文档库 最新最全的文档下载
当前位置:文档库 › 2017年高考全国卷一理科数学试题及答案

2017年高考全国卷一理科数学试题及答案

2017年高考全国卷一理科数学试题及答案
2017年高考全国卷一理科数学试题及答案

绝密★启用前

2017年普通高等学校招生全国统一考试

全国卷一理科数学

本试卷5页,23小题,满分150分。考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有

一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>

D .A

B =?

2.如图,形ABCD 的图形来自中国古代的太极图.形切圆中的黑色部分和白色部分关于形的中心成中心对称.在形随机取一点,则此点取自黑色部分的概率是

A .

14

B .

π8

C .12

D .

π4

3.设有下面四个命题

1p :若复数z 满足1

z

∈R ,则z ∈R ;

2p :若复数z 满足2z ∈R ,则z ∈R ;

3p :若复数12,z z 满足12z z ∈R ,则12z z =;

4p :若复数z ∈R ,则z ∈R .

其中的真命题为 A .13,p p

B .14,p p

C .23,p p

D .24,p p

4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为

A .1

B .2

C .4

D .8

5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值围是 A .[2,2]-

B .[1,1]-

C .[0,4]

D .[1,3]

6.621

(1)(1)x x

+

+展开式中2x 的系数为 A .15

B .20

C .30

D .35

7.某多面体的三视图如图所示,其中正视图和左视图都由形和等腰直角三角形组成,形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

A .10

B .12

C .14

D .16

8.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和

两个空白

框中,可以分别填入

A .1000A >和1n n =+

B .1000A >和2n n =+

C .1000A ≤和1n n =+

D .1000A ≤和2n n =+

9.已知曲线122:cos ,:sin(2)3

C y x C y x π

==+

,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6

个单位长度,得到曲线2C

B .把1

C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π

12

个单位长度,得到曲线2C

C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6

个单位长度,得到曲线2C

D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12

个单位长度,得到曲线2C

10.已知F 为抛物线2

:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交

于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16

B .14

C .12

D .10

11.设xyz 为正数,且235x y z ==,则

A .235x y z <<

B .523z x y <<

C .352y z x <<

D .325y x z <<

12.几位大学生响应的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他

们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是

02,接下来的两项是012,2,再接下来的三项是0122,2,2,依此类推。求满足如下条件

的最小整数:100N N >且该数列的前N 项和为2的整数幂。那么该款软件的激活码是 A .440

B .330

C .220

D .110

二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .

14.设,x y满足约束条件

21

21

x y

x y

x y

+≤

?

?

+≥-

?

?-≤

?

,则32

z x y

=-的最小值为 .

15.已知双曲线

22

22

:1(0,0)

x y

C a b

a b

-=>>的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若60

MAN

∠=,则C的离心率为________。

16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。

D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰

三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,

每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为

2

3sin

a

A (1)求sin sin

B C;

(2)若6cos cos1,3

B C a

==,求△ABC的周长.

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且90

BAP CDP

∠=∠=.

(1)证明:平面PAB⊥平面PAD;

(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.

(1)假设生产状态正常,记X 表示一天抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;

(2)一天抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天抽取的16个零件的尺寸:

经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第

i 个零件的尺寸,1,2,,16i =???.

用样本平均数x 作为μ的估计值?μ,用样本标准差s 作为σ的估计值?σ,利用估计值

判断是否需对当天的生产过程进行检查?剔除????(3,3)μ

σμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z 服从正态分布2

(,)N μσ,则(33)0.997 4P Z μσ

μσ-<<+=,

160.997 40.959 2=0.09≈.

20.(12分)

已知椭圆C :22

22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–12),P 4(1,

C 上. (1)求C 的方程;

(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 21.(12分)

已知函数2()(2)x x f x ae a e x =+--

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值围.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy 中,曲线C 的参数方程为3cos ,

sin ,x y θθ=??=?(θ为参数),直线l 的参数方

程为4,

1,x a t t y t =+??=-?

(为参数).

(1)若a =?1,求C 与l 的交点坐标;

(2)若C 上的点到l a . 23.[选修4—5:不等式选讲](10分)

已知函数2

()4,()|1||1|f x x ax g x x x =-++=++- (1)当1a =时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值围.

相关文档