文档库 最新最全的文档下载
当前位置:文档库 › 高考文科数学模拟试题

高考文科数学模拟试题

高考文科数学模拟试题
高考文科数学模拟试题

高考文科数学模拟题

一、选择题:

1.已知集合{}{}

12,03A x x B x x =-<=<<,则A B =()

A .{}

13x x -<

23x x <<

2.已知y x ,是实数, 则“2

2

y x >”是“0<

C .充分必要条件

D .既不充分也不必要条件

3.若i 为虚数单位,已知),(12R b a i

i

bi a ∈-+=+,则点),(b a 与圆222=+y x 的关系()

A .在圆外

B .在圆上

C .在圆

D .不能确定

4.已知三条直线l 、m 、n ,三个平面αβγ、、,有以下四个命题:

①αββγαγ⊥⊥?⊥、;②//l m l n m n ⊥⊥?、;

③//,////,m n m n ββαβαα??????

; ④ββαβα⊥?⊥=⊥m l m l ,, 。其中正确 命题的个数为()

A .0

B .1

C .2

D .3 5.右图程序运行后输出的结果为() A .3 4 5 6 B .4 5 6 7 C .5 6 7 8 D .6 7 8 9

6.在ABC ?中,角A 、B 、

C 所对的边长分别为a 、b 、c ,设命题p :A

c

C b B a sin sin sin ==,命题q :ABC ?是等边三角形,那么命题p 是命题q 的()

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 7.若0x 是方程x x

=)2

1(的解,则0x 属于区间()

A .(

23,1) B .(12,23) C .(13,12) D .(0,13

) 8.已知函数12

++=bx ax y 在(]+∞,0单调,则b ax y +=的图象不可能...

是()

A B C D

9.一个几何体按比例绘制的三视图如图所示(单位:m ),则该 几何体的体积为()

A .

3

4

9m B .

33

7m C .3

2

7m D .

32

9m

10.已知某数列前n 项之和3

n 为,且前n 个偶数项的和为)34(2

+n n ,则前n 个奇数项的

和为() A .)1(32

+-n n

B .)34(2

-n n

C .2

3n - D .

32

1n 11.函数),0(,cos 22cos π∈+=x x x y 的单调递增区间为()

A .)3

,

0(π B .)3

2,3(

ππ C .)2

,3(

π

π D .),3

2(

ππ

12.点P 是双曲线122

22=-b

y a x (a >0, b >0)左支上的一点,其右焦点为F )0,(c ,若M 为线

段FP 的中点, 且M 到坐标原点的距离为c 8

1

,则双曲线的离心率e 围是()

A .]8,1(

B .]3

4,1(

C .)3

5,34(

D .]3,2(

二、填空题

13.已知函数()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---=.

14.已知ABC ?的角A ,B ,C 所对的边分别为a ,b ,c ,若C C ab b a c ∠++<则,2cos 22

2

2

的取值围是。

15.甲、乙、丙、三个人按任意次序站成一排,则甲站中间的概率为

16.对大于或等于2的自然数m 的n 次幂进行如下方式的“分裂”,

仿此,53

“分裂”中最大的数是. 三、解答题:

17.已知函数()cos(2)2sin()sin()344

f x x x x π

ππ

=-

+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程;

(Ⅱ)求函数()f x 在区间]2

,0[π

上的值域.

18.如图,矩形ABCD 中,ABE AD 平面⊥,

2===BC EB AE ,G 是AC 中点,F 为CE 上的点,

且ACE BF 平面⊥. (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求三棱锥BGF C -的体积.

19.数列{n a }的前n 项和n S 满足:*

23()n n S a n n N =-∈.

(Ⅰ)求数列{n a }的通项公式n a ; (Ⅱ)令933++=n S b n n ,数列{n b } 的前n 项和为n T ,求证:2

1

B

C

20.已知函数32

1()(2)41,()532

m f x mx x x g x mx =-+

++=+.

(I )当4m ≥时,求函数()f x 的单调递增区间;

(II )是否存在0m <,使得对任意的1x ,2[2,3]x ∈都有12()()1f x g x -≤,若存在,求m 的

围;若不存在,请说明理由.

21、在直线09:=+-y x l 上任取一点M ,过M 作以

)0,3(),0,3(21F F -为焦点的椭圆,

当M 在什么位置时,所作椭圆长轴最短?并求此椭圆方程。 .

22.已知直线的极坐标方程为sin()4

ρθ+

=

,圆M 的参数方程2cos ,22sin ,

x y θθ=??=-+?(其中θ为参数)。

(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值。

参考答案

三、解答题: 17.解:(1)

()cos(2)2sin()sin()344

f x x x x πππ

=-+-+

1cos 2sin 2(sin cos )(sin cos )22x x x x x x =

++-+

221cos 2sin 2sin cos 22x x x x =

++-

1cos 2sin 2cos 222

x x x =

+- sin(2)6x π

=-

2T 2

π

π==周期∴

由2(),()6

2

23

k x k k Z x k Z π

π

ππ

π-

=+

∈=

+∈得 ∴函数图象的对称轴方程为()3

x k k Z π

π=+

(2)2

≤≤x ∴π≤≤x 0

∴ππ

π

6

5

626≤-

≤-

x ∴1)6

2sin(21≤-≤-π

x

∴值域为??

?

???-

1,21 18.(Ⅰ)证明: ABE AD 平面⊥,BC AD // ∴ABE BC 平面⊥,则BC AE ⊥

又 ACE BF 平面⊥,则BF AE ⊥ ∴BCE AE 平面⊥ 解: BFD AE 平面//

∴FG AE //,而BCE AE 平面⊥ ∴BCE FG 平面⊥

∴BCF FG 平面⊥

G 是AC 中点∴F 是CE 中点

∴FG AE //且12

1

==AE FG

ACE BF 平面⊥

∴CE BF ⊥

∴BCE Rt ?中,22

1

===CE CF BF ∴1222

1

=??=?CFB S (12分) ∴3

1

31=??==?--FG S V V CFB BCF G BFG

C

19.解(1)当*n N ∈时有:),1(32,3211+-=∴-=++n a S n a S n n n n

两式相减得:111223,

23n n n n n a a a a a +++=--∴=+,’

∴132(3)n n a a ++=+,又11123a S a ==-, ∴113,360a a =+=≠.

∴数列{3+n a }是首项6,公比为2的等比数列.

从而1

362n n a -+=?,

∴323-?=n n a .

(2)63233)323(21

--?=--?=+n n S n n n ∴)12(3931

+=+++n n n S

∴1

1211

21++<

+=

n n n b

2121212

11)211(2

12

1212112132<-=--=+++<++n n n n T . 20.解:(I )

321()(2)4132

m

f x mx x x =-+++

2()(4)4(4)(1)f x mx m x mx x '∴=-++=--.

i )

若4m >时,则4

01m

<

<,

a) 此时4

(,

)(1,)x m

∈-∞+∞都有()0f x '>, 4

(,1)x m ∈有()0f x '<.

()f x ∴的单调递增区间为4

(,

]m

-∞和[1,)+∞.

ii )若4m =,则2()4(1)0f x x '=-≥,

()f x ∴的单调递增区间为(,)-∞+∞.

(II )当0m <时, 24()(4)4()(1)f x mx m x m x x m

'=-++=-

-且4

1m <,

∴当23x ≤≤时,都有()0f x '<.

∴此时,()f x 在[2,3]上单调递减max 2()(2)13

m

f x f ∴==

+. 又()5g x mx =+在[2,3]上单调递减.min ()(3)35g x g m ==+.

由已知max min 27

()()(

1)(35)4133

m f x g x m m -=+-+=--≤ 解得15,7m ≥-又0m <.15

07

m ∴-≤<.

综上所述,存在15[,0),7

m ∈-使对任意12,[2,3]x x ∈,都有12()()1f x g x -≤成立.

21、 分析:因为

a MF MF 2||||21=+,即问题转化为在直线上求一点M ,使M 到

21,F F 的距离的和最小,求出1F 关于l 的对称点F ,即求M 到F 、2F 的和最小,2FF 的

长就是所求的最小值。

解:设)0,3(1-F 关于09:=+-y x l 的对称点 ),(y x F

则?????-=+-=+--13

009223x y y

x ??

?=-=?69y x )6,9(-F ,连F F 2交l 于M ,点M 即为所求。

F F 2:)3(2

1

--=x y 即032=-+y x

解方程组?

?

????=-=?=+-=-+45

09032y x y x y x )4,5(-M 当点'

M 取异于M 的点时,||||||22'

'

FF F M FM >+。

X

y F

F 1

F 2

L

M O M ’

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

2013浙江文科数学高考试题pdf

2013年普通高等学校招生全国统一考试 数学(文科)1 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设集合S={x|x>-2},T={x|-4≤x≤1},则S ∩T= A 、[-4,+∞) B 、(-2, +∞) C 、[-4,1] D 、(-2,1] 2、已知i 是虚数单位,则(2+i)(3+i)= A 、5-5i B 、7-5i C 、5+5i D 、7+5i 3、若αR ,则“α=0”是“sin αf(1),则 A 、a>0,4a+b=0 B 、a<0,4a+b=0 C 、a>0,2a+b=0 D 、a<0,2a+b=0 8、已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f’(x)的 图像如右图所示,则该函数的图像是 9、如图F 1、F 2是椭圆C1:+y 2=1与双曲线C2 分别是C 1、C 2在第二、四象限的公共点,若四边形矩形,则C 2的离心率是 A 、 B 、 C 、 D 、 10、设a ,bR ,定义运算“∧”和“∨”如下:a ∧b=a ∨若正数a 、b 、c 、d 满足ab ≥4,c+d ≤4,则 A 、a ∧b ≥2,c ∧d ≤2 B 、a ∧b ≥2,c ∨d ≥2 (第9题图)

广东省高考文科数学知识点汇总

广东高考高中数学考点归纳 第一部分 集合 1. 自然数集:N 有理数集:Q 整数集:Z 实数集:R 2 . φ是任何集合的子集,是任何非空集合的真子集. 3.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个; 非空子集有2n –1个;非空真子集有2n –2个. 第二部分 函数与导数 1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2.函数值域的求法(即求最大(小)值):①利用函数单调性 ;②导数法 ③利用均值不等式 2 22 2b a b a ab +≤ +≤ 3.函数的定义域求法: ① 偶次方根,被开方数0≥ ②分式,分母0≠ ③对数,真数0>,底数0>且1≠ ④0次方,底数0≠⑤实际问题根据题目求 复合函数的定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再综合各段情况下结论。 5.函数的奇偶性: ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件.... ⑵)(x f 是奇函数)()(x f x f -=-??图象关于原点对称; )(x f 是偶函数)()(x f x f =-??图象关于y 轴对称. ⑶奇函数)(x f 在0处有定义,则0)0(=f ⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性 6.函数的单调性: ⑴单调性的定义: ①)(x f 在区间M 上是增函数,,21M x x ∈??当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈??当21x x <时有12()()f x f x >; (记忆方法:同不等号为增,不同为减,即同增异减) ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号(五步:设元,作差,变形,定号,单调性);②导数法(三步:求导,解不等式 ()0,()0,f x f x ''><单调性)

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 3.设i i z ++= 11 ,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 4.已知双曲线)0(13 2 22>=-a y a x 的离心率为 2,则=a A. 2 B. 2 6 C. 2 5 D. 1 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B. )(|)(| x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 6.设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A.AD B. AD 2 1 C. BC 2 1 D. BC 7.在函数①|2|cos x y =,②|cos |x y = ,③)6 2cos(π+=x y ,④)4 2tan(π-=x y 中,最小 正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )

浙江省高考数学试题及答案文科解析版

2015年浙江省高考数学试卷(文科) 参考答案与试题解析 一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(5分)(2015?浙江)已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B.(2,3] C.(﹣1,2)D.(﹣1,3] 考点:交集及其运算. 专题:集合. 分析:求出集合P,然后求解交集即可. 解答:解:集合P={x|x2﹣2x≥3}={x|x≤﹣1或x≥3}, Q={x|2<x<4}, 则P∩Q={x|3≤x<4}=[3,4). 故选:A. 点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力. 2.(5分)(2015?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是() A.8cm3B.12cm3C.D. 考点:由三视图求面积、体积. 专题:空间位置关系与距离. 分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可. 解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥, 所求几何体的体积为:23+×2×2×2=. 故选:C. 点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015?浙江)设a,b是实数,则“a+b>0”是“ab>0”的()

A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 考点:必要条件、充分条件与充要条件的判断. 专题:简易逻辑. 分析:利用特例集合充要条件的判断方法,判断正确选项即可. 解答:解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立. 如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立, 所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件. 故选:D. 点评:本题考查充要条件的判断与应用,基本知识的考查. 4.(5分)(2015?浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,() A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m 考点:空间中直线与平面之间的位置关系. 专题:综合题;空间位置关系与距离. 分析: A根据线面垂直的判定定理得出A正确; B根据面面垂直的性质判断B错误; C根据面面平行的判断定理得出C错误; D根据面面平行的性质判断D错误. 解答:解:对于A,∵l⊥β,且l?α,根据线面垂直的判定定理,得α⊥β,∴A正确; 对于B,当α⊥β,l?α,m?β时,l与m可能平行,也可能垂直,∴B错误; 对于C,当l∥β,且l?α时,α与β可能平行,也可能相交,∴C错误; 对于D,当α∥β,且l?α,m?β时,l与m可能平行,也可能异面,∴D错误. 故选:A. 点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目. 5.(5分)(2015?浙江)函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A.B.C.D. 考点:函数的图象. 专题:函数的性质及应用. 分析:由条件可得函数f(x)为奇函数,故它的图象关于原点对称;再根据在(0,1)上,f (x)<0,结合所给的选项,得出结论. 解答: 解:对于函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,

2016年全国高考文科数学试题及答案-全国卷2

2016年普通高等学校招生全国统一考试文科数学 一、 选择题:本大题共12小题。每小题5分. (1)已知集合{1 23}A =,,,2{|9}B x x =<,则A B = (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, (2)设复数z 满足i 3i z +=-,则z = (A )12i -+ (B )12i - (C )32i + (D )32i - (3) 函数=sin()y A x ω?+的部分图像如图所示,则 (A )2sin(2)6y x π=- (B )2sin(2)3y x π =- (C )2sin(2+)6y x π= (D )2sin(2+)3 y x π = (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B ) 32 3π (C )8π (D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 (6) 圆x 2+y 2?2x ?8y +13=0的圆心到直线ax +y ?1=0的距离为1,则a = (A )? 43 (B )?3 4 (C (D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒, 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A ) 710 (B )58 (C )38 (D )3 10 (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若x =2,n =2,输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34

2014高考广东卷文科数学真题与答案解析

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,3 (2)已知复数z 满足25)43(=-z i ,则=z ( ) A.i 43-- B. i 43+- C. i 43- D. i 43+ (3)已知向量)1,3(),2,1(==b a ,则=-a b ( ) A. )1,2(- B. )1,2(- C. )0,2( D. )3,4( (4)若变量y x ,满足约束条件?? ? ??≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( ) A. 7 B. 8 C. 10 D. 11 5.下列函数为奇函数的是( ) A.x x 2 12- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.20 7.在ABC ?中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件 8.若实数k 满足05k <<,则曲线 221165x y k -=-与曲线22 1165 x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等 9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( ) A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定 10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*; 则真命题的个数是( ) A.1 B.2 C.3 D.4 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题) 11.曲线53x y e =-+在点()0,2-处的切线方程为________. 12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.

2014年全国大纲卷高考文科数学真题及答案

2014年全国大纲卷高考文科数学真题及答案2014年普通高等学校统一考试(大纲) 文科数学 第?卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给 出的四个选项中,只有一项 是符合题目要求的. 1.设集合,则中元素的个数为MNMN,,{1,2,4,6,8},{1,2,3,5,6,7}( ) A(2 B(3 C(5 D(7 2.已知角的终边经过点,则( ) ,cos,,(4,3), 4334A( B( C( D( ,, 5555 xx(2)0,,,3.不等式组的解集为( ) ,||1x,, A( B( C( D( {|21}xx,,,,{|10}xx,,,{|01}xx,,{|1}xx,4.已知正四面体ABCD 中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( ) 3311A( B( C( D( 6336 35.函数的反函数是( ) yxx,,,,ln(1)(1) x3x3A(yex,,,,(1)(1) B(yex,,,,(1)(1) x3x3C(yexR,,,(1)() D(yexR,,,(1)()

06.已知为单位向量,其夹角为,则( ) ab、(2)abb,,,60 A(-1 B(0 C(1 D(2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A(60种 B(70种 C(75种 D(150种 8.设等比数列的前n项和为,若则( ) {}aSSS,,3,15,S,nn246A(31 B(32 C(63 D(64 22xy 9. 已知椭圆C:,,1的左、右焦点为、,离心率FF(0)ab,,1222ab 3为,过的直线交C于A、B两点,若的周长为,则CF,AFB4321 3 的方程为( ) 2222222xyxyxyx2A(,,1 B(,,y1 C(,,1 D(,,1 33212812410.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) 81,27,A( B( C( D( 16,9, 4422xy ,,,,1(0,0)ab11.双曲线C:的离心率为2,焦点到渐近线的距 22ab 离为,则C的焦距等于( ) 3 A(2 B( C(4 D( 2242

2016年高考数学浙江(文科)试题及答案【解析版】

2016年浙江省高考数学试卷(文科) 一.选择题(共8小题) 1.【2016浙江(文)】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(?U P)∪Q=() A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 【答案】C 【解析】解:?U P={2,4,6}, (?U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}. 2.【2016浙江(文)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 【答案】C 【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α, ∴m∥β或m?β或m⊥β,l?β, ∵n⊥β,∴n⊥l. 3.【2016浙江(文)】函数y=sinx2的图象是() A.B.C. D. 【答案】D 【解析】解:∵sin(﹣x)2=sinx2, ∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C; 由y=sinx2=0, 则x2=kπ,k≥0, 则x=±,k≥0, 故函数有无穷多个零点,排除B,

4.【2016浙江(文)】若平面区域,夹在两条斜率为1的平行直线之间,则 这两条平行直线间的距离的最小值是() A.B.C. D. 【答案】B 【解析】解:作出平面区域如图所示: ∴当直线y=x+b分别经过A,B时,平行线间的距离相等. 联立方程组,解得A(2,1), 联立方程组,解得B(1,2). 两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0. ∴平行线间的距离为d==, 5.【2016浙江(文)】已知a,b>0且a≠1,b≠1,若log a b>1,则() A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0 【答案】D 【解析】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0, 若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0, 综上(b﹣1)(b﹣a)>0, 6.【2016浙江(文)】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

2015广东高考文科数学试题及答案

绝密★启用前 试卷类型:B 2015年普通高等学校招生全国统一考试(广东卷) 数学(文科) 一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( ) A .{}0,1- B .{}0 C .{}1 D .{}1,1- 2、已知i 是虚数单位,则复数()2 1i +=( ) A .2- B .2 C .2i - D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .1 22 x x y =+ D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤?? +≥??≤? ,则23z x y =+的最大值为( ) A .10 B .8 C .5 D .2 5、设C ?A B 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2 A =,且b c <,则b =( ) A .3 B .2 C .22 D .3 6、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 至少与1l ,2l 中的一条相交 B .l 与1l ,2l 都相交 C .l 至多与1l ,2l 中的一条相交 D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )

A .0.4 B .0.6 C .0.8 D .1 8、已知椭圆22 2125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ?A =( ) A .2 B .3 C .4 D .5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且, (){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( ) A .50 B .100 C .150 D .200 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题) 11、不等式2340x x --+>的解集为 .(用区间表示) 12、已知样本数据1x ,2x ,???,n x 的均值5x =,则样本数据121x +,221x +,???,21n x +的均值为 . 13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题) 14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数 方程为2 22x t y t ?=??=??(t 为参数),则1C 与2C 交点的直角坐标为 . 15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D . 若

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 21 B. 22 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A. AD B. AD 21 C. BC D. BC 21 (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体 的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2014年浙江省高考数学试卷及答案(文科)

绝密★考试结束前 2014年普通高等学校招生全国统一考试(浙江卷) 数学(文科) 本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至3页,非选择题部分4至5页。满分150分,考试时间120分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分(共50分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 参考公式 台体的体积公式 11221 ()3 V h S S S S =++ 其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式1 3 V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R π= 球的体积公式 34 3 V R π= 其中R 表示球的半径 如果事件,A B 互斥 ,那么 ()()()P A B P A P B +=+

一 、选择题: 本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合}5|{},2|{≤=≥=x x T x x S ,则=T S A. ]5,(-∞ B.),2[+∞ C. )5,2( D. ]5,2[ 2. 设四边形ABCD 的两条对角线为AC 、BD 。则“四边形ABCD 为菱形”是“A C ⊥BD ”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 3. 某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 A .72cm 3 B . 90 cm 3 C .108 cm 3 D . 138 cm 3 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像 A .向右平移 12π个单位 B .向右平移4π 个单位 C .向左平移12π个单位 D .向左平移4 π 个单位 5. 已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值是 A .2- B .4- C .6- D .8- 6. 设m 、n 是两条不同的直线,α、β是两个不同的平面 A .若m ⊥n ,n ∥α则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β, n ⊥α则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 7. 已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-c 8. 在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是

2014-2015年广东省高考文科数学试题及答案

绝密★启用前 2014-2015年广东卷高考数学试题 数学(文科) 本试卷共4页,21小题,满分150分。考试用时120分钟。 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场 号、座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。漏 涂、错涂、多涂的,答案无效。 5. 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:锥体的体积公式13 V sh = ,其中s 为锥体的底面积,h 为锥体的高. 一组数据12,,,n x x x L 的方差2222121[()()()],n s x x x x x x n =-+-++-L 其中x 表示这组数据的平均数. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =I {}A.0,2 {}B.2,3 {}C.3,4 {}D.3,5 2. 已知复数z 满足(34)25i z -=,则z = A.34i -- B.34i -+ .34C i - D.34i + 3. 已知向量(1,2)a =r ,(3,1)b =r ,则b a -=r r A.(2,1)- B.(2,1)- C.(2,0) D.(4,3) 4. 若变量x ,y 满足约束条件280403x y x y +≤??≤≤??≤≤? ,则2z x y =+的最大值等于

高考文科数学试题及答案解析

北京市高考文科数学试卷逐题解析 数 学(文)(北京卷) 本试卷共5页, 150分。考试时长120分钟。考生务必将答案答在答题卡上, 在试卷上作答无效。考试结束后, 将本试卷的答题卡一并交回。 第一部分(选择题 共40分) 一、选择题 1. 已知全集, 集合或, 则 A. ()2,2- B. ()(),22,-∞-+∞U C. []2,2- D. (][),22,-∞-+∞U 【答案】C 【解析】 {|2 A x x =<-Q 或 }()() 2=,22,x >-∞+∞U , [] 2,2U C A ∴=-, 故选C . 2. 若复数()()1i a i -+在复平面内对应的点在第二象限, 则实数a 的取值范围是 A. (),1-∞ B. (),1-∞- C. ()1,+∞ D. ()1,+-∞ 【答案】B 【解析】(1)()1(1)i a i a a i -+=++-Q 在第二象限. 1010a a +?得1a <-.故选B .

3. 执行如图所示的程序框图, 输出的s 值为 A. 2 B. 32 C. 53 D .85 【答案】C 【解析】0,1k S ==. 3k <成立, 1k =, 2S =21= . 3k <成立, 2k =, 2+13 S = 22=. 3k <成立, 3k =, 3 +152S = 332=. 3k <不成立, 输出5S 3= .故选C . 4.若,x y 满足3 2x x y y x ≤?? +≥??≤? , 则2x y +的最大值为 A. 1 B. 3 C. 5 D. 9 【答案】D 【解析】设2z x y =+, 则 122z y x =-+ , 当该直线过()3,3时, z 最大. ∴当3,3x y ==时, z 取得最大值9, 故选D .

2014年广东高考文科数学

2014年普通高等学校招生全国统一考试(广东卷) 数学(文科) 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高。 一组数据12,,,n x x x 的方差2222 121()()()n s x x x x x x n ??=-+-++-? ?,其中x 表示这组数据的平均数。 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( ) A.{}0,2 B.{}2,3 C.{}3,4 D.{}3,5 2、已知复数z 满足()3425i z -=,则z =( ) A.34i -- B.34+i - C.34i - D. 34i + 3、已知向量()()1,2,3,1==a b ,则-=b a ( ) A.()2,1- B.()2,1- C.()2,0 D.()4,3 4、若变量,x y 满足约束条件280403x y x y +≤?? ≤≤??≤≤? ,则2z x y =+的最大值等于( ) A.7 B.8 C.10 D.11 5、下列函数为奇函数的是( ) A.1 22 x x - B.2sin x x C.2cos 1x + D.22x x + 6、为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.20 7、在ABC ?中,角,,A B C 所对应的变分别为,,a b c ,则a b ≤“”是sin sin A B ≤“”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件 8、若实数k 满足05k <<,则曲线 221165x y k -=-与曲线22 1165 x k y --=的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等 9、若空间中四条两两不相同的直线1234,,,l l l l 满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( ) A.14l l ⊥ B. 14//l l C. 14l l 与既不平行也不垂直 D. 14l l 与位置关系不确定

2014年全国高考文科数学试题及答案解析-山东卷

2014年普通高等学校招生全国统一考试(山东卷) 文科数学 第I卷(共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi += (A) 34i - (B) 34i + (C) 43i - (D) 43i + (2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B = (A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4) (3) 函数21 ()log 1 f x x = -的定义域为 (A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞ (4) 用反证法证明命题:“设,a b 为实数,则方程3 0x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根 (B) 方程3 0x ax b ++=至多有一个实根 (C) 方程30x ax b ++=至多有两个实根 (D) 方程3 0x ax b ++=恰好有两个实根 (5) 已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是 (A) 33 x y > (B) sin sin x y > (C) 22 ln(1)ln(1)x y +>+ (D) 221111 x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是 (A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为 6 π ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 x E O

2019年浙江省高考文科数学试卷及答案解析(word版)

2019年高考浙江卷数学文科解析 2019年普通高等学校招生全国统一考试(浙江卷) 数学(文科) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设集合 {|2}S x x =≥,}5|{≤=x x T ,则S T =( ) A. ]5,(-∞ B. ),2[+∞ C. )5,2( D.]5,2[ 【答案】D 【解析】 试题分析:依题意[2,5]S T =,故选D. 点评:本题考查结合的交运算,容易题. 2. 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( ) A. 充分不必要条件 B. 必要不成分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】 试题分析:若四边形ABCD 为菱形,则对角线BD AC ⊥;反之若BD AC ⊥,则四边形比一定是平行四边形,故“四边形ABCD 为菱形”是“BD AC ⊥”的充分不必要条件,选A. 点评:本题考查平行四边形、 菱形的性质,充分条件与必要条件判断,容易题. 3. 某几何体的三视图(单位:cm )若图所示,则该几何体的体积是( )

A. 372cm B. 390cm C. 3108cm D. 3138cm 【答案】B 【解析】 试题分析:由三视图知,原几何体是由一个长方体与一个三棱柱组成, 其体积为)(903432 1 6432cm V =???+ ??=,故选B. 点评:本题考查根据三视图还原几何体,求原几何体的体积,容易题. 4.为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3sin 2=的图象( ) A.向右平移12π个单位长 B.向右平移4π 个单位长 C.向左平移12π个单位长 D.向左平移4 π 个单位长 【答案】C 【解析】 试题分析:因为)4 3sin(23cos 3sin π +=+=x x x y ,所以将函数x y 3sin 2=的图象 向左平移12π个单位长得函数3()12 y x π =+,即得函数x x y 3cos 3sin +=的图象,选C. 点评:本题考查三角函数的图象的平移变换, 公式)4 sin(2c os sin π +=+x x x 的运 用,容易题. 5.已知圆0222 2 =+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( ) A.2- B. 4- C. 6- D.8-

相关文档
相关文档 最新文档