文档库 最新最全的文档下载
当前位置:文档库 › 2018年北京市高考数学试卷(文科)

2018年北京市高考数学试卷(文科)

2018年北京市高考数学试卷(文科)
2018年北京市高考数学试卷(文科)

2018年北京市高考数学试卷(文科)

一、选择题(每小题5分,共40分)

1.(5分)圆心为(1,1)且过原点的圆的标准方程是()

A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2

2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3} 3.(5分)下列函数中为偶函数的是()

A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x

4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查

教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()

类别人数

老年教师900

中年教师1800

青年教师1600

合计4300

A.90 B.100 C.180 D.300

5.(5分)执行如图所示的程序框图,输出的k值为()

A.3 B.4 C.5 D.6

6.(5分)设,是非零向量,“=||||”是“”的()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()

A.1 B.C.D.2

8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况

加油时间加油量(升)加油时的累计里程(千米)

2018年5月1日1235000

2018年5月15日4835600

注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()

A.6升 B.8升 C.10升D.12升

二、填空题

9.(5分)复数i(1+i)的实部为.

10.(5分)2﹣3,,log25三个数中最大数的是.

11.(5分)在△ABC中,a=3,b=,∠A=,则∠B= .

12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b= .

13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.

14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.

从这次考试成绩看,

①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;

②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.

三、解答题(共80分)

15.(13分)已知函数f(x)=sinx﹣2sin2.

(1)求f(x)的最小正周期;

(2)求f(x)在区间[0,]上的最小值.

16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2

(1)求{a n}的通项公式;

(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四

表示购买,“×”表示未购买.

种商品的情况,整理成如下统计表,其中“√”

甲乙丙丁

100√×√√

217×√×√

200√√√×

300√×√×

85√×××

98×√××

(1)估计顾客同时购买乙和丙的概率;

(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;

(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?

18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.

(1)求证:VB∥平面MOC;

(2)求证:平面MOC⊥平面VAB

(3)求三棱锥V﹣ABC的体积.

19.(13分)设函数f(x)=﹣klnx,k>0.

(1)求f(x)的单调区间和极值;

(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.

(1)求椭圆C的离心率;

(2)若AB垂直于x轴,求直线BM的斜率;

(3)试判断直线BM与直线DE的位置关系,并说明理由.

2018年北京市高考数学试卷(文科)

参考答案与试题解析

一、选择题(每小题5分,共40分)

1.(5分)圆心为(1,1)且过原点的圆的标准方程是()

A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2

【分析】利用两点间距离公式求出半径,由此能求出圆的方程.

【解答】解:由题意知圆半径r=,

∴圆的方程为(x﹣1)2+(y﹣1)2=2.

故选:D.

【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,

是基础题.

2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.

【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},

则A∩B={x|﹣3<x<2}.

故选:A.

【点评】本题考查集合的交集的运算法则,考查计算能力.

3.(5分)下列函数中为偶函数的是()

A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x

【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.

【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sinx;是奇函数;

对于B,(﹣x)2cos(﹣x)=x2cosx;是偶函数;

对于C,定义域为(0,+∞),是非奇非偶的函数;

对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;

故选:B.

【点评】本题考查了函数奇偶性的判断;首先判断定义域是否关于原点对称;如果不对称,函数是非奇非偶的函数;如果对称,再判断f(﹣x)与f(x)关系,相等是偶函数,相反是奇函数.

4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查

教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()

类别人数

老年教师900

中年教师1800

青年教师1600

合计4300

A.90 B.100 C.180 D.300

【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,

因为青年教师有320人,所以老年教师有180人,

故选:C.

【点评】本题考查分层抽样,考查学生的计算能力,比较基础.

5.(5分)执行如图所示的程序框图,输出的k值为()

A.3 B.4 C.5 D.6

【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a<,退出循环,输出k的值为4.

【解答】解:模拟执行程序框图,可得

k=0,a=3,q=

a=,k=1

不满足条件a<,a=,k=2

不满足条件a<,a=,k=3

不满足条件a<,a=,k=4

满足条件a<,退出循环,输出k的值为4.

故选:B.

【点评】本题主要考查了循环结构的程序框图,属于基础题.

6.(5分)设,是非零向量,“=||||”是“”的()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

【分析】由便可得到夹角为0,从而得到∥,而∥并不能得到夹角为0,从而得不到,这样根据充分条件、必要条件的概念即可找出正确选项.

【解答】解:(1);

∴时,cos=1;

∴;

∴∥;

∴“”是“∥”的充分条件;

(2)∥时,的夹角为0或π;

∴,或﹣;

即∥得不到;

∴“”不是“∥”的必要条件;

∴总上可得“”是“∥”的充分不必要条件.

故选:A.

【点评】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与

过程,数量积的计算公式,向量共线的定义,向量夹角的定义.

7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()

A.1 B.C.D.2

【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案

【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:

其中PB⊥平面ABCD,底面ABCD为正方形

∴PB=1,AB=1,AD=1,

∴BD=,PD==.

PC═

该几何体最长棱的棱长为:

故选:C.

【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键

8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的

情况

加油时间加油量(升)加油时的累计里程(千米)

2018年5月1日1235000

2018年5月15日4835600

注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()

A.6升 B.8升 C.10升D.12升

【分析】由表格信息,得到该车加了48升的汽油,跑了600千米,由此得到该车每100千米平均耗油量.

【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;

故选:B.

【点评】本题考查了学生对表格的理解以及对数据信息的处理能力.

二、填空题

9.(5分)复数i(1+i)的实部为﹣1 .

【分析】直接利用复数的乘法运算法则,求解即可.

【解答】解:复数i(1+i)=﹣1+i,

所求复数的实部为:﹣1.

故答案为:﹣1.

【点评】本题考查复数的基本运算,复数的基本概念,考查计算能力.

10.(5分)2﹣3,,log25三个数中最大数的是log25 .

【分析】运用指数函数和对数函数的单调性,可得0<2﹣3<1,1<<2,log25>log24=2,即可得到最大数.

【解答】解:由于0<2﹣3<1,1<<2,

log25>log24=2,

则三个数中最大的数为log25.

故答案为:log25.

【点评】本题考查数的大小比较,主要考查指数函数和对数函数的单调性的运用,

属于基础题.

11.(5分)在△ABC中,a=3,b=,∠A=,则∠B= .

【分析】由正弦定理可得sinB,再由三角形的边角关系,即可得到角B.

【解答】解:由正弦定理可得,

=,

即有sinB===,

由b<a,则B<A,

可得B=.

故答案为:.

【点评】本题考查正弦定理的运用,同时考查三角形的边角关系,属于基础题.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b= .

【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.

【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,

解得b=.

故答案为:.

【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.

13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7 .

【分析】利用线性规划的知识,通过平移即可求z的最大值.

【解答】解:由z=2x+3y,得y=,

平移直线y=,由图象可知当直线y=经过点A时,直线y=

的截距最大,此时z最大.

即A(2,1).

此时z的最大值为z=2×2+3×1=7,

故答案为:7.

【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.

从这次考试成绩看,

①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;

②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.

【分析】(1)根据散点图1分析甲乙两人所在的位置的纵坐标确定总成绩名次;(2)根据散点图2,观察丙的对应的坐标,如果横坐标大于纵坐标,说明总成

绩名次大于数学成绩名次,反之小于.

【解答】解:由高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况的散点图可知,两个图中,同一个人的总成绩是不会变的.从第二个图看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在左边的图中,找到倒数第5个点,它表示的就是丙,发现这个点

的位置比右边图中丙的位置高,所以语文名次更“大”

①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;

②观察散点图,作出对角线y=x,发现丙的坐标横坐标大于纵坐标,说明数学成

绩的名次小于总成绩名次,所以在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学;

故答案为:乙;数学.

【点评】本题考查了对散点图的认识;属于基础题.

三、解答题(共80分)

15.(13分)已知函数f(x)=sinx﹣2sin2.

(1)求f(x)的最小正周期;

(2)求f(x)在区间[0,]上的最小值.

【分析】(1)由三角函数恒等变换化简函数解析式可得f(x)=2sin(x+)﹣,由三角函数的周期性及其求法即可得解;

(2)由x∈[0,],可求范围x+∈[,π],即可求得f(x)的取值范围,

即可得解.

【解答】解:(1)∵f(x)=sinx﹣2sin2

=sinx﹣2×

=sinx+cosx﹣

=2sin(x+)﹣

∴f(x)的最小正周期T==2π;

(2)∵x∈[0,],

∴x+∈[,π],

∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.

【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.

16.(13分)已知等差数列{a n}满足a1+a2=10,a4﹣a3=2

(1)求{a n}的通项公式;

(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?

【分析】(I)由a4﹣a3=2,可求公差d,然后由a1+a2=10,可求a1,结合等差数列的通项公式可求

(II)由b2=a3=8,b3=a7=16,可求等比数列的首项及公比,代入等比数列的通项

公式可求b6,结合(I)可求

【解答】解:(I)设等差数列{a n}的公差为d.

∵a4﹣a3=2,所以d=2

∵a1+a2=10,所以2a1+d=10

∴a1=4,

∴a n=4+2(n﹣1)=2n+2(n=1,2,…)

(II)设等比数列{b n}的公比为q,

∵b2=a3=8,b3=a7=16,

∴q=2,b1=4

∴=128,而128=2n+2

∴n=63

∴b6与数列{a n}中的第63项相等

【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.

17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四

表示购买,“×”表示未购买.

种商品的情况,整理成如下统计表,其中“√”

甲乙丙丁

100√×√√

217×√×√

200√√√×

300√×√×

85√×××

98×√××

(1)估计顾客同时购买乙和丙的概率;

(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;

(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最

大?

【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.

(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.

(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.

【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200

人,

故顾客同时购买乙和丙的概率为=0.2.

(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),

故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.

(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,

同时购买甲和丙的概率为=0.6,

同时购买甲和丁的概率为=0.1,

故同时购买甲和丙的概率最大.

【点评】本题主要考查古典概率、互斥事件的概率加法公式的应用,属于基础题.

18.(14分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.

(1)求证:VB∥平面MOC;

(2)求证:平面MOC⊥平面VAB

(3)求三棱锥V﹣ABC的体积.

【分析】(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;

(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB

(3)利用等体积法求三棱锥V﹣ABC的体积.

【解答】(1)证明:∵O,M分别为AB,VA的中点,

∴OM∥VB,

∵VB?平面MOC,OM?平面MOC,

∴VB∥平面MOC;

(2)∵AC=BC,O为AB的中点,

∴OC⊥AB,

∵平面VAB⊥平面ABC,OC?平面ABC,

∴OC⊥平面VAB,

∵OC?平面MOC,

∴平面MOC⊥平面VAB

(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,

∴S△VAB=,

∵OC⊥平面VAB,

∴V C﹣VAB=?S△VAB=,

∴V V﹣ABC=V C﹣VAB=.

【点评】本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.

19.(13分)设函数f(x)=﹣klnx,k>0.

(1)求f(x)的单调区间和极值;

(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【分析】(1)利用f'(x)≥0或f'(x)≤0求得函数的单调区间并能求出极值;(2)利用函数的导数的极值求出最值,利用最值讨论存在零点的情况.

【解答】解:(1)由f(x)=

f'(x)=x﹣

由f'(x)=0解得x=

f(x)与f'(x)在区间(0,+∞)上的情况如下:

X(0,)()f'(x)﹣0+

f(x)↓↑

所以,f(x)的单调递增区间为(),单调递减区间为(0,);

f(x)在x=处的极小值为f()=,无极大值.

(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以,从而k≥e

当k=e时,f(x)在区间(1,)上单调递减,且f()=0

所以x=是f(x)在区间(1,)上唯一零点.

当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.

综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.

【点评】本题考查利用函数的导数求单调区间和导数的综合应用,在高考中属于常见题型.

20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.

(1)求椭圆C的离心率;

(2)若AB垂直于x轴,求直线BM的斜率;

(3)试判断直线BM与直线DE的位置关系,并说明理由.

【分析】(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;

(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.【解答】解:(1)∵椭圆C:x2+3y2=3,

∴椭圆C的标准方程为:+y2=1,

∴a=,b=1,c=,

∴椭圆C的离心率e==;

(2)∵AB过点D(1,0)且垂直于x轴,

∴可设A(1,y1),B(1,﹣y1),

∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),

令x=3,得M(3,2﹣y1),

∴直线BM的斜率k BM==1;

(3)结论:直线BM与直线DE平行.

证明如下:

当直线AB的斜率不存在时,由(2)知k BM=1,

又∵直线DE的斜率k DE==1,∴BM∥DE;

当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),

则直线AE的方程为y﹣1=(x﹣2),

令x=3,则点M(3,),

∴直线BM的斜率k BM=,

联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,

由韦达定理,得x1+x2=,x1x2=,

∵k BM﹣1=

=

=

=0,

∴k BM=1=k DE,即BM∥DE;

综上所述,直线BM与直线DE平行.

2018年高三数学试卷

2018年高考数学试卷(文科) 一、选择题(共10小题,每小题5分,满分50分) 1.(5分)设全集U={x∈R|x>0},函数f(x)=的定义域为A,则?U A为()A.(0,e] B.(0,e) C.(e,+∞)D.[e,+∞) 2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=() A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i 3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,) 4.(5分)若m=0.52,n=20.5,p=log20.5,则() A.n>m>p B.n>p>m C.m>n>p D.p>n>m 5.(5分)执行如图所示的程序框图,输出n的值为() A.19 B.20 C.21 D.22 6.(5分)已知p:x≥k,q:(x﹣1)(x+2)>0,若p是q的充分不必要条件,则实数k的取值范围是() A.(﹣∞,﹣2)B.[﹣2,+∞) C.(1,+∞)D.[1,+∞) 7.(5分)一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为() A.056,080,104 B.054,078,102 C.054,079,104 D.056,081,106 8.(5分)若直线x=π和x=π是函数y=sin(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为() A.B.C.D.

9.(5分)如果实数x,y满足约束条件,则z=的最大值为()A.B.C.2 D.3 10.(5分)函数f(x)=的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是() A.a>1 B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣ 二、填空题(共5小题,每小题5分,满分25分) 11.(5分)已知直线l:x+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B 三点的圆的标准方程为. 12.(5分)某几何体三视图如图所示,则该几何体的体积为. 13.(5分)在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a 的值为. 14.(5分)已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为. 15.(5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是. 三、解答题(共6小题,满分75分) 16.(12分)已知向量=(sinx,﹣1),=(cosx,),函数f(x)=(+)?. (1)求函数f(x)的单调递增区间; (2)将函数f(x)的图象向左平移个单位得到函数g(x)的图象,在△ABC中,角A,B,

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

2019年全国统一高考数学试卷(文科)(全国一卷)

绝密★启用前 2019年全国统一高考数学试卷(文科)(全国新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I e A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512 -( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos x x x x ++在[—π,π]的图像大致为

A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°= A.-2-3B.-2+3C. 2-3D.2+3 8.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为 A.π 6 B. π 3 C. 2π 3 D. 5π 6 9.如图是求 1 1 2 1 2 2 + + 的程序框图,图中空白框中应填入 A.A= 1 2A + B.A= 1 2 A +C.A= 1 12A + D.A= 1 1 2A + 10.双曲线C: 22 22 1(0,0) x y a b a b -=>>的一条渐近线的倾斜角为130°,则C的离心率为

2018年江苏高考数学试题与答案

绝密★启用前 2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,均为非选择题 (第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。 考试结束后,请将本试卷和答题卡一片交回。 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。学科@网 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式: 锥体的体积V 1 Sh,其中S是锥体的底面积,h是锥体的高.3 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位 ..... . 置上. .. 1.已知集合A {0,1,2,8} ,B{1,1,6,8},那么A B▲. 2.若复数z满足iz 1 2i,其中i是虚数单位,则z的实部 为▲. 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么 这5位裁判打出的分数的平均数为▲.

4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲. 5.函数f(x) log2x 1的定义域为▲. 6.某兴趣小组 有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率 为 ▲. 7.已知函数y sin(2x )( )的图象关于直线x 对称,则的值 是▲. 2 2 3 8.在平面直角坐标系xOy中,若双曲线x2y21(a 0,b 0)的右焦点F(c,0) 到一条渐近 a2b2 线的距离为3c,则其离心率的值是▲. 2 cos x ,0 9.函数f(x)满足f(x4) f(x)(x R),且在区间(2,2]上,f(x) 2 1|,-2 |x 2 x 2, 则x 0, f(f(15))的值为▲.

2018年高考数学(理科)模拟试卷(二)

2018年高考数学(理科)模拟试卷(二) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟) 第Ⅰ卷(选择题满分60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2016年北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=() A.{0,1} B.{0,1,2} C.{-1,0,1} D.{-1,0,1,2} 2.已知z为纯虚数,且z(2+i)=1+a i3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为() A.第一象限B.第二象限 C.第三象限D.第四象限 3.(2016年新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图M2-1.图中A点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是() A.各月的平均最低气温都在0 ℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均气温高于20 ℃的月份有5个 图M2-1 图M2-2

4.已知平面向量a =(1,2),b =(-2,k ),若a 与b 共线,则||3a +b =( ) A .3 B .4 C.5 D .5 5.函数y =1 2x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞) 6.阅读如图M2-2所示的程序框图,运行相应的程序,则输出的结果为( ) A .2 B .1 C .0 D .-1 7.(2014年新课标Ⅱ)如图M2-3,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) 图M2-3 A.1727 B.59 C.1027 D.13 8.已知F 1,F 2分别为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,离心率为5 3,过原点的直线l 交双曲线左、右两支分别于A ,B ,若|BF 1|-|AF 1|=6,则该双曲线的标准方程为( ) A.x 29-y 216=1 B.x 218-y 2 32=1 C.x 29-y 225=1 D.x 236-y 2 64=1 9.若函数f (x )=???? ? x -a 2x ≤0,x +1x +a x >0的最小值为f (0),则实数a 的取值范围是( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

2018年高职高考数学模拟试题一

2018年高职高考数学模拟试题一 数 学 本试卷共4页,24小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座 位号填写在答题卡上。用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形 码横贴在答题卡右上角“条形码粘贴处”。 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液。不按以上要求作答的答案无效。 4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一.选择题(共15题,每小题5分,共75分) 1. 设集合{}2,0,1M =-,{}1,0,2N =-,则=M N I ( ). A.{}0 B. {}1 C. {}0,1,2 D. {}1,0,1,2- 2.设x 是实数,则 “0>x ”是“0||>x ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角

4.函数21 )1lg(-+-=x x y 的定义域为( ) A . B. C. D. 5.已知点)33,1(),3,1(-B A ,则直线AB 的倾斜角是( ) A .3π B .6 π C .32π D . 65π 6.双曲线22 1102 x y -=的焦距为( ) A . B . C . D . 7.设函数()???≤+->=0 , 10 ,x log 2x x x x f ,则()[]=1f f ( ) A .5 B .1 C .2 D .2- 8.在等差数列{n a }中,已知2054321=++++a a a a a ,那么3a 等于( ) A .4 B .5 C .6 D .7 9.已知过点),2(m A -和)4,(m B 的直线与直线012=-+y x 平行,则m 的值为( ) A .0 B .-8 C . 2 D . 10 10. 函数x x cos sin 4y =是 ( ) (A) 周期为π2的奇函数 (B)周期为π2的偶函数 (C) 周期为π的奇函数 (D) 周期为π的偶函数 11、设向量a ρ=(2,-1), b ρ=(x,3)且a ρ⊥b ρ则x=( ) A. 21 B.3 C. 2 3 D.-2 12. 某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查 员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( ) (A )5,10,15 (B) 5,9,16 (C)3,9,18 (D) 3,10,17 13.已知01a << ,log log a a x =1log 52 a y = ,log log a a z =- ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 14. 过点P(1,2)且与直线013=+-y x 垂直的直线是( ) }2|{≤x x }12|{≠≤x x x 且}2|{>x x } 12|{≠-≥x x x 且

2018年高考全国二卷理科数学试卷

2018 年普通高等学校招生全国统一考试( II 卷) 理科数学 一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 1 2i 1 2i 4 3 4 3 i 3 4 3 4 A . i B . 5 C . i D . i 5 5 5 5 5 5 5 2.已知集合 A x ,y x 2 y 2≤3 ,x Z ,y Z ,则 A 中元素的个数为 A .9 B . 8 C . 5 D . 4 3.函数 f e x e x 的图像大致为 x x 2 A B C D 4.已知向量 a 、 b 满足 | a | 1 , a b 1 ,则 a (2a b ) A .4 B . 3 C . 2 D . 0 2 2 5.双曲线 x 2 y 2 1( a 0, b 0) 的离心率为 3 ,则其渐近线方程为 a b A . y 2x B . y 3x C . y 2 D . y 3 x x 2 2 6.在 △ABC 中, cos C 5 ,BC 1 , AC 5,则 AB 开始 2 5 N 0,T A .4 2 B . 30 C . 29 D .2 5 i 1 1 1 1 1 1 7.为计算 S 1 3 ? 99 ,设计了右侧的程序框图,则在 是 100 否 2 4 100 i 空白框中应填入 1 A . i i 1 N N S N T i B . i i 2 T T 1 输出 S i 1 C . i i 3 结束 D . i i 4 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以 表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是 1 B . 1 1 1 A . 14 C . D . 12 15 18 ABCD A B C D AD DB

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

2018年高考数学全国卷III

2018年普通高等学校招生全国统一考试(理科数学全国卷3) 数 学(理科) 一、选择题:本题共12小题。每小题5分. 1.已知集合{}10A x x =-≥,{}2,1,0=B ,则=?B A ( ) .A {}0 .B {}1 .C {}1,2 .D {}0,1,2 2.()()=-+i i 21 ( ) .A i --3 .B i +-3 .C i -3 .D i +3 3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4. 若1 sin 3α= ,则cos 2α= ( ) .A 89 .B 79 .C 79- .D 89- 5. 25 2()x x +的展开式中4x 的系数为 ( ) .A 10 .B 20 .C 40 .D 80 6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2 2 22x y -+=上,则ABP ?面积 的取值范围是 ( ) .A []2,6 .B []4,8 .C .D ?? 7.函数422y x x =-++的图像大致为 ( )

8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( ) .A 0.7 .B 0.6 .C 0.4 .D 0.3 9.ABC ?的内角C B A 、、的对边分别c b a 、、,若ABC ?的面积为222 4 a b c +-,则=C ( ) . A 2π . B 3π . C 4π . D 6 π 10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为,则三棱锥ABC D -积的最大值为 ( ) .A .B .C .D 11.设21F F 、是双曲线C : 22 221x y a b -=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一 条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为 ( ) .A .B 2 .C .D 12.设3.0log 2.0=a ,3.0log 2=b ,则 ( ) .A 0a b ab +<< .B 0a b a b <+< .C 0a b a b +<< .D 0ab a b <<+

全国三卷9年高考理科数学试卷分析及2019高考预测

2019年高考,除北京、天津、上海、江苏、浙江等5省市自主命题外,其他26个省市区全部使用全国卷. 研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷 命题的灵魂.基于此,笔者潜心研究近3年全国高考理科数学Ⅲ卷和高考数学考试说明,精心分类汇总了全国卷近3年所有题型.为了便于读者使用,所有题目分类(共22类)列于表格之中,按年份排序.高考题的小题(填空和选择)的答案都列在表格的第三列,便于同学们及时解答对照答案,所有解答题的答案直接列在题目之后,方便查看. 一、集合与常用逻辑用语小题: 1.集合小题: 3年3考,每年1题,都是交并补子运算为主,多与不等式交汇,新定义运算也有较小的可 1.已知集合22{(,)1}A x y x y =+=,{(,)}B x y y x ==,则A B 中元素的个数为 3年0考.这个考点一般与其他考点交汇命题,不单独出题. 二、复数小题: 3年3考,每年1题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般涉及考查概2.设复数z 满足(1)2i z i +=,则||z = 全国三卷9年高考理数学分析及2019高考预测

三、平面向量小题: 3年3考,每年1题,向量题考的比较基本,突出向量的几何运算或代数运算,一般不侧重 3年7考.题目难度较小,主要考察公式熟练运用,平移,由图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.三角不考大题时,一般考三个小题,三角函数的图

3年6考,每年2题,一般考三视图和球,主要计算体积和表面积.球体是基本的几何体, 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

全国卷高考文科数学试卷及答案

2016年普通高等学校招生全统一考试 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合{ }3,2,1=A ,{} 92 <=x x B ,则=B A (A ){}3,2,1,0,1,2-- (B ) {}2,1,0,1- (C ){}3,2,1 (D ){}2,1 (2) 设复数z 满足i i z -=+3,则=z (A )i 21+- (B )i 21- (C )i 23+ (D )i 23- (3) 函数)sin(?ω+=x A y 的部分图像如图所示,则 (A ))62sin(2π - =x y (B ))32sin(2π -=x y (C ))6 2sin(2π + =x y (D ))3 2sin(2π +=x y (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )π12 (B )π3 32 (C )π8 (D )π4 (5) 设F 为抛物线C :x y 42 =的焦点,曲线)0(>= k x k y 与C 交于点P ,x PF ⊥轴,则=k (A )21 (B )1 (C )2 3 (D )2 (6) 圆013822 2=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a (A )3 (B )4 3 - (C )3 (D )2 (7) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表 面积为 (A )20π (B )24π (C )28π (D )32π

2018年高考数学试卷1(理科)

2018年高考试卷理科数学卷 本试卷分选择题和非选择题两部分。全卷共5页,满分150分,考试时间120分钟。 第I 卷(共50分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题 纸上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 参考公式: 球的表面积公式 棱柱的体积公式 球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高 343V R π= 棱台的体积公式 其中R 表示球的半径 11221()3 V h S S S S =++ 棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积, 13 V Sh = h 表示棱台的高 其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(原创)设函数,0,(),0, x x f x x x ?≥?=?-

2018年高三数学模拟卷及答案

高级中学高三数学(理科)试题 一、选择题:(每小题5分,共60分) 1、已知集合A={x ∈R||x|≤2},B={x ∈Z|x 2≤1},则A∩B=( ) A 、[﹣1,1] B 、[﹣2,2] C 、{﹣1,0,1} D 、{﹣2,﹣1,0,1,2}【答案】C 解:根据题意,|x|≤2?﹣2≤x≤2,则A={x ∈R||x|≤2}={x|﹣2≤x≤2}, x 2≤1?﹣1≤x≤1,则 B={x ∈Z|x 2≤1}={﹣1,0,1},则A ∩B={﹣1,0,1};故选:C . 2、若复数 31a i i -+(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A 、3 B 、﹣3 C 、0 D 、 【答案】A 解:∵ = 是纯虚数,则 ,解得:a=3.故选A . 3、命题“?x 0∈R , ”的否定是( ) A 、? x ∈R ,x 2﹣x ﹣1≤0 B 、? x ∈R ,x 2﹣x ﹣1>0 C 、? x 0∈R , D 、? x 0∈R , 【答案】A 解:因为特称命题的否定是全称命题, 所以命题“?x 0∈R , ”的否定为:?x ∈R ,x 2﹣x ﹣ 1≤0.故选:A 4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( ) A 、18 B 、20 C 、21 D 、25 【答案】C 解:设公差为d ,由题意可得:前30项和S 30=390=30×5+ d ,解得d= . ∴最后一天织的布 的尺数等于5+29d=5+29× =21.故选:C . 5、已知二项式 43x x ? - ? ? ?的展开式中常数项为 32,则a=( ) A 、8 B 、﹣8 C 、2 D 、﹣2【答案】D 解:二项式(x ﹣ )4的展开式的通项为T r+1=(﹣a )r C 4r x 4﹣ r ,令4﹣ =0,解得r=3,∴(﹣a ) 3 C 43=32,∴a=﹣2,故选:D 6、函数y=lncosx (﹣ <x < )的大致图象是( ) A 、 B 、 C 、 D 、 【答案】A 解:在(0, )上,t=cosx 是减函数,y=lncosx 是减函数,且函数值y <0, 故排除B 、C ; 在(﹣ ,0)上,t=cosx 是增函数,y=lncosx 是增函数,且函数值y <0,故排除D ,故选:A .

(完整)2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科) 第1卷 一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1] 2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=() A.0.8 B.0.4 C.0.3 D.0.2 3.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D. 4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为() A.y=±x B.y=±x C.y=±x D.y=±x 5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为() A.B.2 C.D.1 6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是() A.2 B.3 C.4 D.5 7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n} 的前8项和为() A.B.C.D. 8.(5分)(2018?衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=() A.45 B.180 C.﹣180 D.720

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

2018年高考数学真题

2018年普通高等学校招生全国统一考试(卷) 数学Ⅰ 1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A I 2. 若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为_____ 3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位 裁判打出的分数的平均数为_____ 4. 一个算式的伪代码如图所示,执行此算法,最后输出的S 的值为______ 5. 函数1log )(2-=x x f 的定义域为______ 6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加, 则恰好有2名女生的概率为_______ 7. 已知函数)22)(2sin(π?π?<<-+=x y 的图象关于直线3 π =x 对称,则?的值是______ 8. 在平面直角坐标系xOy 中.若双曲线0)b 0(122 22>>=-,a b y a x 的右焦点F(c ,0)到一 条渐近线的距离为 c 2 3 ,则其离心率的值是_____ 9. 函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间]2,2(-上,??? ??? ?≤<-+≤<=,02,21 ,20,2cos )(x x x x x f π则))15((f f 的值为______ 10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面 体的体积为_______ 11. 若函数)(12)(2 3 R a ax x x f ∈+-=在),0(+∞有且只有一个 零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______ 12. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限的点,B (5,0),以 8 99 9 011 (第3题) I ←1 S ←1 While I<6 I ←I+2 S ←2S End While Pnint S (第4题)

2018年高三理科数学模拟试卷04

页脚内容 1 绝密★启用前 试卷类型:A 2016年高考模拟试卷04 理科数学 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。第I 卷1至2页。第II 卷3至4页。考试结束后,将本草纲目试卷和答题卡一并交回。 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............ 。 3.第I 卷共12小题,第小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 第Ⅰ卷 (选择题,共60分) 一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1. 复数 i 215 -(i 为虚数单位)的虚部是( ) A. 2i B. 2i - C. 2- D. 2 2. 下列函数在其定义域上既是奇函数又是减函数的是( ) A .()2x f x = B .()sin f x x x = C .1 ()f x x = D . ()||f x x x =- 3. 已知()= -παcos 1 2 , 0πα-<<,则tan α=( )

页脚内容 2 A. 3 B. 33 C. 3- D. -33 4.设双曲线2 214 y x -=上的点P 到点(0,5)的距离为6,则P 点到(0,5)-的距离是( ) A .2或 10 B.10 C.2 D.4或8 5. 下列有关命题说法正确的是( ) A. 命题p :“sin +cos = 2x x x ?∈R ,”,则p 是真命题 B .21560x x x =---=“”是“” 的必要不充分条件 C .命题2,10x x x ?∈++a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件 6. 将函数??? ? ?-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的一条对 称轴方程可以为( ) A. 4 3π = x B. 76 x π= C. 127π=x D. 12π=x 7.2015年高中生技能大赛中三所学校分别有3名、2名、1名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是 ( ) A . 130 B .115 C .110 D .1 5 8.执行如图8的程序框图,若输出S 的值是1 2 ,则a 的值可以为( ) A .2014 B .2015 C .2016 D .2017

相关文档
相关文档 最新文档