文档库 最新最全的文档下载
当前位置:文档库 › 高考文科数学模拟试卷及答案

高考文科数学模拟试卷及答案

高考文科数学模拟试卷及答案
高考文科数学模拟试卷及答案

高考文科数学模拟试卷

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知复数z满足(2﹣i)2?z=1,则z的虚部为()

A.B.C.D.

2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A?B的()

A.充分不必要条件B.必要不充分条

C.充要条件D.既不充分也不必要条件

3.设单位向量的夹角为120°,,则|=()

A.3 B. C.7 D.

4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是()

A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20

5.一几何体的三视图如图所示,则该几何体的体积为()

A.B.C.4﹣πD.

6.双曲线=1的顶点到其渐近线的距离为()

A. B.C. D.

7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则

f(2014)+f(2015)=()

A.0 B.1 C.2 D.3

8.已知x,y满足约束条件,则z=2x+y的最大值为()

A.2 B. C.4 D.

9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=()

A.B.C.D.

10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则

下列结论正确的是()

A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减

C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值

二、填空题:本大题共5小题,每小题5分,共25分.

11.右面的程序框图输出的S的值为.

12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .13.若点(a,9)在函数的图象上,则a= .

14.已知x>0,y>0且2x+y=2,则的最小值为.

15.函数f(x)=|x2﹣2x+|﹣x+1的零点个数为.

三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知向量(ω>0),函数f (x)=,若函数f(x)的图象的两个相邻对称中心的距离为.

(Ⅰ)求函数f(x)的单调增区间;

(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.

类别A B C

数量400600a

(Ⅰ)求a的值;

(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;

(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.

18.已知 {a n}是各项都为正数的数列,其前 n项和为 S n,且S n为a n与的等差中项.

(Ⅰ)求证:数列{S n2}为等差数列;

(Ⅱ)求数列{a n}的通项公式;

(Ⅲ)设b n=,求{b n}的前100项和.

19.如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,

且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.

(Ⅰ)求证:面BCE⊥面CDF;

(Ⅱ)求证:QR∥平面BCD;

(Ⅲ)求三棱锥F﹣BCE的体积.

20.已知函数f(x)=+ax,x>1.

(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;

(Ⅱ)若a=2,求函数f(x)的极小值;

(Ⅲ)若方程(2x﹣m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.21.已知椭圆C:=1(a>b>0)的离心率e=,它的一个顶点在抛物线x2=4y

的准线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设A(x1,y1),B(x2,y2)是椭圆C上两点,已知

,且.

(ⅰ)求的取值范围;

(ⅱ)判断△OAB的面积是否为定值?若是,求出该定值,不是请说明理由.

参考答案与试题解析

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只

有一项是符合题目要求的.

1.已知复数z满足(2﹣i)2?z=1,则z的虚部为()

A.B.C.D.

考点:复数代数形式的乘除运算.

专题:数系的扩充和复数.

分析:利用复数的运算法则、虚部的定义即可得出.

解答:解:∵(2﹣i)2=3﹣4i,

∴==,

∴z的虚部为,

故选:D.

点评:本题考查了复数的运算法则、虚部的定义,属于基础题.

2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A?B的()

A.充分不必要条件B.必要不充分条

C.充要条件D.既不充分也不必要条件

考点:必要条件、充分条件与充要条件的判断.

专题:简易逻辑.

分析:当a=1时,集合A={1,﹣1},满足A?B.反之不成立:例如a=0,A={0}?B.解答:解:当a=1时,集合A满足:x2=1,解得x=±1,∴集合A={1,﹣1},∴A?

B.[来源:Z+xx+https://www.wendangku.net/doc/1e12001090.html,]

反之不成立:例如a=0,A={0}?B.

因此a=1是A?B的充分不必要条件.

故选:A.

点评:本题考查了集合的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于

基础题.

3.设单位向量的夹角为120°,,则|=()

A.3 B. C.7 D.

考点:数量积表示两个向量的夹角.

专题:平面向量及应用.

分析:把已知数据代入向量的模长公式计算可得.

解答:解:∵单位向量的夹角为120°,,

∴|===

==

故选:D

点评:本题考查向量的夹角和模长公式,属基础题.

4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是()

A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20

考点:等差数列的性质.

专题:计算题;等差数列与等比数列.

分析:利用等差数列的通项的性质,可得结论.

解答:解:S15=(a1+a15)=(a6+a10)=150,即A正确;

a6+a10=2a8=20,∴a8=10,即B正确;

a6+a10≠a16,即C错误

a4+a12=a6+a10=20,即D正确.

故选:C.

点评:本题考查等差数列的通项的性质,考查学生的计算能力,正确运用等差数列的通项

的性质是关键.

[来源:https://www.wendangku.net/doc/1e12001090.html,]

5.一几何体的三视图如图所示,则该几何体的体积为()

A.B.C.4﹣πD.

考点:由三视图求面积、体积.

专题:空间位置关系与距离.

分析:根据三视图得出三视图可判断该几何体是底面为边长位的正方形,高为1的长方

体,长方体内挖掉一个圆锥,

运用体积公式求解即可.

解答:解:∵三视图可判断该几何体是底面为边长位的正方形,高为1的长方体,长方体

内挖掉一个圆锥,

∴该几何体的体积为22×1π×12×1=4﹣,

故选:A[来源:Z*xx*https://www.wendangku.net/doc/1e12001090.html,]

点评:本题考查了空间几何体的三视图的运用,关键是你恢复几何体的直观图,计算体

积,属于中档题.

6.双曲线=1的顶点到其渐近线的距离为()

A. B.C. D.

考点:双曲线的简单性质.

专题:圆锥曲线的定义、性质与方程.

分析:求出双曲线的一条渐近线方程,一个顶点坐标,然后求解所求即可.

解答:解:双曲线=1的顶点(),渐近线方程为:y=,双曲线=1的顶点到其渐近线的距离为:=.

故选:B.

点评:本题考查双曲线的简单性质的应用,点到直线的距离个数的应用,考查计算能力.7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则

f(2014)+f(2015)=()

A.0 B.1 C.2 D.3

考点:函数的值.

专题:函数的性质及应用.

分析:利用函数的周期性,以及函数的奇偶性,直接求解即可.解答:解:函数是周期为4的奇函数,f(x)在[0,2]上的解析式为f(x)

=,

所以f(2014)+f(2015)=f(2012+2)+f(2016﹣1)

=f(2)+f(﹣1)=f(2)﹣f(1)=log22+1﹣12=1.

故选:B.

点评:本题考查函数的奇偶性以及函数的周期性,函数值的求法,考查计算能力.8.已知x,y满足约束条件,则z=2x+y的最大值为()

A.2 B. C.4 D.

考点:基本不等式.

专题:不等式的解法及应用.

分析:根据约束条件画图,判断当直线与圆相切时,取最大值,运用直线与圆的位置关

系,注意圆心,半径的运用得出≤2.

解答:解:∵x,y满足约束条件,

∴根据阴影部分可得出当直线与圆相切时,取最大值,

y=﹣2x+k,

≤2,

即k

所以最大值为2,

故选:D

点评:本题考查了运用线性规划问题,数形结合的思想求解二元式子的最值问题,关键是

确定目标函数,画图.

9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积

为,则C=()

A.B.C.D.

考点:余弦定理.

专题:解三角形.[来源:学科网]

分析:由已知和余弦定理可得ab及cosC的方程,再由面积公式可得ab和sinC的方程,由同角三角函数基本关系可解cosC,可得角C

解答:解:由题意可得c2=(a﹣b)2+6=a2+b2﹣2ab+6,

由余弦定理可得c2=a2+b2﹣2abcosC,

两式联立可得ab(1﹣cosC)=3,

再由面积公式可得S=absinC=,

∴ab=,代入ab(1﹣cosC)=3可得sin C=(1﹣cosC),

再由sin2C+cos2C=1可得3(1﹣cosC)2+cos2C=1,

解得cosC=,或cosC=1(舍去),

∵C∈(0,π),∴C=,

故选:A.

点评:本题考查余弦定理,涉及三角形的面积公式和三角函数的运算,属中档题.

[来源:Z*xx*https://www.wendangku.net/doc/1e12001090.html,]

10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则

下列结论正确的是()

A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减

C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值

考点:利用导数研究函数的极值;函数的单调性与导数的关系.

专题:导数的综合应用.

分析:根据条件,构造函数g(x)=xf(x),利用导数研究函数的单调性和极值,即可

得到结论.

解答:解:由x2f′(x)+xf(x)=lnx得x>0,

则xf′(x)+f(x)=,

即[xf(x)]′=,

设g(x)=xf(x),

即g′(x)=>0得x>1,由g′(x)<0得0<x<1,

即当x=1时,函数g(x)=xf(x)取得极小值g(1)=f(1)=,

故选:D

点评:本题主要考查函数的导数的应用,根据条件构造函数,利用函数的单调性和导数之

间的关系是解决本题的关键.

二、填空题:本大题共5小题,每小题5分,共25分.

11.右面的程序框图输出的S的值为.

考点:程序框图.

专题:图表型;算法和程序框图.

分析:模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=5时不满足条件n

≤4,退出循环,输出S的值为:.

解答:解:模拟执行程序框图,可得

n=1,S=0

满足条件n≤4,S=1,n=2

满足条件n≤4,S=,n=3

满足条件n≤4,S=,n=4

满足条件n≤4,S=,n=5

不满足条件n≤4,退出循环,输出S的值为:.

故答案为:;

点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,n的值是

解题的关键,属于基础题.

12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .

考点:几何概型.

专题:概率与统计.

分析:利用几何概型分别求出区间长度,利用长度比求概率.

高三文科数学模拟试题含答案

高三文科数学模拟试题 满分:150分 考试时间:120分钟 第Ⅰ卷(选择题 满分50分 一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数31i i ++(i 是虚数单位)的虚部是( ) A .2 B .1- C .2i D .i - 2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ?=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B .12 C .12 - D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么 这个几何体的表面积为( ) A .4π B . 3 2 π C .3π D .2π 到函 5.将函数()sin 2f x x =的图象向右平移6 π 个单位,得数()y g x =的图象,则它的一个对称中心是( ) A .(,0)2 π- B . (,0)6 π- C . (,0)6 π D . (,0) 3 π 6.执行如图所示的程序框图,输出的s 值为( )A .10 - B .3- C . 4 D .5 7. 已知圆22:20C x x y ++=的一条斜率为1的切线1l 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为(正视图 侧视图 俯视图

A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++= 8.在等差数列{}n a 中,0>n a ,且301021=+++a a a , 则65a a ?的最大值是( ) A .94 B .6 C .9 D .36 9.已知变量,x y 满足约束条件102210x y x y x y +-≥ ?? -≤??-+≥? ,设22z x y =+,则z 的最小值是( ) A. 12 B. 2 C. 1 D. 13 10. 定义在R 上的奇函数()f x ,当0≥x 时,?????+∞∈--∈+=) ,1[|,3|1) 1,0[),1(log )(2 1x x x x x f ,则函数)10()()(<<-=a a x f x F 的所有零点之和为( ) A .12-a B .12--a C .a --21 D .a 21- 第Ⅱ卷(非选择题 满分 100分) 二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置) 11. 命题“若12

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

高考文科数学模拟试卷及答案

高考文科数学模拟试卷 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z满足(2﹣i)2?z=1,则z的虚部为() A.B.C.D. 2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A?B的() A.充分不必要条件B.必要不充分条 C.充要条件D.既不充分也不必要条件 3.设单位向量的夹角为120°,,则|=() A.3 B. C.7 D. 4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是() A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20 5.一几何体的三视图如图所示,则该几何体的体积为() A.B.C.4﹣πD. 6.双曲线=1的顶点到其渐近线的距离为() A. B.C. D. 7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则 f(2014)+f(2015)=() A.0 B.1 C.2 D.3

8.已知x,y满足约束条件,则z=2x+y的最大值为() A.2 B. C.4 D. 9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=() A.B.C.D. 10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则 下列结论正确的是() A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减 C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值 二、填空题:本大题共5小题,每小题5分,共25分. 11.右面的程序框图输出的S的值为. 12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .13.若点(a,9)在函数的图象上,则a= . 14.已知x>0,y>0且2x+y=2,则的最小值为.

高考文科数学模拟试题精编(十一)

高考文科数学模拟试题精编(十一) (考试用时:120分钟试卷满分:150分) 注意事项: 1.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 3.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设A,B是两个非空集合,定义集合A-B={x|x∈A且x?B},若A={x∈Z|0≤x≤5},B={x|x2-7x+10<0},则A-B的真子集个数为( ) A.3 B.4 C.7 D.15 2.设(1+i)(x+y i)=2,其中x,y是实数,则|2x+y i|=( ) A.1 B. 2 C. 3 D. 5 3.为了解某校高三学生数学调研测试的情况,学校决定从甲、乙两个班中各抽取10名学生的数学成绩(满分150分)进行深入分析,

得到如图所示的茎叶图,茎叶图中某学生的成绩因特殊原因被污染了,如果甲、乙两个班被抽取的学生的平均成绩相同,则被污染处的数值为( ) A.6 B .7 C .8 D .9 4.设x ∈R ,则“x <2”是“x 2-x -2<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5.若将函数y =3sin ? ????2x +π3+12的图象向右平移π 6个单位长度, 则平移后图象的对称中心为( ) A.? ???? k π2+π4,12(k ∈Z) B.? ???? k π2+π4,0(k ∈Z) C.? ?? ?? k π2,12(k ∈Z) D.? ?? ?? k π2,0(k ∈Z). 6.已知F 1,F 2分别是双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的两个 焦点,若在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则双曲线C 的离心率的取值范围是( )

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 3.设i i z ++= 11 ,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 4.已知双曲线)0(13 2 22>=-a y a x 的离心率为 2,则=a A. 2 B. 2 6 C. 2 5 D. 1 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B. )(|)(| x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 6.设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A.AD B. AD 2 1 C. BC 2 1 D. BC 7.在函数①|2|cos x y =,②|cos |x y = ,③)6 2cos(π+=x y ,④)4 2tan(π-=x y 中,最小 正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )

高考文科数学模拟试题

高考文科数学模拟题 一、选择题: 1.已知集合{}{} 12,03A x x B x x =-<=<<,则A B =() A .{} 13x x -<”是“0<

2019年高考文科数学模拟试题精编(文)

高考文科数学模拟试题精编(一) (考试用时:120分钟 试卷满分:150分) 注意事项: 1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 3.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集Q ={x |2x 2-5x ?0,x ∈N},且P ?Q ,则满足条件的集合P 的个数是( ) A .3 B .4 C .7 D .8 2.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1 z =( ) A .i B .-i C .2i D .-2i 3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( ) A .80 B .85 C .90 D .95 4.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )

A.34 B.23 C.12 D.1 3 5.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( ) 6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )=-2x ,则f (1)+f (4)等于( ) A.3 2 B .-3 2 C .-1 D .1 8.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为781,则由此可估计π的近似值为( ) A .3.119 B .3.124

2018年高考文科数学模拟试卷(共十套)(含答案)

高考文科数学模拟试卷(一) (考试时间120分钟满分150分) 一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A={x|x2﹣3x<0},B={x|x2>4},则A∩B=() A.(﹣2,0)B.(﹣2,3)C.(0,2) D.(2,3) 2.复数z满足:(3﹣4i)z=1+2i,则z=() A. B.C. D. 3.设命题p:?x>0,x﹣lnx>0,则¬p为() A.?x>0,x﹣lnx≤0 B.?x>0,x﹣lnx<0 C.?x0>0,x0﹣lnx0>0 D.?x0>0,x0﹣lnx0≤0 4.已知2sin2α=1+cos2α,则tan(α+)的值为() A.﹣3 B.3 C.﹣3或3 D.﹣1或3 5.函数f(x+1)是偶函数,则函数y=f(x)的图象关于() A.直线x=1对称B.直线x=﹣1对称 C.点(1,0)对称 D.点(﹣1,0)对称 6.函数f(x)=3sin(2x﹣)的图象可以由y=3sin2x的图象() A.向右平移个单位长度得到 B.向左平移个单位长度得到 C.向右平移个单位长度得到 D.向左平移个单位长度得到 7.已知长方体ABCD﹣A1B1C1D1中,AB=BC,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为() A.B.C.D. 8.设数列{a n}的前n项和为S n,若S n +1,S n,S n +2 成等差数列,且a2=﹣2,则a7= () A.16 B.32 C.64 D.128 9.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,

2014年全国大纲卷高考文科数学真题及答案

2014年全国大纲卷高考文科数学真题及答案2014年普通高等学校统一考试(大纲) 文科数学 第?卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给 出的四个选项中,只有一项 是符合题目要求的. 1.设集合,则中元素的个数为MNMN,,{1,2,4,6,8},{1,2,3,5,6,7}( ) A(2 B(3 C(5 D(7 2.已知角的终边经过点,则( ) ,cos,,(4,3), 4334A( B( C( D( ,, 5555 xx(2)0,,,3.不等式组的解集为( ) ,||1x,, A( B( C( D( {|21}xx,,,,{|10}xx,,,{|01}xx,,{|1}xx,4.已知正四面体ABCD 中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( ) 3311A( B( C( D( 6336 35.函数的反函数是( ) yxx,,,,ln(1)(1) x3x3A(yex,,,,(1)(1) B(yex,,,,(1)(1) x3x3C(yexR,,,(1)() D(yexR,,,(1)()

06.已知为单位向量,其夹角为,则( ) ab、(2)abb,,,60 A(-1 B(0 C(1 D(2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A(60种 B(70种 C(75种 D(150种 8.设等比数列的前n项和为,若则( ) {}aSSS,,3,15,S,nn246A(31 B(32 C(63 D(64 22xy 9. 已知椭圆C:,,1的左、右焦点为、,离心率FF(0)ab,,1222ab 3为,过的直线交C于A、B两点,若的周长为,则CF,AFB4321 3 的方程为( ) 2222222xyxyxyx2A(,,1 B(,,y1 C(,,1 D(,,1 33212812410.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) 81,27,A( B( C( D( 16,9, 4422xy ,,,,1(0,0)ab11.双曲线C:的离心率为2,焦点到渐近线的距 22ab 离为,则C的焦距等于( ) 3 A(2 B( C(4 D( 2242

2020年高考文科数学模拟试卷及答案(共三套)

2020年高考文科数学模拟试卷及答案(共三套) 2020年高考文科数学模拟试卷及答案(一) 一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求) 1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 21 B. 22 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A. AD B. AD 21 C. BC D. BC 21 (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体 的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2018高考文科数学模拟试题

2018高考文科数学模拟试题 一、选择题: 1.已知命题,,则是成立的( )条件. A .充分不必要 B .必要不充分 C .既不充分有不必要 D .充要 2.已知复数,,,是虚数单位,若是实数,则( ) A . B . C . D . 3.下列函数中既是偶函数又在上单调递增的函数是( ) A . B . C . D . 4.已知变量,之间满足线性相关关系 ,且,之间的相关数据如下表所示:则( ) A .0.8 B .1.8 C .0.6 D .1.6 5.若变量,满足约束条件,则的最大值是( ) A .0 B .2 C .5 D .6 6.已知等差数列的公差和首项都不为,且成等比数列,则( ) A . B . C . D . 7.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的 :12p x -<<2:log 1q x

高考数学模拟试题(文科)及答案

凹凸教育高考文科数学模拟题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,U R =且{}{} 2|12,|680, A x x B x x x =->=-+<则()U C A B I 等于 (A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)- 2.已知i z i 32)33(-=?+(i 是虚数单位),那么复数z 对应的点位于复平面内的 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列有关命题的说法正确的是 (A )命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. (B )“1x =-”是“2560x x --=”的必要不充分条件. (C )命题“x R ?∈,使得210x x ++<”的否定是:“x R ?∈, 均有210x x ++<”. (D )命题“若x y =,则sin sin x y =”的逆否命题为真命题. 4.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千米()a b <,再前进c 千米,则此人离起点的距离s 与时间t 的关系示意图是 (A ) (B ) (C ) (D ) 5.已知(31)4,1()log ,1a a x a x f x x x -+

2014年全国高考文科数学试题及答案解析-山东卷

2014年普通高等学校招生全国统一考试(山东卷) 文科数学 第I卷(共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi += (A) 34i - (B) 34i + (C) 43i - (D) 43i + (2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B = (A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4) (3) 函数21 ()log 1 f x x = -的定义域为 (A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞ (4) 用反证法证明命题:“设,a b 为实数,则方程3 0x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根 (B) 方程3 0x ax b ++=至多有一个实根 (C) 方程30x ax b ++=至多有两个实根 (D) 方程3 0x ax b ++=恰好有两个实根 (5) 已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是 (A) 33 x y > (B) sin sin x y > (C) 22 ln(1)ln(1)x y +>+ (D) 221111 x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是 (A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为 6 π ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 x E O

2019高考文科数学模拟试卷(文科)一

2019高考文科数学模拟试卷 一、选择题 1. 已知集合{ } 2 230A x N x x =∈+-≤,则集合A 的真子集个数为 (A )31 (B )32 (C )3 (D )4 2. 若复数()()21z ai i =-+的实部为1,则其虚部为 (A )3 (B )3i (C ) 1 (D )i 3.设实数2log 3a =,12 13b ??= ??? ,13 log 2c =,则有 (A )a b c >> (B )a c b >> (C )b a c >> (D )b c a >> 4.已知1 cos()43 π α+ =,则sin2α= (A )79- (B )79 (C )22± (D )79 ± 5. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,右图是源于其思想的一个程序框图,若输入的,a b 分别为5,2,则输出的n 等于 (A )2 (B )3 (C )4 (D )5 6.如图,AB 为圆O 的一条弦,且4AB =,则OA AB =u u u r u u u r g (A )4 (B )-4 (C )8 (D )-8 7.以下命题正确的个数是 ①函数()f x 在0x x =处导数存在,若0:()0p f x '=;0:q x x =是()f x 的极值点, 则p 是q 的必要不充分条件 ②实数G 为实数a ,b 的等比中项,则G ab =± ③两个非零向量a r 与b r ,若夹角0a b

2018年高考数学模拟试卷(文科)

2018年高考数学模拟试卷(文科) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=() A.[﹣1,1)B.(0,1) C.[﹣1,1]D.(﹣1,1) 2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限 3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=() A.40 B.39 C.38 D.37 4.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.5 5.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是() A.(1,)B.()C.(1,2) D.(2,+∞) 6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为() A.6 B.7 C.8 D.9 7.(5分)函数y=log(x2﹣4x+3)的单调递增区间为() A.(3,+∞)B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞)D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下: A说:“是甲或乙获得特等奖”;B说:“丁作品获得特等奖”; C说:“丙、乙未获得特等奖”;D说:“是甲获得特等奖”. 比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()

A.甲B.乙C.丙D.丁 9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为() A.B.C.2 D. 10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出 的结果为() A.4 B.5 C.6 D.7 11.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为()A.B.C.D. 12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题: ①当x≥0时,f(x)=e﹣x(x+1);

2014年高考文科数学试题及参考答案

2014年普通高等学校统一考试(大纲卷) 文科数学 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N I 中元素的个数为 A .2 B .3 C .5 D .7 2.已知角α的终边经过点(4,3)-,则cos α= A .45 B .35 C .35- D .45 - 3.不等式组(2)0||1 x x x +>?? 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为 A .16 B .13 D 5.函数1)(1)y x =+>-的反函数是 A .3(1)(1)x y e x =->- B .3 (1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈ 6.已知a b r r 、 为单位向量,其夹角为060,则(2)a b b -?=r r r A .-1 B .0 C .1 D .2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有 A .60种 B .70种 C .75种 D .150种 8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S = A .31 B .32 C .63 D .64

9. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的直线交C 于A 、B 两点,若1AF B ? 的周长为,则C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为 A .814π B .16π C .9π D .274 π 11.双曲线C :22 221(0,0)x y a b a b -=>>的离心率为2 ,则C 的焦距等于 A .2 B . C .4 D . 12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += A .-2 B .-1 C .0 D .1 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6 (2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos 22sin y x x =+的最大值为 . 15. 设x 、y 满足约束条件02321x y x y x y -≥??+≤??-≤? ,则4z x y =+的最大值为 . 16. 直线1l 和2l 是圆22 2x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分) 数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.

全国高考文科数学模拟试题及答案

2017年普通高等学校招生全国统一模拟考试 文科数学 考场:___________座位号:___________ 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。满分150分,考试时间120分 钟. 第I 卷(选择题共60分) 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合 () U A B 中的元素共有( ) (A) 3个 (B ) 4个 (C )5个 (D )6个 (2)(2) 复数 3223i i +=-( ) (A )1 (B )1- (C )i (D)i - (3)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( ) (A )17- (B )17 (C )1 6 - (D )16 (4)已知tan a =4,cot β=1 3 ,则tan(a+β)=( ) (A)711 (B)711- (C) 713 (D) 713 - (5)已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则=a ( ) A. 2 B. 26 C. 2 5 D. 1 (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( ) (A )0 (B )1 (C )2 (D )4

(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π + =x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为( ) A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几 何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 (9)若0tan >α,则( ) A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3 π 中心对称,那么φ的最小值为( ) (A) 6π (B) 4π (C) 3π (D) 2 π (11)设,x y 满足24, 1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ ( ) (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值 (12)已知椭圆2 2:12 x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。若3FA FB =,则AF =( ) (A) (B) 2 (C) (D) 3 第Ⅱ卷(非选择题 共90分)

2020年高考文科数学模拟考试题卷

xx 年高考文科数学模拟考试题卷 第Ⅰ卷(选择题 共50分) 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合P={ 0, m},Q={x│Z x x x ∈<-,0522 },若P∩Q≠Φ,则m 等于( ) A.1 B.2 C.1或2 5 D. 1或2 2.将函数)3 2sin(3π+ =x y 的图象按向量)1,6(-- =π a 平移后所得图象的解析式是( ) A .1)3 22sin(3-+ =π x y B .1)3 22sin(3++ =π x y C .12sin 3+=x y D .1)2 2sin(3-+ =π x y 3.数列{a n }前n 项和S n = 3n – t ,则t = 1是数列{a n }为等比数列的( ) A .充分不必要 B .必要不充分 C .充要条件 D .既不充分又不必要 4. 函数1)y x =≤-的反函数是( ) A .0)y x =≥ B .0)y x =≤ C .y x =≥ D .y x =≤ 5.某球与一个120°的二面角的两个面相切于A 、B ,且A 、B 间的球面距离为π,则此 球体的表面积为( ) A .π12 B .π24 C .π36 D .π144 那么分数在[100,110]中和分数不满110分的频率和累积频率分别是( ). A .0.18,0.47 B .0.47,0.18 C .0.18,1 D .0.38,1 7.设f(x)= x 2 +ax+b ,且1≤f(-1)≤2,2≤f(1)≤4,则点(a ,b)在aOb 平面上的区域面 积是 ( )

2014年高考文科数学(新课标全国卷I)试题(含答案)(word版)

2014年普通高等学校招生全国统一考试(新课标I ) 文科数学 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =I A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. sin 20α> B. 0cos >α C. sin 0α> D. 02cos >α (3)设i i z ++= 11 ,则=||z A. 2 1 B. 22 C. 23 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 2 6 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A. AD B. C. D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③

8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203 B.72 C.165 D.158 10.已知抛物线C :x y =2的焦点为F ,()y x A 0 ,是C 上一点,x F A 0 45 = ,则=x 0( ) A. 1 B. 2 C. 4 D. 8 (11)设x ,y 满足约束条件, 1, x y a x y +≥?? -≤-?且 z x ay =+的最小值为7,则a = (A )-5 (B )3 (C )-5或3 (D )5或-3 (12)已知函数3 2 ()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 (A )()2,+∞ (B )()1,+∞ (B )(C )(),2-∞- (D )(),1-∞- 第II 卷 二、填空题:本大题共4小题,每小题5分 (13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. (14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________. (15)设函数()113,1,,1, x e x f x x x -?

相关文档
相关文档 最新文档