文档库 最新最全的文档下载
当前位置:文档库 › 高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析
高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳

一、选择题

1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )

A .

643

π B .8316π

π+

C .28π

D .8216π

π+

【答案】B 【解析】 【分析】

结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】

结合三视图,还原直观图,得到

故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】

本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.

2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存

在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7

B .3

C .1+3

D .2

【答案】A 【解析】 【分析】

把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】

把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,

Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=.

所以11=90+60=150MA D ∠o o o

221111111113

2cos 13223()72

MD A D A M A D A M MA D ∴=+-∠=+-??-

??=

故选A . 【点睛】

本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.

3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1

C .2:1

D 102

【答案】A

【解析】 【分析】

设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】

设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长22910l r r r =+=,

∴圆锥SC 的侧面积为210rl r ππ=;

圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=

?=,234r h r ππ∴=,4

r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ?==,

∴圆锥SC 与圆柱OM 的侧面积之比为2210:10:1r r ππ=.

故选:A . 【点睛】

本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.

4.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )

A .8(6623)+

B .6(8823)+

C .8(632)+

D .6(8832)+ 【答案】A 【解析】 【分析】

该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】

由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为22,则该几何体的表面积为

2116(222)42282322S ??

=?+-???+???????

8(6623)=++.

故选:A. 【点睛】

本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.

5.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )

A .

34

B .

234

C .

517

D .

317

【答案】D 【解析】 【分析】

首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ?中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ?中利用余弦定理即可得解. 【详解】

如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,

则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.

因为F 是PA 的中点,G 是AB 的中点,

所以FG 为ABP ?的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1

222

HG AC =

=.

在PCD ?中,由余弦定理可得2223636167

cos 22669

PD PC CD DPC PD PC +-+-∠===???,

则2222cos 17CE PC PE PC PE DPC =+-?∠=,即17CE =.

在GFH ?中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=?317

2317

==

??. 故选:D 【点睛】

本题考查异面直线所成的角,余弦定理解三角形,属于中档题.

6.《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为23厘米,瓶颈到水位线距离和水位线到瓶底距离均为3

32

厘米,现将1颗石子投入瓶中,发现水位线上移

3

厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )

A .2颗

B .3颗

C .4颗

D .5颗

【答案】C 【解析】 【分析】

利用图形中的数据,分别算出石子的体积和空瓶的体积即可. 【详解】

如图,9,3,33AB cm EF GH cm LO cm ===

=

所以60A ∠=?,原水位线直径6CD cm =,投入石子后,水位线直径5IJ cm = 则由圆台的体积公式可得石子的体积为:

()22319133MN CN IM CN IM cm ππ??++?= 空瓶的体积为:(

)

22

2

1

3

LN CN EL CN EL EL KL ππ?++?+??

633363993888

πππ

=

+=

所以需要石子的个数为:

()99329783,491913π

π

=∈ 所以至少需要4颗石子 故选:C 【点睛】

本题考查的是圆台和圆柱体积的算法,掌握其公式是解题的关键.

7.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )

A .

23

B .

13

C .

12

D .

34

【答案】B 【解析】

分析:先还原几何体,再根据锥体体积公式求结果.

详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于

21111=33??, 选B.

点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.

8.在以下命题中:

①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r

共面;

②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r

共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r

,则P ,

A ,

B ,

C 四点共面

④若a r ,b r

是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空

间的一个基底

⑤若{}

,,a b c r r r 为空间的一个基底,则{}

,,a b b c c a +++r r r r r r

构成空间的另一个基底;

其中真命题的个数是( ) A .0 B .1

C .2

D .3

【答案】D 【解析】 【分析】

根据空间向量的运算法则,逐一判断即可得到结论. 【详解】

①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r

c r

共面,故①正确;

②由空间基底的定义知,若两个非零向量a r ,b r

与任何一个向量都不能构成空间的一个基底,则a r

,b r

共线,故②正确;

③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;

④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r

构成的平面共面,则{}

,,a b c r r r 不

能构成空间的一个基底,故④错误;

⑤利用反证法:若{}

,,a b b c c a +++r r r r r r

不构成空间的一个基底, 设()()(

)1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r 共面,又因{}

,,a b c r r r 为空间的一个基底,所以{

}

,,a b b c c a +++r r r r r r

能构成空间的一个基底,故⑤正确.

综上:①②⑤正确. 故选:D. 【点睛】

本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.

9.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ?为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .

272

π B .

283

π C .

263

π D .

252

π 【答案】B 【解析】 【分析】

计算出ABC ?的外接圆半径r

,利用公式R =可得出外接球的半径,进而可

得出三棱锥P ABC -的外接球的表面积. 【详解】

ABC ?

的外接圆半径为

2sin

3

AB r π

=

=

PA ⊥Q 底面ABC ,所以,三棱锥P ABC -

的外接球半径为

3R ===, 因此,三棱锥P ABC -

的外接球的表面积为2

2

284433R πππ?=?= ??

. 故选:B. 【点睛】

本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.

10.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )

A.16

9

π

B.

8

9

π

C.

16

27

π

D

8

27

π

【答案】A

【解析】

【分析】

根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.

【详解】

解:设圆柱的半径为r,高为x,体积为V,

则由题意可得

3

23

r x

-

=,

3

3

2

x r

∴=-,

∴圆柱的体积为23

()(3)(02)

2

V r r r r

π

=-<<,

则3

333

3

163331616

442

()(3)()

9442939

r r r

V r r r r

ππ

π

++-

=-=

g g g g

….

当且仅当

33

3

42

r r

=-,即

4

3

r=时等号成立.

∴圆柱的最大体积为

16

9

π

故选:A.

【点睛】

本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.

11.如图,在棱长为2的正方体1111

ABCD A B C D

-中,点M是AD的中点,动点P在底面ABCD内(不包括边界),若1B P P平面1A BM,则1C P的最小值是()

A .305

B .230

5 C .

27

5

D .

47

5

【答案】B 【解析】 【分析】

在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】

如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD

//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I

∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)

又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值

此时,22512CP ==+ 2

21223025C P ??∴≥+= ???

本题正确选项:B 【点睛】

本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.

12.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )

A .,,m l m l βα⊥?⊥

B .,,m l l m αβα⊥?=?

C .//,,m l m l αβ⊥⊥

D .,//,//l m l m αβ⊥

【答案】D 【解析】 【分析】

A ,有可能出现α,β平行这种情况.

B ,会出现平面α,β相交但不垂直的情况.

C ,根据面面平行的性质定理判断.

D ,根据面面垂直的判定定理判断. 【详解】

对于A ,m l ⊥,m β?,若l β⊥,则//αβ,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;

对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥?∥,故C 错误; 对于D ,l α⊥,m l m α?⊥∥,又由m βαβ?⊥∥,故D 正确. 故选:D 【点睛】

本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.

13.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为

1

4

圆周,则该不规则几何体的体积为( )

A .12

π+

B .

136

π+ C .12π+

D .

1233

π+ 【答案】B 【解析】 【分析】

根据三视图知该几何体是三棱锥与1

4

圆锥体的所得组合体,结合图中数据计算该组合体的体积即可. 【详解】

解:根据三视图知,该几何体是三棱锥与1

4

圆锥体的组合体, 如图所示;

则该组合体的体积为21111111212323436

V ππ=

????+???=+; 所以对应不规则几何体的体积为136

π

+. 故选B .

【点睛】

本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.

14.圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥

SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( ) A .9:32 B .8:27 C .9:22 D .9:28 【答案】A 【解析】 【分析】

根据已知条件求得圆锥母线与底面圆半径r 的关系,从而得到圆锥的高与r 关系,计算圆锥体积,由截面图得到外接球的半径R 与r 间的关系,计算球的体积,作比即可得到答案. 【详解】

设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl , 侧面积与底面积的比为2

πrl 2l

r r

π==,则母线l=2r,圆锥的高为223l r r -=, 则圆锥的体积为

23

13πh 3r r =, 设外接球的球心为O,半径为R,截面图如图,则3r R -,BD=r, 在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即)

2

223R r r R =+

-,

展开整理得,3所以外接球的体积为33

344333393

R ππ==,

故所求体积比为

3

3

3

9

3

3232

93

r

r

π

π

=

故选:A

【点睛】

本题考查圆锥与球的体积公式的应用,考查学生计算能力,属于中档题.

15.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()

A.PA,PB,PC两两垂直B.三棱锥P-ABC的体积为

8

3

C.||||||6

PA PB PC

===D.三棱锥P-ABC的侧面积为35

【答案】C

【解析】

【分析】

根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.

【详解】

解:根据三视图,可得三棱锥P-ABC的直观图如图所示,

其中D为AB的中点,PD⊥底面ABC.

所以三棱锥P-ABC的体积为

114

222

323

????=,

2AC BC PD ∴===

,AB ∴=

=,

||||||DA DB DC ∴===||||||PA PB PC ∴====

222

PA PB AB +≠Q ,PA ∴、PB 不可能垂直,

即,PA ,PB PC 不可能两两垂直,

1

22PBA S ?=?=Q 122PBC PAC S S ??===Q

三棱锥P -ABC 的侧面积为

故正确的为C. 故选:C. 【点睛】

本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.

16.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与

AC 所成角可能为( )

A .

12

π

B .

4

π

C .

512

π D .

2

π 【答案】C 【解析】 【分析】

根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与

AC 所成角,在利用余弦定理可得MQ =,易知PQ MQ =,所以在等腰三

角形PMQ 中()

cos 04QPM x ∠=

≤≤,即可求出

cos 123QPM ∠∈??

,,进而求出结果.

【详解】

取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:

设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,

在BMQ ?中,2

2

2

2

2cos 6042MQ BM BQ BM BQ x x =+-??=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2

cos 0442QPM x x x

∠=

≤≤+-,

所以33cos 123QPM ??∠∈????

,,

所以异面直线PQ 与AC 所成角可能为512π

. 故选:C. 【点睛】

本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.

17.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )

A 29

B .35

C 41

D .213【答案】C 【解析】 【分析】

由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离. 【详解】

由长方体的侧面展开图可得:

(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为

()

2

2461101++=()

2

241661++=()2

246165++=

(2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为

()2

2226213++=;

()2

2262217++=;()2

2262217++=.

(3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为

()

2

223441++=;

()

2

224335++=;()2

223453++=.

综上所述,沿着长方体的表面从A 点到B 点的最短距离为41. 故选:C . 【点睛】

本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.

18.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )

A .

152

π

B .12π

C .

112

π D .

212

π

【答案】A 【解析】 【分析】

由三视图可知,该几何体为由18的球体和1

4

的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】

由三视图可知,该几何体为由18的球体和1

4的圆锥体组成, 所以所求几何体的体积为11

+84

V V V =球圆锥,

因为31149=3=8832V ππ??球, 221111

=34344312

V r h πππ??=???=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152

π

. 故选:A 【点睛】

本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.

19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为

A .2

B .1

C .

32 D .

52

【答案】C 【解析】 【分析】

判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】

由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:

可得其面积为:1113

222111122222

?-??-??-??=,故选C . 【点睛】

本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.

20.已知,αβ是不同的两个平面,直线a α?,直线b β?,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件

【答案】B 【解析】

∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b

上)

∴命题p:a与b没有公共点?命题q:α∥β,为假命题又∵α∥β时,a与b平行或异面,即a与b没有公共点

∴命题q:α∥β?命题p:a与b没有公共点,为真命题;故p是q的必要不充分条件

故选B

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

新高考数学《不等式》练习题 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足 15150a S +=,则实数d 的取值范围是( )

A .[; B .(,-∞ C .) +∞ D .(,)-∞?+∞ 【答案】D 【解析】 【分析】 由等差数列的前n 项和公式转化条件得1 1322 a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】 Q 数列{}n a 为等差数列, ∴15154 55102 a d d S a ?=+ =+,∴()151********a S a a d +++==, 由10a ≠可得 1 1322 a d a =--, 当10a > 时,1111332222a a d a a ??=--=-+≤-= ??? 1a 时等号成立; 当10a < 时,1 1322a d a =--≥= 1a =立; ∴实数d 的取值范围为(,)-∞?+∞. 故选:D. 【点睛】 本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题. 3.已知关于x 的不等式()()2 22240m x m x -+-+>得解集为R ,则实数m 的取值范 围是( ) A .()2,6 B .()(),26,-∞+∞U C .(](),26,-∞?+∞ D .[)2,6 【答案】D 【解析】 【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数 m 的取值范围. 【详解】

中考数学易错题题目(经典)

O G F B D A C E 1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2 cm . 2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区 进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( ) 3 如图,将沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且1 2 EF AB =;②BAF CAF ∠=∠; ③1 2 ADFE S AF DE =g 四边形; ④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .4 4 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。在这个过程中,△APD 的面积S 随时间t 的变 化关系用图象表示正确的是( ) 5如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.别交AB 、AC 于点E 、G.连接GF.下列结论:①∠AGD=112.5°;②③S △AGD=S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG.是 . 6 福娃们在一起探讨研究下面的题目: 参考下面福 娃们的讨 论,请你解该题,你选择的答案是( ) 贝 贝:我注意 s t O A s t O B s t O C s t O D A D C E F G B s 80 O v t 80 O v 80 O t v O A . B. C . D . 80 A D B F E 第20题图 D C B P A 函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时, 函数值( ) A .0y < B .0y m << C .y m > D .y m = x y O x 1 x 2

历年中考数学易错题汇编-旋转练习题及答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空: 当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE. ①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值. (3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标. 【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4. 【解析】 【分析】 (1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2) ①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标. 【详解】 (1)∵点A为线段BC外一动点,且BC=a,AB=b, ∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b, 故答案为CB的延长线上,a+b; (2)①CD=BE, 理由:∵△ABD与△ACE是等边三角形, ∴AD=AB,AC=AE,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC, 即∠CAD=∠EAB,

四年级数学下册易错题阶段汇总合集

[易错题1] 王叔叔家养了350只鸡,每个笼子里装30只,需要准备多少个这样的笼子? 【错误解答】350÷30=11(个)……20(只) 答:需要准备11个这样的笼子。 【“病因”分析】这里出错的原因是把余下的20只鸡忽略了,余下的20只鸡需要再装一个笼子,这里应该准备12个笼子。 【正确解答】350÷30=11(个)……20(只) 11+1=12(个) 答:需要准备12个这样的笼子。 [易错题2] 小红、小林和小刚,一个星期一共练了630个大字,平均每人每天练多少个大字? 【错误解答】630÷3=210(个) 答:平均每人每天练210个大字。 【“病因”分析】这里出错是把一个星期是7天这个隐含的条件忽略了。 【正确解答】630÷3÷7=210÷7=30(个) 答:平均每人每天练30个大字。 [易错题3] 计算(842+421+421)×25,下面最简便的方法是()。 A.421×(4×25 ) B.842×(2×25 ) C.842×25+421×25+421×25 【错因分析】首先要明白(842+421+421)×25有多种简便计算方法,一个可以把421合并成842,另一个也可以把842拆分成421,而此题要求是最简便的方法,那么有的同学只想到简便没看清“最”简便就想当然选择B了。 【思路点睛】正确答案选择A,因为此题要求最简便。通过把842拆分成2个421,和题中已有的2个421合并成4个421,再根据乘法结合律把4和25先乘起来得100,这样就是最简便的方法了。B比起原题死算确实简便,但比起A来没有A更好算最简便。 [易错题4]

简便计算(100+2) ×45。 【错因分析】典型错误(100+2) ×45 =100×45+2 =4500+2 =4502 × 出现这种错误是由于学生对什么是乘法分配律本质内涵认识和理解不够。什么是乘法分配律?书上结论是这样陈述的:两个数的和与其中一个数相乘,可以先把这两个数分别与这个数相乘,再相加。也就是说不能只乘其中一个加数。上述案例中就只乘其中100这个加数,而另一个加数2就漏乘45了,导致出错。 【思路点睛】我们依据乘法分配律,把100和2这两个加数分别与45相乘,最后再把两个乘得的数相加。正确过程如下: (100+2) ×45 =100×45+45×2 =4500+90 =4590 [易错题5] 简便计算68×99。 【错因分析】 68×99 =68×(100+1) =68×100+68 =6800+68 =6868 × 该同学看到99想到100,把99先看作最接近的100这很好,但是忽略了简便计算的前提是等量代换,一个量须用与它相等的量去代替,才可以依次继续递等下去。把99替换成(100+1)这本身就建立在不公平基础上,所以不能向下递等,结果也不对等。 【思路点睛】两个数相乘,如果有一个数接近整百数,可以先将这个数转化成整百数加或减一个数的形式,再应用乘法分配律进行计算。正确过程如下: 68×99 =68×(100-1) =68×100-68 =6800-68 =6732

高三数学模考易错题汇总

高三数学模考易错题汇总 1、已知函数2()1f x ax x =-+,1,1(),111,1x g x x x x -≤-?? =-<

来看这些历年中考数学易错题你能都做对吗

来看这些历年中考数学易错题你能都做对吗?(附答案) 作者:学大教育编辑整理 来源:网络 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

历年中考数学易错题汇编-反比例函数练习题附答案

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2. (1)求双曲线的解析式; (2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________; (3)点(6,n)为G1与G2的交点坐标,求a的值. (4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围. 【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得, 所以双曲线的解析式为y= ; (2)2 (3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2), 抛物线G2的解析式为y=﹣(x﹣a)2+9, 把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± , 即a的值为6± ; (4)抛物线G2的解析式为y=﹣(x﹣a)2+9, 把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ; 把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2 ; ∵G1与G2有两个交点, ∴3+ ≤a≤12﹣2 , 设直线DE的解析式为y=px+q,

把D(3,4),E(12,1)代入得,解得, ∴直线DE的解析式为y=﹣ x+5, ∵G2的对称轴分别交线段DE和G1于M、N两点, ∴M(a,﹣ a+5),N(a,), ∵MN<, ∴﹣ a+5﹣<, 整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0, ∴a<4或a>9, ∴a的取值范围为9<a≤12﹣2 . 【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4), 所以BE= =2 . 故答案为2 ; 【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的 解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围. 2.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).

四年级数学下册易错题汇总

一、填空 1、连接梯形各边的中点围成新的图形是() 2、一个三角形两条边是5厘米和三厘米,第三条边的长度可能是() 3、电动伸缩门是利用平行四边形的()性设计的。 4、等边三角形是特殊的()。 5、44×25=(11×4)×25=11×(4×25),这是根据()。 6、1100÷125÷8=11000÷(125×8)运用了() 7、一个立体图形,从正面看是)个小正方体。 8、用一根铁丝围成一个边长18厘米的正方形,那么用这个铁丝围成一个正三角形,边长是()厘米。 9、王大伯家的三角形菜地的两条边分别是5米和8米这个三角形菜地的第三条边可能是()米 10、有三种长度的小棒(长度分别是3cm、5cm、8cm)若干根,可以摆成()种不同的三角形 11、十分位上的“3”与十位上的“3”相差() 12、在0.08、0.080、0.008这三个小数中,计数单位相同,但大小不相等的两个数是()、() 13、把6改成以百分之一为计数单位的数是() 14、将一根15厘米的木棒截成三根整厘米的小棒来围成三角形,最长的一根小棒不能超过()

厘米 15、5吨50千克=()吨 1.2平方厘米=()平方分米 4.1公顷=()平方米 16、直角三角形的三条边分别是6厘米、8厘米、10厘米,这个直角三角形相互垂直的两条边分别是()() 17、观察1、2、3、6、12、23、44、X、164的规律,可知X= () 18、如果12=1×1,22=2×2,32=3×3.....252=25×25,且12+22+....252=5525,那么32+62+...+752=9×5525= 19、近似数是1.0,这个两位小数最小是(),最大是()。 20、甲、乙两数的和是264,把甲数的小数点向左移动一位,则两数相等。甲数()乙数()。 21、两个一样的三角形可以拼成()。两个一样的直角三角形可以拼成()()()。两个一样的等腰直角三角形可以拼成()()()。 22、等腰三角形的底角是顶角的2倍,顶角是()。 23、有3厘米、4厘米、5厘米、7厘米四根小棒,从中选3根搭成一个三角形,有()种不同的选法。 24、在一条长90米的小路两旁种树,如果两端都种,每相邻两棵树之间的距离是10米,可以种()棵。 25、要在五边形的水池边上摆上花盆,使每一边都有4盆,最少需要()盆。

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

中考数学初中数学易错题集锦

中考数学易错题集锦 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线不是平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交点 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在 10、2 1的倒数的相反数是( ) A 、-2 B 、2 C 、-2 1 D 、2 1 11、若|x|=x ,则-x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0

四年级下数学易错题整理

四年级下数学易错题整理(一) (加减法的意义和各部分间的关系;乘、除法的意义和各部分间的关系;加法 运算定律;乘法运算定律;简便计算) 一、填空。 1.___________________________的运算叫做加法。相加的两位数叫做_______,加 得的得数叫做________。 2.____________________________________________的运算叫做减法。 3._______+_______=和加数=_______-_______ 4.在减法中,已知的和叫做__________,_________是加法的逆运算。 5.减法各部分间的关系:被减数=_________+ __________,______=被减数-差,差 =________+________。 6.一箱可乐12瓶,军军买了4箱用了144元,每瓶可乐_________元。 7.李奶奶家养了96只白兔,养灰兔的只数是白兔的一半,李奶奶家一共养了______ 只白兔和灰兔。 8.甲数比乙数多15,乙数比丙数多12,甲数比丙数多______。 9.由2、3、6组成的最大三位数加上最小的三位数减去60的差,结果为_____。 10.求几个_____________________的和的简便运算叫做乘法。

11.相乘的两个数叫做_________,乘得的数叫做________。 12.在除法中,已知的积叫做__________,除法是___________的逆运算。 13.乘除法之间的关系:因数×因数=_______,因数=_________÷另一个因数,被除 数÷_______=商,除数=________÷_______,被除数=________×_______。 14.我们学过的加、减、乘、除四种预算统称_____________。 15.一个数加上0等于___________,一个数和0相乘仍得_______,0除以一个 _____________,还得0。 16.123-[(18+36)÷9]计算时,先算_____法,再算______法,最后算_______法。 17.减法是_______的逆运算,除法是________的逆运算。 18.把850÷5=170,170×10=1700,3580-1700=1880,列成综合算式是 _______________________。 19.一种羽毛球拍48元,比一副乒乓球拍贵28元,如果各买一副,一共需要_______ 元。 20.把65-62=3,15×3=45,112+45=157列成一道综合算式是 __________________________。 21.两个数_________,交换_______的位置,_______不变,这叫做加法的交换律。 可以表示为_______+________=________+_________。

高考数学易错题举例解析

咼考数学易错题举例解析 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。加强思维的严密性训练。 ?忽视等价性变形,导致错误。 x>0 y>0x + y>0 xy>0 , 但 x>1 y>2 与 x + y>3 xy >2 不等价。 【例1】已知f(x)x =ax + -b,若3f(1) 0, 3 f (2) 6,求f (3)的范围。 3 a b0① 错误解法由条件得b 32a 26② ②X 2 —① 6 a15③ ①X 2—②得8 b2④ 3 33 ③+④得10 3a b43 J 即 10 —f(3) 43 33333 错误分析采用这种解法,忽视了这样一个事实:作为满足条件的函数f(x) ax -,其值是同时 b 受a和b制约的。当a取最大(小)值时,b不一定取最大(小)值,因而整个解题思路是错误的。 f⑴ a b 正确解法由题意有 b 、解得: f(2)2a - 2 1 a §[2f(2)f (1)],b j[2f(1) f(2)], f (3) 3a b 16 f(2) 5 -f (1). 16 37 把f (1)和f (2)的范围代入得一f (3) 3 99 3 3 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 ?忽视隐含条件,导致结果错误。 【例2】 2 2 2

⑴设、是方程x 2kx k 6 0的两个实根,则(1) ( 1)的最小值是 49 十亠亠 (A) (B) 8 (C) 18 (D)不存在 4

最新整理中考数学易错题集锦及答案

初中数学选择、填空、简答题 易错题集锦及答案 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有( B ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( C ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2 -(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2 ,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

历年中考数学易错题汇编-二次函数练习题附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线22343 23y x x =- -+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C . (1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ; (2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标; (3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323 y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】 【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2343 2333y x x =- -+a=233 - ,则抛物线的“衍生直线”的解析式为

四年级下册数学易错题汇总

小学四年级下册数学易错题 一、填空题 1、用6、 2、7三个数字组成小数部分是两位的小数,其中组成的最小的小数和最大的小数相差(7.62-2.67= 4.95 ) 2、一个等腰三角形的两条边分别是8厘米和4厘米,第三条边是(8厘米)。 3、0.07的计数单位是(0.01 ),再加上(93 )个这样的计数单位是1。 4、20个一、30个千分之一组成的数是(20.03 )。 5、用2、3、4和小数点,可以组成(12 )个不同的小数,其中最大与最小的相差(43.2-2.34=40.86 )。【包括一位小数和两位小数】 6、在小数3.43中,小数点左边的“3”是右边的“3”的(100 )倍。 7、用0、1、2和小数点组成的两位小数有(6 )个,其中最大的与最小的数相差(2.10-0.12=1.98 )。 8、近似数是1.0,这个两位小数最小是(0.95 ),最大是(1.04 )。 9、41.5添两个0,大小不变是(41.50 0 ),添一个0,大小变化是(401.5 )(410.5 )(41.05 )。550添两个0,大小不变是(550.00 ),添两个0扩大到它的100倍(55000 ),添两个0扩大到它的10倍(5500.0 )。 10、由3个十和50个百分之一组成的数是(30.5 )。 11、一个数,十分位上的数字是4,是百分位上数字的4倍,又是个位上数字的一半,这个数(8.41 ),改成大小相等的三位小数(8.410 )。 12、把一个小数的小数点先向右移动两位,再向左移动三位得8.12,这个小数原来是(81.2 )。【逆向思考:8.12×1000÷100】 13、甲、乙两数的和是264,把甲数的小数点向左移动一位,则两数相等。甲数(240 )乙数(24 )。【把甲数的小数点向左移动一位,则两数相等。即,甲是乙的10倍。264÷(10+1)=24】 14、拼成一个等腰梯形至少要(3)个等边三角形,拼成一个平形四边形至少要(2 )个等边三角形,拼成一个大等边三角形至少要(4 )个小等边三角形。【自己画一画】 15、两个一样的三角形可以拼成(平行四边形)。两个一样的直角三角形可以拼成(三角形)(平行四边形)(长方形)。两个一样的等腰直角三角形可以拼成(大的等腰直角三角形)(正方形)(平行四边形)。 16、用4个同样大小的等边三角形能拼成(平行四边形)(大的等边三角形) 17、等腰三角形的底角是顶角的2倍,顶角是(36度)。【180÷(2+2+10)=36】 18、一个等腰三角形的其中一条边长5厘米,另一条边4厘米,围成这个等腰三角形至少要(4×2+5=13厘米)长绳子。 28、长8米的长方形花圃,如果长减少3米,这样花圃的面积就减少了15平方米,现在这个花圃的面积是(40 )平方米。【宽不变。宽:15÷3=5米;8×5=40平方米】 34、一根铁丝刚好可以围成长5厘米、宽4厘米的长方形,如果把这根铁丝围成一个等边三角形,每条边的长度是(6厘米)【长方形的周长=等边三角形周长】 35、要拼成一个梯形,至少要(3 )个完全一样的三角形。 39、一个三角形的其中两条边都是3厘米,有个角是40度,那么另外两个角分别是(40度)和(100度)或(70度)和(70度)。 40、有3厘米、4厘米、5厘米、7厘米四根小棒,从中选3根搭成一个三角形,有(3 )种不同的选法。【分别是:①3厘米、4厘米、5厘米;②4厘米、5厘米、7厘米;③3厘米、

高考数学(2021)易错题精选之线性规划

线性规划 简单线性规划是教材中的新增内容,纵观近几年的高考试题,线性规划的试题多以选择题、填空题出现,但部分省市已出现大题,分值有逐年加大的趋势。简单线性规划正在成为一个高考热点。认真分析研究近年各地高考试卷,可以发现这部分高考题大致有以下四个类型。一.求目标函数的最值问题 例1.在约束条件???? ???≤+≤+≥≥4 x 2y s y x 0y 0x 下,当5s 3≤≤时,目标函数y 2x 3z +=的最大值 的变化范围是( ) A.[6,15] B.[7,15] C.[6,8] D.[7,8] 解:由? ??-=-=??? ?=+=+4s 2y s 4x 42x y s y x 则由题意知A(0,2),B(s 4-,4-s 2),C(0, s),D(0,4)。 (1)当4s 3≤≤时可行域是四边形OABC,此时,8z 7≤≤;(2)当5s 4≤≤时可行域是OAD ?,此时,8z max =。

由以上可知,正确答案为D。 点评:本题主要考查线性规划的基础知识,借助图形解题。 例2.已知平面区域D 由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和外界组成。若在区域D 内有无穷多个点(x,y)可使目标函数my x z +=取得最小值,则m=() A.2 - B.1 - C.1 D.4 解:由A(1,3)、B(5,2)、C(3,1)的坐标位置知,ABC ?所在的区域在第一象限,故0y ,0x >>。当0m =时,z=x,只有一个点为最小值,不合题意。当0m ≠时,由z=x+my 得m z x m 1y +- =,它表示的直线的斜率为m 1 -。 (1)若0m >,则要使my x z +=取得最小值,必须使 m z 最小,此时需1 33 1k m 1AC --= =- ,即m=1;(2)若m<0,则要使my x z +=取得最小值,必须使 m z 最大,此时需,2m ,5 321k m 1BC =--==- 即与m<0矛盾。综上可知,m=1。 点评:本题主要考查同学们运用线性规划的基础知识与分类讨论的数学思想

2016中考数学易错题整理

中考数学易错题整理(填空题、选择题) 填空题部分 1、如果等腰三角形的一边长为8,另一边长为10,那么连结这个三角形各边的中点所成的三角形的周长为 2、已知直角三角形的两条边长恰是方程x 2-7x+12=0的两根,则该直角三角形斜边长为 3、如果两个圆的半径分别为5cm 和3cm,公共弦为6cm,那么这两个圆的圆心距是 4、⊙O 的半径为5cm ,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离为 5、已知⊙O 的直径AB 为13cm ,C 为圆上一点,CD ⊥AB ,垂足为D ,且CD =6cm ,则AD 的长为 6、已知一弓形的弦长为8cm ,该弓形所在的圆的半径为5cm ,则此弓形的高为 7、矩形一个角的平分线为矩形一边为1cm 和3cm 两部分,则这个矩形的面积为 8、在半径为1的⊙O 中,弦AB 、AC 则∠BAC 度数为 9、一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为 10、已知m 是方程020082=--x x 的一个根,则代数式m m -2的值等于 11、已知⊙O 1和⊙O 2相切,且圆心距为10,若⊙O 1半径为3,则⊙O 2的半径为 12、直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角 形,则满足条件的点C 坐标最多有 个 13、两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是 14、已知5 x 2-7xy -6 y 2=0,则y :x 的值为 15、已知一次函数y =kx +1-k 不经过第四象限,则k 的取值范围为 16、一次函数y =kx +b 的自变量取值范围是-3≤x ≤6,相应函数值的取值范围 是 -5≤y ≤-2,则这个函数的解析式为 17、已知三角形的三边分别为2,x ,6,且x 为整数.. ,则x= 18、已知m 为整数,且一次函数y =(m +4)x +m +2的图像不过第二象限,则m 值为 19、已知直线y =3x +b 与两坐标轴所围成的三角形的面积为6,则此直线解析式为

相关文档
相关文档 最新文档