: 7、运算定律和性质: 加法:加法交换 a+b=b+a加法结合律 (a+b)+c=a+(b+c) 减法:减法性质a-b-c=a-(b+c)(减法连减,减去他们的和,注意添加括号) 乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】 除法:除法性质a÷b÷c=a÷(b×c)(除法连除,除以它们的积,注意添加括号) 第二单元位置 数对(a,b) a表示第几列 b表示第几行列横数行竖数 第三单元小数除法 1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。 如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 2、小数除以整数的计算方法(P16):

小学一至五年级数学概念知识点梳理

小学一至五年级数学概念知识点梳理 基本公式: 1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数

8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式: 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2

C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2

s=(a+b)× h÷2 8 圆形 S面积C周长πd=直径r=半径 (1)周长=直径×π=2×π×半径 C=πd=2πr (2)面积=半径×半径×n 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 和差问题的公式: 总数÷总份数=平均数 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数

(完整版)五年级数学知识点整理

第一单元小数除法 1.小数除法的意义: 与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因 数的运算。 2.小数除法的计算法则: (1)除数是整数:①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!) ③每一位商都要写在被除数相同数位的上面。④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。 ⑤除得的商的哪一数位上不够商,就在那一位上写0占位。 (2)除数是小数: ①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。 3、商不变的规律: 被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。 4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a倍。 被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a倍。 5、被除数比除数大的,商大于1。被除数比除数小的,商小于1。 6、一个数(0除外)除以1,商等于原来的数。(一个数除以1,还等于这 个数) 一个数(0除外)除以大于1的数,商比原来的数小。一个数(0除外)除以小于1的数,商比原来的数大。 0除以一个非零的数还得0 。0不能作除数。 7、 汉语表达A除以B A除B A去除B A被B除列式A÷B B÷A B÷A A÷B 8、近似值相关知识点: (1)求商的近似值:计算时要比保留的小数多一位。 求积的近似值:计算出整个积的值后再去近似值。 (2)取商的近似值的方法:“四舍五入”法、“进一法”和“去尾法” 在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法” 取商的近似值。 (3)保留商的近似值,小数末尾的0不能去掉。 9、循环小数相关知识点: (1)小数分类:可以分为无限小数和有限小数。小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无 限小数中的一种。 (2)循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几

五年级上册知识点汇总

五年级上册知识点汇总 班级________ 姓名________ 分数________ 一、默写下列单词 U nit 1 What’s he like? 1. 有帮助的____ 2. 滑稽可笑的____ __ 3. 年轻的____ _ 4.和蔼的___ ___ 5.严格的. ____ _ 6. 害羞的;_____ _ 7.勤奋的________ 8. 年老的____ _ 9.聪明的______ _10.有礼貌的________ Unit 2 My week 1. 星期六______ _ ____ _ 2. 周末_______ __ 3.星期三_______ _ ____ _ 4. 星期天_______ _ ____ _ 5.星期五_______ _ ____ _ 6. 星期一_ _______ _ ____ _ 7. 星期四_______ _ ____ _. 8. 星期二_______ _ ____ _ 9. 看书_______ _ 10.看电视__________ 11. 踢足球_______ _ 12. 洗衣服__________ _ 13. 做作业__________ 14.做体育运动________ Unit 3 What would you like? 1. 冰淇淋_____ _ 2.汉堡包_______ 3. 辣的_____ 4.美味的___ _ 5.健康的_____ 6.新鲜的_____ _ 7. 三明治____ __ 8.茶水___ ____ 9.蔬菜沙拉_______ _10.甜的___ _____

Unit4 What can you d oi ? 1.画漫画______ ____ 2.说英语______ ____ 3. 唱英文歌曲______ ____ 4. 弹琵琶______ ___ 5. 打篮球_______ ___ 6. 练武术______ _____ 7.游泳_____ __ 8.烹调_____ _ 9. 打乒乓球____ _____10. 跳舞______ _ Unit 5 There is a big bed. 1. 在…上面_____ __ 2. 在…的后面___ __ 3. 在……前面____ __ 4在…旁边_ __ ____ 5.在…之间;____ __ 6.自行车__ ___ 7.水瓶__ ___8. 植物__ __9. 相片_ _____ 10. 时钟__ ______ Unit 6 In a nature park. 1.高山_______ 2.小山_______ 3.森林_______ 4.树木_____ __ 5.村庄____ ___ 6.建筑物____ ___ 7.房子____ ___ 8.is not=_____ __ 9.河流_____ __10.湖泊____ ___11.桥_____ __ 12.are not=_____ __ 二、对划线部分提问 1.? I can do some kung fu . 2.? The cat is und er the bed. 3.? He is funny. 4.? I’d like some water. 5.? I have maths.English and music on Wednesdays. 6.?I often do homework on Sundays .

小学数学五年级上册所有知识点大全

小学数学五年级上册知识点 第一单元小数乘法 1、计算小数乘法的方法,先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的位数不够时,用0补位,再点小数点。 2、两个不为0的数相乘,当一个因数比1小,它们的积比另一个因数小;当一个因数比1大,它们的积比另一个因数大;当一个因数等于1,它们的积等于另一个因数。 3、做乘法的估算,通常是把不是整个、整十、整百的数看成与它接近的整个、整十、整百的数后再估算。关键是化繁为简。 4、求积的近似值,通常是根据实际需要,确定应该保留几位小数,用“四舍五入”法保留一定的小数位数,求出积的近似值。 5、解决问题:分析题中的数量关系,根据数量关系列出算式,再算出结果。如本单元典型数量关系: (1)读天然气表,电表或水表,算本月的费用通常是本月读数-上月读数=实际用 量单价×实际用量= 本月费用 (2)出租车计费,通常有 起步价+规定路程外按一定单价计价的出租车费=一共要付的费用 演变一:(一共要付的费用-起步价)÷起步价规定路程外的单价+起步价包括的路程=总路程上网费、停车费与出租车费道理相通。 (3)工程问题中,通常有:工作效率×工作时间=工作总量 演变一:工作效率×工作时间×工作队伍数=工作总量 演变二:工作总量÷工作时间÷工作队伍数=工作效率 每一个基本的数量关系都可以有很多不同的演变。 第二单元图形的平移、旋转与对称 1、图形平移后形状、大小都不变,只是位置发生了变化。描述图形的平移路线时要说清楚图形平移的方向和平移的距离。 画平移后的图形的方法:平移前,先确定一个点,看这个点会平移到哪儿,保证平移的格数正确;二是注意看原来的图中的每条线段各占几格,保证图形和原来一样。 2、与时针旋转的方向相同,通常叫顺时针方向旋转。与时针旋转方向相反,通常叫逆时针方向旋转。 3、图形旋转时总是绕着一个固定的点转动的。 描述图形的旋转路线时要说清楚图形绕哪个点沿哪个方向旋转了多少度。画旋转后的图形的方法:旋转前,先确定一条线段,用这条关键的线段的旋转来判断这个图形的旋转。 4、沿一条直线对折后,两部分能完全重合的图形叫轴对称图形,折痕所在的直线叫做对称轴。 轴对称图形中,有的只有1条对称轴,有的不止1条对称轴。 长方形有2条对称轴;正方形有4条对称轴;等腰三角形有1条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;圆有无数条对称轴。平行四边形不是轴对称图形。 5、画轴对称图形的另一半时要注意:一是对称轴两边图形所对应的方格数要相同:二

【精选】人教版五年级下册数学知识点汇总

【精选】人教版五年级下册数学知识点汇总 第六单元分数的加减法 1、分数数的加法和减法 (1)同分母分数加、减法(分母不变,分子相加减) (2)异分母分数加、减法(通分后再加减) (3)分数加减混合运算:同整数。 (4)结果要是最简分数 2、带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。 附:具体解释 一、同分母分数加、减法 1、同分母分数加、减法: 同分母分数相加、减,分母不变,只把分子相加减。 2、计算的结果,能约分的要约成最简分数。 二、异分母分数加、减法 1、分母不同,也就是分数单位不同,不能直接相加、减。 2、异分母分数的加减法: 异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 三、分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。 2、整数加法的交换律、结合律对分数加法同样适用。 第七单元统计 1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。 众数能够反映一组数据的集中情况。 在一组数据中,众数可能不止一个,也可能没有众数。 2、中位数: (1)按大小排列; (2)如果数据的个数是单数,那么最中间的那个数就是中位数;(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。 3、平均数的求法: 总数÷总份数=平均数 4、一组数据的一般水平: (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。 (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

相关文档
相关文档 最新文档