文档库 最新最全的文档下载
当前位置:文档库 › 2019年高考数学理科数学导数及其应用分类汇编

2019年高考数学理科数学导数及其应用分类汇编

2019年高考数学理科数学导数及其应用分类汇编
2019年高考数学理科数学导数及其应用分类汇编

2019年高考数学理科数学

导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线

e ln x y a x x 在点(1,ae )处的切线方程为y=2x+b ,则A .e 1a b ,B .a=e ,b=1

C .1e 1a b ,

D .1e a ,1

b 【答案】D

【解析】∵e ln 1,

x y a x ∴切线的斜率1|e 12x k y a ,1

e a ,

将(1,1)代入2y x b ,得21,1b b . 故选D .

2.【2019年高考天津理数】已知a R ,设函数222,

1,()ln ,

1.x ax a x f x x a x x 若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为

A .0,1

B .0,2

C .0,e

D .1,e

【答案】C

【解析】当1x 时,(1)12210f a a 恒成立;当1x 时,2

2()22021x f x x ax a a x 恒成立,

令2

()1x g x x ,

则22

2(11)(1)2(1)1

()111x x x x g x x x x

1

1

122(1)2011x x x x ,

当1

11x x ,即0x 时取等号,

∴max 2()0a g x ,则0a .

2011—2019年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何(含解析) 一、选择题 【2019,10】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =, 1||||AB BF =,则C 的方程为 A .2 212x y += B .22132x y += C .22143x y += D .22154 x y += 【2018.8】抛物线C :y 2=4x 焦点为F ,过点(–2,0)且斜率为 23直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = A .5 B .6 C .7 D .8 【2018.11】已知双曲线C :2 213 x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A . 32 B .3 C . D .4 【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .8 【2016,5】已知方程1322 22=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的 取值范围是( ) A .)3,1(- B .)3,1(- C .)3,0( D .)3,0( 【2015,5】已知00(,)M x y 是双曲线C :2 212 x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ?的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

高考数学试题分类汇编集合理

2013年全国高考理科数学试题分类汇编1:集合 一、选择题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集 {}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则 ()=U A B ( ) A.{}134, , B.{}34, C. {}3 D. {}4 【答案】D 2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 A.()01, B.(]02, C.()1,2 D.(]12, 【答案】D 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ) A.* ,A N B N == B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C.{|01},A x x B R =<<= D.,A Z B Q == 【答案】D 5 .(2013 年高考上海卷(理))设常数a R ∈,集合 {|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合 A ={0,1,2},则集合 B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9 【答案】C

2019年高考理科全国1卷数学(含答案解析)

2019年普通高等学校招生全国统一考试 理科数学 本试卷共4页,23小题,满分150分,考试用时120分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 2 2 +11()x y += B. 22 (1)1x y -+= C. 22 (1)1x y +-= D. 2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则( ) A. a b c << B. a c b << C. c a b << D. b c a << 4. ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体 .若某人满足上述两个黄金分割

全国高考理科数学试题分类汇编—统计

年高考真题理科数学解析分类汇编 12 统计
1. 【 高 考 上 海 理 17 】 设 10 ? x1 ? x2 ? x3 ? x4 ? 10 4 , x5 ? 10 5 , 随 机 变 量 ?1 取 值
x1、x 2、x 3、x 4、x 5 的 概 率 均 为 0.2 , 随 机 变 量 ? 2 取 值
x1
? 2
x2
、x2
? 2
x3
、x3
? 2
x4
、x4
? 2
x5
、x5
? 2
x1
的概率也均为 0.2
,若记
D?1、D? 2
分别为
?1、?2 的方差,则( )
A. D?1 ? D?2
B. D?1 ? D?2
C. D?1 ? D?2
D. D?1 与 D? 2 的大小关系与 x1、x2、x3、x4 的取值有关
【答案】A
【 解 析 】 由 随 机 变 量 ?1,?2 的 取 值 情 况 , 它 们 的 平 均 数 分 别 为 :
1 x1 ? 5 (x1 ? x2 ? x3 ? x4 ? x5 ),

x2
?
1? 5 ??
x1
? 2
x2
?
x2
? 2
x3
?
x3
? 2
x4
?
x4
? 2
x5
?
x5
? 2
x1
? ??
?
x1,
且随机变量?1 ,? 2 的概率都为 0.2 ,所以有 D?1 > D? 2 . 故选择 A.
【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提 和基础,本题属于中档题. 2.【高考陕西理 6】从甲乙两个城市分别随机抽取 16 台自动售货机,对其销售额进行统计,
统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为 x甲 , x乙 ,中位数分
别为 m甲 , m乙,则(

A. x甲 ? x乙 , m甲 ? m乙
B. x甲 ? x乙 , m甲 ? m乙
C. x甲 ? x乙 , m甲 ? m乙
D. x甲 ? x乙 , m甲 ? m乙
【答案】B.
【解析】根据平均数的概念易计算出
x甲
?
x乙
,又 m甲
?
18 ? 22 2
?
20 ,m乙
?
27 ? 31 2
?
29
故选 B.
3.【高考山东理 4】采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编
号为 1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32
人中,编号落入区间?1, 450?的人做问卷 A ,编号落入区间?451, 750? 的人做问卷 B ,其余

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

全国高考理科数学历年试题分类汇编

全国高考理科数学历年试题分类汇编 (一)小题分类 集合 (2015卷1)已知集合A={x x=3n+2,n ∈N},B={6,8,10,12,14},则集合A ?B 中的元素个( )(A ) 5 (B )4 (C )3 (D )2 1. (2013卷2)已知集合M ={x|-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 2. (2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A ?B= A .{3,5} B .{3,6} C .{3,7} D .{3,9} 3. (2008卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 },则M∩N =( ) {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1. (2015卷1)已知复数z 满足(z-1)i=1+i ,则z=( ) (A ) -2-i (B )-2+i (C )2-i (D )2+i 2. (2015卷2)若a 实数,且 i ai ++12=3+i,则a= ( ) A.-4 B. -3 C. 3 D. 4 3. (2010卷1)已知复数() 2 313i i z -+= ,其中=?z z z z 的共轭复数,则是( ) A= 4 1 B= 2 1 C=1 D=2 向量 1. (2015卷1)已知点A(0,1),B(3,2),向量AC =(-4,-3),则向量BC = ( ) (A ) (-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 2. (2015卷2)已知向量=(0,-1),=(-1,2),则() ?+2=( ) A. -1 B. 0 C. 1 D. 2 3. (2013卷3)已知两个单位向量,的夹角为60度,()0,1=?-+=t t 且,那么t= 程序框图 (2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A . 0 B. 2 C. 4 D.14

2020年全国高考理科数学试题分类汇编5:平面向量

2020年全国高考理科数学试题分类汇编5:平面向量 一、选择题 1 .(2020年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以 A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a u r u u r u u r u u r u u r ;以 D 为起点,其 余顶点为终点的向量分别为 12345 ,,,,d d d d d u u r u u r u u r u u r u u r .若 ,m M 分别为 ()() i j k r s t a a a d d d ++?++u r u u r u u r u u r u u r u u r 的最小值、最大值,其中 {,,}{1,2,3,4,5}i j k ?,{,,}{1,2,3,4,5}r s t ?,则,m M 满足 ( ) A .0,0m M => B .0,0m M <> C .0,0m M <= D .0,0m M << 【答案】 D . 2 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已 知点()()1,3,4,1,A B AB -u u u r 则与向量同方向的单位向量为 ( ) A .345 5?? ??? ,- B .435 5?? ??? ,- C .3455??- ??? , D .4355?? - ??? , 【答案】A 3 .(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设0,P ABC ?是边AB 上一定点,满足AB B P 4 10=,且对于边AB 上任一点P , 恒有C P B P PC PB 00?≥?.则 ( ) A .090=∠ABC B .090=∠BA C C .AC AB = D .BC AC = 【答案】D 4 .(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 在四边形ABCD 中,(1,2)AC =u u u r ,(4,2)BD =-u u u r ,则四边形的面积为 ( )

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

理科数学高考试题分类汇编

1、集合与简易逻辑 (2014)1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} (2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2 <4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} (2012)1、已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为 (A )3 (B )6 (C )8 (D )10 (2010)(1)已知集合{||2,}A x x R =≤∈},{| 4,}B x x Z =≤∈,则A B ?= (A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} 2、平面向量 (2014)3.设向量a,b 满足|a+b |a-b ,则a ?b = ( ) A. 1 B. 2 C. 3 D. 5 (2013课标全国Ⅱ,理13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=__________. (2012)13、已知向量a ,b 夹角为45°,且1=a ,102=-b a ,则b =____________. (2011)(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 12:10,3P a b πθ??+>?∈???? 22:1,3P a b πθπ?? +>?∈ ??? 3:10,3P a b πθ??->?∈???? 4:1,3P a b πθπ?? ->?∈ ??? 其中的真命题是 (A )14,P P (B )13,P P (C )23,P P (D )24,P P 3、复数 (2014)2.设复数1z ,2z 在复平面内的对应点关于虚轴对称, 12z i =+,则12z z =( ) A. – 5 B. 5 C. - 4+ I D. - 4 – i (2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i (2012)3、下面是关于复数z= 2 1i -+的四个命题 P1:z =2 P2: 2z =2i

2019年高考理科数学考试大纲

理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

高考理科数学试题分类汇编:三角函数(附答案)

20XX 年高考理科数学试题分类汇编:三角函数(附答案) 一、选择题 1 .(20XX 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知 2 10 cos 2sin ,= +∈αααR ,则=α2tan A. 34 B. 43 C.43- D.3 4- 2 .(20XX 年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 3 .(20XX 年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中 , ,3,4 AB BC ABC π ∠== =则sin BAC ∠ = 4 .(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数 sin(2)y x ?=+的图象沿x 轴向左平移 8 π 个单位后,得到一个偶函数的图象,则?的一个可 能取值为 (A) 34π (B) 4π (C)0 (D) 4π - 5 .(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ?,内角 ,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b +=且a b >,则B ∠= A.6π B.3π C.23π D.56 π 6 .(20XX 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是 (A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2 x π =对称 (C)()f x ()f x 既奇函数,又是周期函数 7 .(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))函数 cos sin y x x x =+的图象大致为

相关文档
相关文档 最新文档