文档库 最新最全的文档下载
当前位置:文档库 › 浙江省2020年高考理科数学模拟试题及答案

浙江省2020年高考理科数学模拟试题及答案

浙江省2020年高考理科数学模拟试题及答案
浙江省2020年高考理科数学模拟试题及答案

浙江省高考数学试卷 理科

2014年浙江省高考数学试卷(理科) 一、选择题(每小题5分,共50分) 1.(5分)(2014?浙江)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则? A=() U A.?B.{2}C.{5}D.{2,5} 2.(5分)(2014?浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的() A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 3.(5分)(2014?浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()

A.90cm2B.129cm2C.132cm2D.138cm2 4.(5分)(2014?浙江)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象() A.向右平移个单位B.向左平移个单位 C.向右平移个单位D.向左平移个单位 5.(5分)(2014?浙江)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=() A.45B.60C.120D.210 6.(5分)(2014?浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f (﹣2)=f(﹣3)≤3,则()

A . c ≤3 B . 3<c≤6 C . 6<c≤9 D . c >9 7.(5分)(2014?浙江)在同一直角坐标系中,函数f (x )=x a (x≥0),g (x )=log a x 的图象可能是( ) A . B . C . D . 8.(5分)(2014?浙江)记max{x ,y}=,min{x ,y}=, 设,为平面向量,则( ) A . m in{|+|,|﹣|}≤min{||,||} B . m in{|+|,|﹣|}≥min{||, ||} C . m ax{|+|2,|﹣|2}≤||2+||2 D . m ax{|+|2,|﹣|2}≥||2+||2 9.(5分)(2014?浙江)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i (i=1,2)个球放入甲盒中.

2013浙江高考数学理科试题(卷)与答案解析完美版

2013年普通高等学校招生全国统一考试(浙江卷) 一.选择题 1.已知i 是虚数单位,则=-+-)2)(1(i i A .i +-3 B. i 31+- C. i 33+- D.i +-1 2.设集合}043|{},2|{2 ≤-+=->=x x x T x x S ,则=?T S C R )( A .(2,1]- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 3.已知y x ,为正实数,则 A.y x y x lg lg lg lg 222+=+ B.lg()lg lg 222x y x y +=? C.lg lg lg lg 222x y x y ?=+ D.lg()lg lg 222xy x y =? 4.已知函数),0,0)(cos()(R A x A x f ∈>>+=?ω?ω,则“)(x f 是奇函数”是2 π ?=的 A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是 5 9 ,则 A.4=a B.5=a C. 6=a D.7=a (第5题图)

6.已知2 10 cos 2sin ,=+∈αααR ,则=α2tan A. 34 B. 4 3 C.43- D.34- 7.设0,P A B C ?是边AB 上一定点,满足AB B P 4 1 0=,且对于边AB 上任一点P ,恒有00 PB PC P B PC ?≥?。则 A. 090=∠ABC B. 090=∠BAC C. AC AB = D.BC AC = 8.已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则 A .当1=k 时,)(x f 在1=x 处取得极小值 B .当1=k 时,)(x f 在1=x 处取得极大值 C .当2=k 时,)(x f 在1=x 处取得极小值 D .当2=k 时,)(x f 在1=x 处取得极大值 9.如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。若四边形21BF AF 为矩形,则2C 的离心率是 A. 2 B. 3 C. 23 D.2 6 10.在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=。设βα,是两个不同的平面,对空间 任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则 A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为0 45 C. 平面α与平面β平行 D.平面α与平面β所成的(锐)二面角为0 60 二、填空题 11.设二项式5 3)1(x x - 的展开式中常数项为A ,则=A ________。 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2 cm 。

2018年浙江高考理科数学试题及答案

2018年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集{}2|≥∈=x N x U ,集合{} 5|2≥∈=x N x A ,则=A C U ( ) A. ? B. }2{ C. }5{ D. }5,2{ (2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移 4π个单位 B.向左平移4 π个单位 C.向右平移12π个单位 D.向左平移12 π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 210 6.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( ) 8.记,max{,},x x y x y y x y ≥?=?

2013年高考理科数学浙江卷考试试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (浙江卷) 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013浙江,理1)已知i 是虚数单位,则(-1+i)(2-i)=( ). A .-3+i B .-1+3i C .-3+3i D .-1+i 2.(2013浙江,理2)设集合S ={x |x >-2},T ={x |x 2 +3x -4≤0},则(R S )∪T =( ). A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞) 3.(2013浙江,理3)已知x ,y 为正实数,则( ). A .2lg x +lg y =2lg x +2lg y B .2lg(x +y)=2lg x·2lg y C .2lg x·lg y=2lg x +2lg y D .2lg(xy)=2lg x·2lg y 4.(2013浙江,理4)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“π 2 ?= ”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是 95 ,则( ). A .a =4 B .a =5 C .a =6 D .a =7 6.(2013浙江,理6)已知α∈R ,sin α+2cos α = 2 ,则tan 2α=( ). A .43 B .34 C .34- D .4 3- 7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =1 4 AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C ,则( ). A .∠ABC =90° B .∠BA C =90° C .AB =AC D .AC =BC 8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ). A .当k =1时,f(x)在x =1处取到极小值 B .当k =1时,f(x)在x =1处取到极大值 C .当k =2时,f(x)在x =1处取到极小值 D .当k =2时,f(x)在x =1处取到极大值 9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24 x +y 2 =1与双曲线C 2的公 共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ). A B .3 2 D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ). A .平面α与平面β垂直 B .平面α与平面β所成的(锐)二面角为45° C .平面α与平面β平行 D .平面α与平面β所成的(锐)二面角为60° 非选择题部分(共100分) 二、填空题:本大题共7小题,每小题4分,共28分.

浙江高考理科数学试题及复习资料

2011年普通高等学校招生全国统一考试(浙江卷) 数学(理科)试题 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1.设函数2 , 0,()()4,0. x x f x f x x α-≤?==?>?若,则实数α= A .-4或-2 B .-4或2 C .-2或4 D .-2或2 2.把复数z 的共轭复数记作z ,i 为虚数单位,若1,(1)z i z z =++?则= A .3 B .3 C .1+3i D .3 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是 4.下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ?,那么l γ⊥平面 D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 5.设实数,x y 满足不等式组250 270,0x y x y x +-?? +-??? >>≥,y ≥0,若,x y 为整数,则34x y +的最小值是 A .14 B .16 C .17 D .19 6.若02 π α<< ,02π β- <<,1cos()43πα+=,3cos()423πβ-= ,则cos()2 β α+= A . 3 3 B .3 3 - C . 53 9 D .69 - 7.若,a b 为实数,则“01m ab << ”是1 1a b b a <或>的 A .充分而不必要条件 B .必要而不充分条件

C .充分必要条件 D .既不充分也不必要条件 8.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线22 1:14 y C x - =有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 A .2132 a = B .213a = C .212 b = D .22b = 9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架 的同一层上,则同一科目的书都不相邻的概率 A . 1 5 B . 2 5 C . 35 D 45 10.设a ,b ,c 为实数,f (x )=()2 2 (),()(1)(1)x bx c g x ax ax bx ++=+++.记集合 ()0,,()0,,x f x x R T x g x x R =∈==∈若S ,T 分别为集合元素S ,T 的元素个数, 则下列结论不可能...的是 A .S =1且T =0 B .1T =1S =且 C .S =2且T =2 D . S =2且T =3 非选择题部分(共100分) 二、填空题:本大题共7小题,每小题4分,共28分 11.若函数2 ()f x x x a =-+为偶函数,则实数a = = 。 12.若某程序框图如图所示,则该程序运行后输出的k 的值是 。 13.设二项式( x )6(a>0)的展开式中X 的系数为A,常数项为B , 若4A ,则a 的值是 。 14.若平面向量α,β满足|α1,|β|≤1,且以向量α,β为邻边的 平行四边形的面积为 1 2 ,则α与β的夹角θ的取值范围是 。 15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到 甲公司面试的概率为 2 3 ,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。记X 为该毕业生得到面试得公司个数。若1 (0)12 P X ==,则随机变量X 的数学期望 ()E X =

2013年高考真题理科数学(浙江卷)解析版含答案

数学理试题(浙江卷) 一.选择题 1、已知i 是虚数单位,则=-+-)2)(1(i i A. i +-3 B. i 31+- C. i 33+- D.i +-1 2、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=?T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到 考点定位:此题考查集合的运用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x y x lg lg lg lg 222+=+ B.y x y x lg lg )lg(222?=+ C.y x y x lg lg lg lg 222+=? D.y x xy lg lg )lg(222?= 答案:D 解析:此题中,由 考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则; 4、已知函数),0,0)(cos()(R A x A x f ∈>>+=?ω?ω,则“)(x f 是奇函数”是2π?= 的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 答案:B 解析: 考点定位:充分条件的判断和三角函数的奇偶性性质知识点;

5、某程序框图如图所示,若该程序运行后输出的值是5 9,则 A.4=a B.5=a C. 6=a D.7=a 答案:A 解析:由图可知 考点定位:此题考查算法及数列的列项相消求和的方法; 6、已知2 10cos 2sin ,=+∈αααR ,则=α2tan

2013年浙江高考理科数学试题及参考答案解析

2013年普通高等学校招生考试(浙江卷) 数 学(理科) 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,则(?1+i)(2?i)= A .?3+i B .?1+3i C .?3+3i D .?1+i 2.设集合S ={x |x >?2},T ={x |x 2 +3x ?4≤0},则( R S )∪T = A .(?2,1] B .(?∞,?4] C .(?∞,1] D .[1,+∞) 3.已知x ,y 为正实数,则 A .2lg x +lg y =2lg x +2lg y B .2lg(x +y )=2lg x ? 2lg y C .2lg x ? lg y =2lg x +2lg y D .2lg(xy )=2lg x ? 2lg y 4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π 2 ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是9 5 ,则 A .a =4 B .a =5 C .a =6 D .a =7 6.已知α∈R ,sin α+2cos α=10 2 ,则tan2α= A .43 B .34 C .?34 D .?43 7.设△ABC ,P 0是边AB 上一定点,满足P 0B =1 4 AB ,且对于AB 上任一点P , 恒有→PB ?→PC ≥→P 0 B ?→P 0 C ,则 A .∠ABC =90? B .∠BA C =90? C .AB =AC D .AC =BC 8.已知e 为自然对数的底数,设函数f (x )=(e x ?1)(x ?1)k (k =1,2),则 A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 9.如图,F 1,F 2是椭圆C 1:x 24 +y 2 =1与双曲线C 2的公共焦点,A ,B 分别是 C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率为 A . 2 B . 3 C .32 D .62 (第9题图) (第5题图)

年浙江高考理科数学试题及解析

2017年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 选择题部分(共50分) 1.(2017年浙江)已知集合P={x|-1<x<1},Q={0<x<2},那么P∪Q=() A.(1,2)B.(0,1)C.(-1,0)D.(1,2) 1.A 【解析】利用数轴,取P,Q所有元素,得P∪Q=(-1,2). 2. (2017年浙江)椭圆x2 9+ y2 4=1的离心率是() A.13 3B. 5 3C. 2 3D. 5 9 2.B 【解析】e=9-4 3= 5 3.故选B. 3. (2017年浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是() (第3题图)

A . B . C . D . 3. A 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为V=13×3×(π×122+1 2×2×1)=π 2+1.故选A. 4. (2017年浙江)若x ,y 满足约束条件???? ?x≥0,x+y-3≥0,x-2y≤0,则z=x+2y 的取 值范围是( ) A .[0,6] B .[0,4] C .[6,+∞) D .[4,+∞) 4. D 【解析】如图,可行域为一开放区域,所以直线过点时取 最小值4,无最大值,选D . 5. (2017年浙江)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关

5. B 【解析】因为最值f (0)=b ,f (1)=1+a+b ,f (-a 2)=b-a2 4中取,所以最值之差一定与b 无关.故选B. 6. (2017年浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6. C 【解析】由S 4 + S 6-2S 5=10a 1+21d-2(5a 1+10d )=d ,可知当d >0时,有S 4+S 6-2S 5>0,即S 4 + S 6>2S 5,反之,若S 4 + S 6>2S 5,则d >0,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C . 7. (2017年浙江)函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( ) (第7题图) 7. D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.故选D.

2019浙江省高考数学试卷(理科)

2015年浙江省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科) 1.(5分)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(?R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2] 2.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D. 3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则() A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 4.(5分)命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.?n∈N*,f(n)?N*且f(n)>n B.?n∈N*,f(n)?N*或f(n)>n C.?n0∈N*,f(n0)?N*且f(n0)>n0 D.?n0∈N*,f(n0)?N*或f(n0)>n0 5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是() A.B.C.D. 6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数() 命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件; 命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C) A.命题①和命题②都成立B.命题①和命题②都不成立 C.命题①成立,命题②不成立D.命题①不成立,命题②成立 7.(5分)存在函数f(x)满足,对任意x∈R都有() A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1| 8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则() A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α

最新浙江省高考数学试卷(理科)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012?浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(?R B)=() A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.(5分)(2012?浙江)已知i是虚数单位,则=() A.1﹣2i B.2﹣i C.2+i D.1+2i 3.(5分)(2012?浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 4.(5分)(2012?浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是() A.B.C.D. 5.(5分)(2012?浙江)设,是两个非零向量() A. 若|+|=||﹣||,则⊥B. 若⊥,则|+|=||﹣|| C. 若|+|=||﹣||,则存在实数λ,使得=λD. 若存在实数λ,使得=λ,则|+|=||﹣|| 6.(5分)(2012?浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种 7.(5分)(2012?浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则列数{S n}有最大项 B.若数列{S n}有最大项,则d<0 C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0 D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列 8.(5分)(2012?浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点, 直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()

2019年浙江省高考数学理科试题(Word版)

2016年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一个是符合题目要求的。 1.已知集合P= ,Q= ,则P = A.[2,3] B.(-2,3] C.[1,2) D. 2.已知互相垂直的平面 , 交于直线l ,若直线m,n 满足 , ,则 A. B. C. D. 3.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域 中的点 在直线x+y-2=0上的投影构成的线段记为AB ,则|AB|= A. B.4 C. D.6 4.命题“ , ,使得 ”的否定形式是 A. , ,使得 B. , ,使得 C. , ,使得 D. , ,使得 5.设函数 ,则 的最小正周期 A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关 D.与b 无关,但与c 有关 6.如图,点列 、 分别在某锐角的两边上,且 , , , , , . ( 表示点P 与Q 不重合) 若 , 为 的面积,则 A. 是等差数列 B. 是等差数列 C. 是等差数列 D. 是等差数列 7.已知椭圆 : 与双曲线 : 的焦点重合, , 分别为 , 的离心率,则 A. 且 B. 且 C. 且 D. 且

8.已知实数 , , . A.若 ,则 B.若 ,则 C.若 ,则 D.若 ,则 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。 9.若抛物线 上的点M 到焦点的距离为10,则M 到y 轴的距离是. 10.已知 ,则A=,b=. 11.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是cm 2 ,体积是 cm 3. 12.已知 ,若 , ,则a=,b=. 13.设数列 的前n 项和为 ,若 , , ,则 =, =. 14.如图,在 中,AB=BC=2, .若平面ABC 外的点P 和 线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值 是. 15.已知向量a ,b ,|a |=1,|b |=2,若对任意单位向量e ,均有 |a ·e |+|b ·e | ,则a ·b 的最大值是. 三、解答题:本大题共5小题,共74分。解答应写出文字说明,证明过程或演算步骤。 16.(本题满分14分)在ABC ?中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B += (Ⅰ)证明:2A B = (Ⅱ)若ABC ?的面积2 4 a S =,求角A 的大小.

2019年浙江省高考数学试卷及答案(理科)

2019年浙江省高考数学试卷及答案(理科) 第 1 页 共 11 页 2019年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至3页,非选择题部分4至5页。满分150分,考试时间120分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分(共50分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 参考公式 如果事件,A B 互斥 ,那么 ()()()P A B P A P B +=+ 如果事件,A B 相互独立,那么 ()()()P A B P A P B ?=? 如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 ()(1) (0,1,2,...,)k k n k n n P k C p p k n -=-= 台体的体积公式 121 ()3 V h S S =+ 其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh = 其中S 表示柱体的底面积,h 表示柱体 的高 锥体的体积公式1 3 V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R π= 球的体积公式 34 3 V R π= 其中R 表示球的半径

一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是 符合题目要求的。 1.设}4|{},4|{2 <=<=x x Q x x P (A )Q P ? (B )P Q ? (C )Q C P R ? (D )P C Q R ? 2.某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k 3.设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=2 5 S S (A )11 (B )5 (C )-8 (D )-11 4.设2 0π <>=-b a b y a x 的左、右焦点。若在双曲线右支上存在点P ,满 足 ||||212F F PF =,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲的渐近线方程为 (A )043=±y x (B )053=±y x (C )034=±y x (D )045=±y x 9.设函数x x x f -+=)12sin(4)(,则在下列区间中函数)(x f 不.存在零点的是 (A )[-4,-2] (B )[-2,0] (C )[0,2] (D )[2,4]

浙江高考历年真题之三角函数大题(理科)

浙江历年理科高考题之三角函数大题 (教师版) 1、(2005年)已知函数f (x )=-3sin 2 x +sin x cos x . (Ⅰ) 求f ( 256π)的值; (Ⅱ) 设α∈(0,π),f (2α )=41-2,求sin α的值. 解:(Ⅰ) 25125sin ,cos 6262 ππ==,225252525sin cos 6 666f π πππ??∴=+= ? ?? (Ⅱ) ()1 2sin 22 f x x x = -, 11sin 22 2242f ααα?? ∴=+-=- ??? 216sin 4sin 110αα--=,解得1sin 8 α±= ()0,,sin 0απα∈∴>,故1sin 8 α+= 2、(2006年)如图,函数R x x y ∈+=),sin(2?π,(其中0≤?≤2 π )的图象与y 轴交于点(0,1)。 (Ⅰ)求?的值; (Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求与PM 。 解:(I )因为函数图像过点(0,1),所以1sin 2=?,即2 1 sin = ? 因为2 0π ?≤ ≤,所以6 π ?= 。 (II )由函数)6π+π=x 2sin(y 及其图象,得)0,61(-M ,)2,31(P ,)0,6 5 (N 所以)2,21(--=, )2,2 1 (-=,从而

>= <,cos = 17 15 ,故1715arccos ,>=

2013年浙江省高考理科数学试卷及答案(word解析版)

浙江卷数学(理)试题答案与解析 选择题部分(共50分) 一、选择题:每小题5分,共50分. 1.已知i 是虚数单位,则(?1+i)(2?i)= A .?3+i B .?1+3i C .?3+3i D .?1+i 【命题意图】本题考查复数的四则运算,属于容易题 【答案解析】B 2.设集合S ={x |x >?2},T ={x |x 2+3x ?4≤0},则( R S )∪T = A .(?2,1] B .(?∞,?4] C .(?∞,1] D .[1,+∞) 【命题意图】本题考查集合的运算,属于容易题 【答案解析】C 因为( R S )={x |x ≤?2},T ={x |?4≤x ≤1},所以( R S )∪T =(?∞,1]. 3.已知x ,y 为正实数,则 A .2lg x +lg y =2lg x +2lg y B .2lg(x +y )=2lg x ? 2lg y C .2lg x ? lg y =2lg x +2lg y D .2lg(xy )=2lg x ? 2lg y 【命题意图】本题考查指数和对数的运算性质,属于容易题 【答案解析】D 由指数和对数的运算法则,易知选项D 正确 4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π 2 ”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题 【答案解析】B 由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ= π 2 +k π,k ∈Z ,所以选项B 正确 5.某程序框图如图所示,若该程序运行后输出的值是9 5 ,则 A .a =4 B .a =5 C .a =6 D .a =7 【命题意图】本题考查算法程序框图,属于容易题 【答案解析】A 6.已知α∈R ,sin α+2cos α= 10 2,则tan2α= A .43 B .34 C .?34 D .?43 【命题意图】本题考查三角公式的应用,解法多样,属于中档题 (第5题图)

[历年真题]2016年浙江省高考数学试卷(理科)

2016年浙江省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(?R Q)=()A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞) 2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 3.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=() A.2 B.4 C.3 D.6 4.(5分)命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是() A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2 C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2 5.(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期() A.与b有关,且与c有关B.与b有关,但与c无关 C.与b无关,且与c无关D.与b无关,但与c有关 6.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若≠A n +1 d n=|A n B n|,S n为△A n B n B n+1的面积,则() A.{S n}是等差数列B.{S n2}是等差数列 C.{d n}是等差数列 D.{d n2}是等差数列

2010年浙江省高考数学试卷及答案(理科)

糖果工作室 原创 欢迎下载! 第 1 页 共 11 页 绝密★考试结束前 2010年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至3页,非选择题部分4至5页。满分150分,考试时间120分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分(共50分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 参考公式 如果事件,A B 互斥 ,那么 ()()()P A B P A P B +=+ 如果事件,A B 相互独立,那么 ()()()P A B P A P B ?=? 如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 ()(1)(0,1,2,...,)k k n k n n P k C p p k n -=-= 台体的体积公式 121 ()3 V h S S =+ 其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式1 3 V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R π= 球的体积公式 34 3 V R π= 其中R 表示球的半径

一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是 符合题目要求的。 1.设}4|{},4|{2 <=<=x x Q x x P (A )Q P ? (B )P Q ? (C )Q C P R ? (D )P C Q R ? 2.某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k 3.设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=2 5 S S (A )11 (B )5 (C )-8 (D )-11 4.设2 0π <>=-b a b y a x 的左、右焦点。若在双曲线右支上存在点P ,满 足 ||||212F F PF =,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲的渐近线方程为 (A )043=±y x (B )053=±y x (C )034=±y x (D )045=±y x 9.设函数x x x f -+=)12sin(4)(,则在下列区间中函数)(x f 不.存在零点的是 (A )[-4,-2] (B )[-2,0] (C )[0,2] (D )[2,4]

相关文档
相关文档 最新文档