文档库 最新最全的文档下载
当前位置:文档库 › 高考-2019高考文科数学试题及答案

高考-2019高考文科数学试题及答案

高考-2019高考文科数学试题及答案
高考-2019高考文科数学试题及答案

2019年高考全国2卷文科数学及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 文科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .? 2.设z =i(2+i ),则z = A .1+2i B .–1+2i C .1–2i D .–1–2i 3.已知向量a =(2,3),b =(3,2),则|a –b |= A B .2 C .2 D .50 4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A . 23 B . 35 C . 25 D . 15 5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1= 4π,x 2=4 3π 是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1 D .1 2 9.若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为

2019年全国统一高考数学试卷文科Ⅰ

2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题(本大题共12小题,共60.0分) 1.设z=,则|z|=() A. 2 B. C. D. 1 2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A= () A. B. C. D. 6, 3.已知a=log20.2,b=20.2,c=0.20.3,则() A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂 维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚 脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿 长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A. 165 cm B. 175 cm C. 185 cm D. 190 cm 5.函数f(x)=在[-π,π]的图象大致为() A. B. C. D. 6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些 新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生

7.tan255°=() A. B. C. D. 8.已知非零向量满足||=2||,且(-)⊥,则与的夹角为() A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. B. C. D. 10.双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率 为() A. B. C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-, 则=() A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若 ,,则C的方程为() A. B. C. D. 二、填空题(本大题共4小题,共20.0分) 13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________. 14.记S n为等比数列{a n}的前n项和,若a1=1,S3=,则S4=______. 15.函数f(x)=sin(2x+)-3cos x的最小值为______. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离 均为,那么P到平面ABC的距离为______.

2010年全国高考文科数学及答案-全国Ⅱ

2010年普通高等学校招生全国统一考试(全国Ⅱ) 文科数学 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么 ()()()P A B P A P B ?=? 球的表面积公式 24S R π=, 球的体积公式3 34 V R π= ,其中R 表示球的半径 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次 的概率 ()C (1)(0,1,2,)k n k n n P k p p k n -=-=L 第Ⅰ卷 (选择题) 本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 一、选择题 (1)设全集{ } * U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B = e( ) (A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5 (2)不等式 302 x x -<+的解集为( ) (A){}23x x -<< (B){}2x x <- (C){}23x x x <->或 (D){}3x x > (3)已知2sin 3 α= ,则cos(2)πα-=( ) (A) 53 - (B) 19 - (C) 19 (D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是( ) (A) 1 1(0)x y e x +=-> (B) 1 1(0)x y e x -=+> (C) 1 1(R )x y e x +=-∈ (D) 1 1(R )x y e x -=+∈

(5) 若变量,x y 满足约束条件1325x y x x y ≥-?? ≥??+≤? ,则2z x y =+的最大值为( ) (A) 1 (B) 2 (C) 3 (D)4 (6)如果等差数列{}n a 中,3a +4a +5a =12,那么 1a +2a +…+7a =( ) (A) 14 (B) 21 (C) 28 (D)35 (7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则( ) (A )1,1a b == (B )1,1a b =-= (C )1,1a b ==- (D )1,1a b =-=- (8)已知三棱锥S A B C -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC , SA=3,那么直线AB 与平面SBC 所成角的正弦值为( ) (A ) 34 (B ) 54 (C ) 74 (D ) 34 (9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标 号为1,2的卡片放入同一信封,则不同的放法共有( ) (A )12种 (B )18种 (C )36种 (D )54种 (10)ABC V 中,点D 在A B 上,CD 平分ACB ∠.若C B a =uur r ,C A b =uur r ,1a =r ,2b =r , 则C D =uuu r ( ) (A )1233a b +r r (B )2133a b +r r (C )3455a b +r r (D )4355 a b +r r (11)与正方体1111ABC D A B C D -的三条棱AB 、1C C 、11A D 所在直线的距离相等的点( ) (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 (12)已知椭圆C : 22 x a + 2 2b y =1(0)a b >>的离心率为 2 3,过右焦点F 且斜率为k (k >0) 的直线与C 相交于A 、B 两点,若AF =3FB ,则k =( ) (A )1 (B ) 2 (C ) 3 (D )2

2007年高考试题——山东卷数学文科含答案

2007年普通高等学校招生全国统一考试 (山东卷)文科数学 第Ⅰ卷(共60分) 一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项. 1.复数 43i 1+2i +的实部是( ) A .2- B .2 C .3 D .4 2.已知集合11{11}| 242x M N x x +? ? =-=<<∈???? Z ,,,,则M N =( ) A .{11 }-, B .{0} C .{1}- D .{1 0}-, 3.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 4.要得到函数sin y x =的图象,只需将函数cos y x π? ? =- ?3?? 的图象( ) A .向右平移 π 6个单位 B .向右平移 π 3个单位 C .向左平移π 3 个单位 D .向左平移π 6 个单位 5.已知向量(1 )(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B C .2 D .4 6.给出下列三个等式: ()()()()()()f xy f x f y f x y f x f y =++=,, ()() ()1()() f x f y f x y f x f y ++= -.下列函数中不满足其中任何一个等式的是( ) A .()3x f x = B .()sin f x x = C .2()log f x x = D .()tan f x x = 7.命题“对任意的3 2 10x x x ∈-+R ,≤”的否定是( ) ①正方形 ②圆锥 ③三棱台 ④正四棱锥

2019年全国I卷高考文科数学真题及答案

2019年全国I 卷高考文科数学真题及答案 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则 A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[-π,π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求 112122 + +的程序框图,图中空白框中应填入 A .A = 12A + B .A =12A + C .A = 1 12A + D .A =112A +

2010年高考全国卷1文科数学试题

绝密★启用前 2010年普通高等学校招生全国统一考试 文科数学(必修+选修II) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)12 (C)12 (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 (3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1

2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=() A.?B.C.D. 2.(5分)α是第四象限角,cosα=,则sinα=() A.B.C.D. 3.(5分)已知向量,,则与() A.垂直B.不垂直也不平行 C.平行且同向D.平行且反向 4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为() A.B.C.D. 5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有() A.36种B.48种C.96种D.192种 6.(5分)下面给出的四个点中,位于表示的平面区域内的点是() A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0) 7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1 所成角的余弦值为() A.B.C.D. 8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差

为,则a=() A.B.2 C.D.4 9.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的() A.充要条件B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件 10.(5分)函数y=2cos2x的一个单调增区间是() A.B.C.D. 11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8 二、填空题(共4小题,每小题5分,满分20分) 13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为. 14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=. 15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为. 16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.

2019高考数学卷文科

★启用前 2019年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I e A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos x x x x ++在[—π, π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求1 12122 + +的程序框图,图中空白框中应填入 A .A = 1 2A + B .A =12A + C .A = 1 12A + D .A =112A +

2007年高考全国1卷数学理科试卷含答案

2007年普通高等学校招生全国统一考试 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效. 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 2 4πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3 4π3 V R = n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题 (1)α是第四象限角,5 tan 12 α=- ,则sin α=( ) A .15 B .15- C .513 D .513 - (2)设a 是实数,且1i 1i 2 a +++是实数,则a =( ) A .12 B .1 C .32 D .2 (3)已知向量(56)=-, a ,(65)=, b ,则a 与b ( ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 (4)已知双曲线的离心率为2,焦点是(40)-, ,(40),,则双曲线方程为( ) A . 22 1412x y -= B . 22 1124x y -= C . 22 1106x y -= D . 22 1610 x y -=

2007年高考文科数学试题及参考答案(湖南卷)

2007年普通高等学校招生全国统一考试(湖南卷) 数学(文史类) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.不等式2 x x >的解集是( ) A .(0)-∞, B .(01), C .(1)+∞, D .(0)(1)-∞+∞ , , 2.若O E F ,,是不共线的任意三点,则以下各式中成立的是( ) A .EF OF OE =+ B .EF OF OE =- C .EF OF OE =-+ D .EF OF O E =-- 3.设2:40p b ac ->(0a ≠),:q 关于x 的方程2 0ax bx c ++=(0a ≠)有实数, 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 4.在等比数列{}n a (n ∈N *)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .8122 - B .9122 - C .10122- D .111 22 - 5.在(1)n x +(n ∈N *)的二项展开式中,若只有5 x 的系数最大,则n =( ) A .8 B .9 C .10 D .11 6.如图1,在正四棱柱1111ABCD A BC D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面 D .EF 与11AC 异面 7.根据某水文观测点的历史统计数据,得到某条河流 水位的频率分布直方图(如图2).从图中可以看出,该水文 观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米 B .49米 C .50米 D .51米 A B C 1A 1C 1D 1B D E F

2007年高考数学山东文科

2007年普通高等学校招生全国统一考试(山东卷)文科数学全解全析 一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项. 1.复数43i 1+2i + 的实部是() A.2-B.2C.3 D.4 【答案】:B【分析】:将原式(43)(12) 25 (12)(12) i i i i i +- =- +-,所以复数的实部为2。 2.已知集合 1 1 {11}|24 2 x M N x x + ?? =-=<<∈ ?? ?? Z ,,, ,则M N= I() A.{11} -,B.{0}C.{1} -D.{10} -, 【答案】:C【分析】:求 {} 1 1 24,1,0 2 x N x x Z + ?? =<<∈=- ?? ??。 3.下列几何体各自的三视图中,有且仅有两个视图相同的是() A.①② B.①③C .①④D.②④ 【答案】D【分析】:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D。 4.要得到函数 sin y x =的图象,只需将函数 cos y x π ?? =- ? 3 ??的图象() A.向右平移π 6个单位B.向右平移 π 3个单位 C.向左平移π 3个单位D.向左平移 π 6个单位 【答案】A【分析】:本题看似简单,必须注意到余弦函数是偶函数。注意题中给出的函数 不同名,而 cos cos y x x ππ ???? =-=- ? ? 33 ???? sin[()]sin() 2 x x πππ =--=+ 36,故应选A。 5.已知向量 (1)(1) n n ==- ,,, a b,若2- a b与b垂直,则= a () ①正方形②圆锥③三棱台④正四棱锥

2007年高考文科数学试题及参考答案(辽宁卷)

2007年普通高等学校招生全国统一考试(辽宁卷) 数 学(供文科考生使用) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷(选择题 共60分) 参考公式: 如果事件A B ,互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 2 4πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3 V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 ()(1) k k n k n n P k C p p -=- 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.若集合{1 3}A =,,{234}B =,,,则A B = ( ) A .{1} B .{2} C .{3} D .{1 234},,, 2.若函数()y f x =的反函数...图象过点(15),,则函数()y f x =的图象必过点( ) A .(51) , B .(1 5), C .(11), D .(55), 3.双曲线 221169 x y -=的焦点坐标为( ) A .(70)-,,(70), B .(07)-,,(07), C .(50)-, ,(50), D .(05)-, ,(05), 4.若向量a 与b 不共线,0≠ a b ,且?? - ??? a a c =a b a b ,则向量a 与 c 的夹角为( ) A .0 B . π 6 C . π3 D . π2 5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )

山东省2019年高考数学试卷(文科)以及答案解析

绝密★启用前 山东省2019年高考文科数学试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标 号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时, 将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)设z=,则|z|=() A.2B.C.D.1 2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A=() A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则() A.a<b<c B.a<c<b C.c<a<b D.b<c<a 4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 (≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是() A.165cm B.175cm C.185cm D.190cm

5.(5分)函数f(x)=在[﹣π,π]的图象大致为() A. B. C. D. 6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=() A.﹣2﹣B.﹣2+C.2﹣D.2+ 8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D. 9.(5分)如图是求的程序框图,图中空白框中应填入()

2019年全国高考1卷文科数学试题及答案

2019年全国高考新课标1卷文科数学试题 第Ⅰ卷 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( ) A .{1,3} B .{3,5} C .{5,7} D .{1,7} 2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( ) A .-3 B .-2 C .2 D . 3 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中, 余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A .13 B .12 C .2 3 D .56 4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2 2,cos 3 a c A ===, 则b=( ) A . C .2 D .3 5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的 1 4 ,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34 6.若将函数y =2sin (2x +6π)的图像向右平移1 4 个周期后,所得图像对应的函数 为 ( ) A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4 π ) D .y =2sin(2x –3 π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283 π , 则它的表面积是( ) A .17π B .18π C .20π D .28π 8.若a >b >0,0c b

2010年北京高考文科数学试题含答案(Word版)

绝密 使用完毕前 2010年普通高等学校招生全国统一考试 数学(文)(北京卷) 本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。 第Ⅰ卷(选择题 共140分) 一、 本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合 题目要求的一项。 ⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = (A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3} ⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是 (A )4+8i (B)8+2i (C )2+4i (D)4+i ⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是 (A )45 (B)35 (C )25 (D)15 ⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+?-是 (A )一次函数且是奇函数 (B )一次函数但不是奇函数 (C )二次函数且是偶函数 (D )二次函数但不是偶函数 (5)一个长方体去掉一个小长方体,所得几何体的 正视图与侧(左)视图分别如右图所示,则该集合体 的俯视图为: (6)给定函数①12y x =,②12l o g (1)y x =+,③|1|y x =-,④12 x y +=,期中在区间(0, 1)上单调递减的函数序号是

2007年高考文科数学试题及参考答案(上海卷)

2007年全国普通高等学校招生统一考试(上海卷) 数 学 (文科) 全解全析 一.填空题(本大题满分44分,本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.) 1.方程91 31= -x 的解是 . 【答案】1-=x 【解析】12 1331219 x x x --==?-=-?=- 2.函数1 1 )(-=x x f 的反函数=-)(1 x f . 【答案】 1 0x x x +≠() 【解析】由11(0)1 y y x y x y += ?= ≠?-()1 1 0x f x x x -+= ≠() 3.直线014=-+y x 的倾斜角=θ . 【答案】4arctan π- 【解析】tan 4,(,)2 π θθπθ=-∴∈?=4arctan π-.。 4.函数πsec cos 2y x x ? ? =+ ??? 的最小正周期=T . 【答案】π 【解析】π1 sec cos (sin )tan 2cos y x x x x T x π? ?=+ = -=-?= ??? 。 5.以双曲线 15 4 2 2 =- y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 . 【答案】2 12y x = 【解析】双曲线 2 2 14 5 x y - =的中心为O (0,0),该双曲线的右焦点为F (3,0)则抛物线的 顶点为(0,0),焦点为(3,0),所以p=6,所以抛物线方程是)2 12y x =。 6.若向量a b , 的夹角为 60,1a b == ,则()a a b -= .

1C C B 1B 1A A 【答案】 2 1 【解析】()2 2 11cos 6012 2 a a b a a b a a b -=-?=-??=- = 。 7.如图,在直三棱柱111C B A A B C -中, 90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示). 【答案】6 6arccos 【解析】11 ,A C AC ∴ 异面直线B A 1与AC 所成角为11BA C ∠ ,易求1 A B =, 1111111cos cos 6 6 A C BA C BA C arc A B ∴∠= == ?∠=。 8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C ,完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 【答案】3 【解析】因为A 完成后,C 才可以开工,C 完成后,D 才可以开工,完成A 、C 、D 需用时间依次为24x ,,天,且A B ,可以同时开工,该工程总时数为9天,max max 2493 x x ∴+ +=?=。 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 【答案】3.0 【解析】剩下两个数字都是奇数,取出的三个数为两偶一奇,所以剩下两个数字都是奇数的概率是2 1 2335 30.310 C C P C = = =。 10.对于非零实数a b ,,以下四个命题都成立: ① 01≠+ a a ; ② 2 2 2 2)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =. 那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 【答案】②④ 【解析】 对于①:解方程10a a + =得 a =± i ,所以非零复数 a = ± i 使得10a a + =,①

2019年高考文科数学考试大纲

文科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

2007年高考新课标全国卷-文科数学(含标准答案)

2007年普通高等学校招生全国统一考试(新课标全国卷) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =( ) A.{}|2x x >-??B .{} 1x x >-| C.{}|21x x -<<-??D .{}|12x x -<< 2.已知命题:p x ?∈R ,sin 1x ≤,则( ) A.:p x ??∈R ,sin 1x ≥? B.:p x ??∈R ,sin 1x ≥ C .:p x ??∈R ,sin 1x >? D.:p x ??∈R ,sin 1x > 3.函数πsin 23y x ??=- ?? ?在区间ππ2?? ???? ,的简图是( ) 4.已知平面向量(11) (11)==-,,,a b A.(21)--, ?B.(21)-,? C.(10)-, ??? D.(1 2), 5.如果执行右面的程序框图,那么输出的S =A.2450?B .2500?C .2550?D.2652 6.已知a b c d ,,,成等比数列,且曲线y x =()b c ,,则ad 等于( ) A.3 ?B.2? C.1??D.2- 7.已知抛物线2 2(0)y px p =>的焦点为F ,点11 1222()()P x y P x y ,,,,333()P x y ,在抛物线上,且x A. B. C.

2132x x x =+,则有( ) A.123FP FP FP += B.2 2 2 12 3FP FP FP += C.2132FP FP FP =+ D.2213FP FP FP =· 8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A . 3 4000cm 3 B. 3 8000cm 3 C .32000cm D .34000cm 9.若 cos 2π2sin 4αα=- ? ?- ? ? ?cos sin αα+的值为( ) A.2- ? B.1 2 -? C .12? D.2 10.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A. 2 94 e B.22e ??C.2 e ? D. 2 2 e 11.已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC = ,则球 的体积与三棱锥体积之比是( ) A.π ?B .2π??C.3π ? D.4π 12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表 ?123s s s ,,分别表 示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .312s s s >>?? B.213s s s >> C.123s s s >> D .213s s s >> 二、填空题:本大题共4小题,每小题5分. 13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 14.设函数()(1)()f x x x a =++为偶函数,则a = . 15.i 是虚数单位,2 3 8i 2i 3i 8i +++ += .(用i a b +的形式表示,a b ∈R ,) 16.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = . 甲的成绩 环数 7 8 9 10 频数 5 5 5 5 乙的成绩 环数 7 8 9 10 频数 6 4 4 6 丙的成绩 环数 7 8 9 1 0 频 数 4 6 6 4 正视图 侧视图 俯视图

相关文档
相关文档 最新文档