文档库 最新最全的文档下载
当前位置:文档库 › 2018高考理科数学模拟试题

2018高考理科数学模拟试题

2018学年高三上期第二次周练 数学(理科)

第Ⅰ卷(选择题,共60分)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,

只有一项是符合题目要求的.

1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ?

A. {}12,

B. {}13,

C. {}01

, D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )

A. i -

B. i

C. 1-

D. 1

3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=,

则数列{}n a 的前9项的和9S =( )

A. 255

B. 256

C. 511

D. 512

4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x

y e =-围成,

现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A.

1e B. 21

e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2

5y x 的项的系数是( ) A. 10 B. 20

C. 30

D. 60

6.已知一个简单几何体的三视图如右图所示,则该几何体的

体积为 ( )

A. 36π+

B. 66π+

C. 312π+

D. 12

7.已知函数 ())2log(x

a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( )

A. 11<

B. 2110<<<

C. 10<

D. 210><

8.执行如图所示的程序框图,若输出的结果为2,则输入的正整数的

可能取值的集合是( )

{}.2345A ,,, B. {}123456,,,,,

{}.12345C ,,,, D. {}

23456,,,,

9.R 上的偶函数()f x 满足()()11f x f x -=+,当01x ≤≤时, ()2f x x =,则 ()5log y f x x =-的零点个数为( )

A. 4

B. 8

C. 5

D. 10

10.如图,已知抛物线24y x =的焦点为F ,直线l 过F 且依次交

抛物线及圆()22114x y -+=

于点,,,A B C D 四点,则4AB CD + 的最小值为( )

A. 172

B. 152

C. 132

D. 112 11.已知函数()()224sin sin 2sin 024x f x x x ωπωωω??=?+-> ???在区间2,23ππ??-????

上是增函数, 且在区间[]0,π上恰好取得一次最大值,则ω的取值范围是( )

A. (]0,1

B. 30,4?

? ??? C. [)1,+∞ D. 13,24??????

12.已知数列 }{n a 中,1a =1,且对任意的*,N n m ∈,都有,mn a a a n m n m ++=+则=∑=2018

11i i

a () A .

20192018 B .2018

2017 C . 2 D .20194036

第II 卷(非选择题)

二、填空题:本大题共4小题,每小题5分,满分20分.

13.已知平面向量()()2,1,2,a b x ==,且()()

2a b a b +⊥-,则x =__________. 14.若变量,x y 满足2

{236 0

x y x y x +≤-≤≥,且2x y a +≥恒成立,则a 的最大值为______________.

15.若双曲线()22

2210,0x y a b a b

-=>>上存在一点P 满足以OP 为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是__________.

16.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________.

三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17.已知向量()()3(sin , 3sin ,sin ,cos ,22a x x b x x f x a b ππ?????=--==? ? ???????

. (1)求()f x 的最大值及()f x 取最大值时x 的取值集合M ;

(2)在△ABC 中, ,,a b c 是角,,A B C 的对边,若

24C M π+∈且1c =,求△ABC 的周长的取值范围.

18.如图,已知四棱锥P ABCD -的底面为直角梯形, //AB DC , 90DAB ∠=?, PA ABCD ⊥底面,且12

PA AD DC ===, 1AB =, M 是PB 的中点。 (Ⅰ)求证: PAD PCD ⊥平面平面;

(Ⅱ)求二面角A CM B --的余弦值。

19.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示频率分布直方图.

(Ⅰ)估计从该市高一学生中随机抽取一人,体重超过60kg 的概率;

(Ⅱ)假设该市高一学生的体重X 服从正态分布()257,N a .

(ⅰ)估计该高一某个学生体重介于5457kg ~ 之间的概率;

介于5457kg ~之

(ⅱ)从该市高一学生中随机抽取3人,记体重

间的人数为Y ,利用(ⅰ)的结论,

求Y 的分布列及EY .

20.已知右焦点为F 的椭圆222:1(3)3x y M a a +=>与直线7

y =相交于P 、Q 两点, 且PF QF ⊥. (1)求椭圆M 的方程;

(2)O 为坐标原点,A ,B ,C 是椭圆E 上不同的三点,并且O 为ABC △的重心,

试探究ABC △的面积是否为定值,若是,求出这个定值;若不是,说明理由.

21. 已知函数()()2

2ln 0f x x x a x a =-+>. (1)当2a =时,试求函数图像过点()()

1,1f 的切线方程;

(2)若函数()f x 有两个极值点()1212x x x x <、,且不等式()12f x m x ≥恒成立,

试求实数m 的取值范围.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.

22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y αα

=+??=+?(α为参数),直线2C 的方程为3y x =,以O 为极点,以x 轴正半轴为极轴,建立极坐标系,

(1)求曲线1C 和直线2C 的极坐标方程;

(2)若直线2C 与曲线1C 交于,A B 两点,求11||||

OA OB +. 23.【不等式选讲】已知()31f x x x =-++, ()1g x x x a a =+-+-.

(1)解不等式()6f x ≥;

(2)若不等式()()f x g x ≥恒成立,求实数a 的取值范围.

参考答案 1.B 2.D 3.C 4.B 5.C 6.A ,7.A 8.A 9.C 10.C 11.D 12.D 13.12-或1 14.4- 15.5,??+∞?????

16.2,4e ??+∞???? 17.(1)()cos 3cos a x x =-,

()21333sin cos 3cos sin2cos2sin 223f x a b x x x x x x π??=?=-=--=- ???

-, ()f x ∴的最大值为31-,此时22,32

x k πππ-=+ 即512x k ππ=+ 5|, 12k z M x x k k z ππ??∈∴=+∈????

(2)24C M π+∈ 52412C k πππ∴+=+, 23C k ππ=+, ()0,C π∈ 3

C π∴= 1c =由2222cos c b a ab c =+-得222c a b ab =+-

()()()()22223344a b a b a b ab a b ++=+-≥+-

= 2a b ∴+≤ 又1a b +>, 故23a b c <++≤,即周长的范围为(]2,3∈.

18.证明:(Ⅰ)以A 为坐标原点AD 长为单位长度,如图,建立空间直角

坐标系,则各点为()0,0,0A , ()0,2,0B , ()0,1,0C , ()1,0,0D , ()0,0,1P , 10,1,2M ?

? ???

,则()0,0,1AP =, ()0,1,0DC =,故0AP DC ?=,所以AP DC ⊥,由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC PAD ⊥平面,又DC 在平面PCD 内,故平面PAD PCD ⊥平面。

(Ⅱ)在MC 上取一点(),,N x y z ,则存在R λ∈,使NC MC λ=,连接,AN BN , ()1,1,NC x y z =---,

11,0,2MC ??=- ??

?,所以1x λ=-, 1y =, 12z λ=。要使AN MC ⊥,只要0AN MC ?=,即102x z -=,解得45λ=。可知当45λ=时, N 点坐标为12,1,55?? ???,能使0AN MC ?=,此时, 12,1,55AN ??= ???

, 12,1,55BN ??=- ???

,所以0BN MC ?=。由0AN MC ?=, 305AN =, 305BN =,所以

2cos ,3AN BN

AN BN AN BN ?=

=-?,故所求二面角的余弦值为23-。 19.(Ⅰ)这400名学生中,体重超过60kg 的频率为()10.040.0154+?=

, 由此估计从该市高一学生中随机抽取一人,体重超过60kg 的概率为14

. (Ⅱ)(ⅰ)∵()

257,X N σ~, 1(60)4P X >=,∴1(54)4

P X <=, ∴11(5460)1242P X <<=-?=,∴111(5457)224P X <<=?=. (ⅱ)因为该市高一学生总体很大,所以从该市高一学生中随机抽取3人,可以视为独立重复实验,

其中体重介于5457kg ~之间的人数13,4Y B ?? ???~, ()331344i i i P Y i C -????== ? ?????

, 0,1,2,3i =.

13344

EY =?

=

. 20.(1)设()0F c ,,P t ? ?,则Q t ?- ?

, ∴2

2317t a +=,即2247t a =①,∵PF QF ⊥71=-,即2297c t -=-②, ∴由①②得2

24977c a -=-,又223a c -=,24a =, ∴椭圆M 的方程为22143x y +=. (2)设直线AB 方程为:y kx m =+,

由22143x y y kx m +==+?????得()

2223484120k x kmx m +++-=,∴122122834634km x x k m y y k -+=++??=?+????, ∵O 为重心,∴()

22863434km m OC OA OB k k -??=-+= ?++??,,

∵C 点在椭圆E 上,故有22

2286343414

3km m k k -???? ? ?++????+=,可得22443m k =+,

而AB ==, 点C 到直线AB

的距离d =(d 是原点到AB 距离的3倍得到),

∴61922

ABC m S AB d ====△, 当直线AB 斜率不存在时,3AB =,3d =,92ABC S =△,∴ABC △的面积为定值92

. 21.【解析】(1)当2a =时,有()2

22ln f x x x x =-+. ∵()()221222x x f x x x x -+'=-+=,∴()12f '=, ∴过点()()1,1f 的切线方程为:()121y x +=-,即230x y --=. (2)∵()f x 的定义域为:{}()222|0,22a x x a x x f x x x x

-+'>=-+=. 令()20220f x x x a '=?-+=. 又∵函数()f x 有两个极值点()1212x x x x <、,

∴2220x x a -+=有两个不等实数根()1212x x x x <、,

∴1002a ?>?<<,且212111,22x x a x x +==-,从而121012

x x <<<<. 由不等式()12f x m x ≥恒成立()2111122

2ln f x x x a x m x x -+?≤=恒成立, ∵()()()22111111111221222ln 112ln 1x x x x x f x x x x x x x -+-==--+-, 令()1112ln 012h t t t t t t ??=--+<< ?-??,∴()()

2112ln 01h t t t '=-+<-,当102t <<时恒成立, ∴函数()h t 在10,2?? ???上单调递减,∴()13ln 222h t h ??>=--

???, 故实数m 的取值范围是:3ln 22

m ≤-

-.

22.(1)曲线1C 的普通方程为22(2)(2)1x y -+-=,

则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=,

由于直线2C 过原点,且倾斜角为3

π,故其极坐标为()3R πθρ=∈

(或tan θ=) (2)由24cos 4sin 703ρρθρθπθ?--+=??=??

得:22)70ρρ-+=

,故122ρρ+=,127ρρ=,

∴121211||||||||||||OA OB OA OB OA OB ρρρρ+++===23(1) 解集为{ 2 x x ≤-或}4x ≥;(2) 32a ≥-

. (1)当3x ≥时, 226x -≥解得4x ≥.

当13x -<<时, 46≥无解, 当1x ≤-时, 226x -+≥解得2x ≤-.

∴()6f x ≥的解集为{ 2 x x ≤-或}4x ≥.

(2)由已知311x x x x a a -++≥+-+-恒成立. ∴3x x a a -++≥-恒成立. 又33x x a x x a -++≥---= 33a a --=+. ∴3a a +≥-,解得32a ≥-. ∴32

a ≥-

时,不等式()()f x g x ≥恒成立

2018年全国各地高考数学试题及解答分类汇编大全

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换) 一、选择题 1.(2018北京文)在平面坐标系中,?AB ,?CD ,?EF ,?GH 是圆22 1x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .?A B B .?CD C .?EF D .?GH 1.【答案】C 【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线. 2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π 个单位长度,所得图象对应的函数( ) (A )在区间[,]44ππ - 上单调递增 (B )在区间[,0]4π 上单调递减 (C )在区间[,]42 ππ 上单调递增 (D )在区间[,]2 π π 上单调递减 2.【答案】A 【解析】由函数sin 25y x π? ?=+ ?? ?的图象平移变换的性质可知: 将sin 25y x π? ?=+ ?? ?的图象向右平移10π个单位长度之后的解析式为: sin 2sin 2105y x x ?ππ? ??=-+= ???? ???. 则函数的单调递增区间满足:()22222 k x k k ππ π-≤≤π+∈Z , 即()44 k x k k ππ π- ≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ?? -????,选项A 正确,B 错误; 函数的单调递减区间满足:()322222 k x k k ππ π+≤≤π+∈Z , 即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ?? ???? , 选项C ,D 错误;故选A .

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

2018年高考全国三卷理科数学试卷

2018年普通高等学校招生全国统一考试(III卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 A.B.C.D. 2. A.B.C.D. 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 4.若,则 A.B.C.D. 5.的展开式中的系数为 A.10 B.20 C.40 D.80 6.直线分别与轴,轴交于、两点,点在圆上,则面积的取值范围是 A.B.C.D.

7.函数的图像大致为 8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A.B.C.D. 9.的内角的对边分别为,,,若的面积为,则 A.B.C.D. 10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D. 11.设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A.B.2 C.D. 12.设,,则 A.B.C.D. 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,,.若,则________. 14.曲线在点处的切线的斜率为,则________. 15.函数在的零点个数为________. 16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若 ,则________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须 作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分) 等比数列中,.

2018年高考全国二卷理科数学真题(解析版)

2018年高考全国二卷理科数学真题(解析 版) 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为 A. B. C. D. 【答案】A

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

2018年高三数学试卷

2018年高考数学试卷(文科) 一、选择题(共10小题,每小题5分,满分50分) 1.(5分)设全集U={x∈R|x>0},函数f(x)=的定义域为A,则?U A为()A.(0,e] B.(0,e) C.(e,+∞)D.[e,+∞) 2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=() A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i 3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,) 4.(5分)若m=0.52,n=20.5,p=log20.5,则() A.n>m>p B.n>p>m C.m>n>p D.p>n>m 5.(5分)执行如图所示的程序框图,输出n的值为() A.19 B.20 C.21 D.22 6.(5分)已知p:x≥k,q:(x﹣1)(x+2)>0,若p是q的充分不必要条件,则实数k的取值范围是() A.(﹣∞,﹣2)B.[﹣2,+∞) C.(1,+∞)D.[1,+∞) 7.(5分)一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为() A.056,080,104 B.054,078,102 C.054,079,104 D.056,081,106 8.(5分)若直线x=π和x=π是函数y=sin(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为() A.B.C.D.

9.(5分)如果实数x,y满足约束条件,则z=的最大值为()A.B.C.2 D.3 10.(5分)函数f(x)=的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是() A.a>1 B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣ 二、填空题(共5小题,每小题5分,满分25分) 11.(5分)已知直线l:x+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B 三点的圆的标准方程为. 12.(5分)某几何体三视图如图所示,则该几何体的体积为. 13.(5分)在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a 的值为. 14.(5分)已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为. 15.(5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是. 三、解答题(共6小题,满分75分) 16.(12分)已知向量=(sinx,﹣1),=(cosx,),函数f(x)=(+)?. (1)求函数f(x)的单调递增区间; (2)将函数f(x)的图象向左平移个单位得到函数g(x)的图象,在△ABC中,角A,B,

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

2018年全国高考ii卷理科数学试题及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

2018年高考数学真题

2018年普通高等学校招生全国统一考试(卷) 数学Ⅰ 1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A I 2. 若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为_____ 3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位 裁判打出的分数的平均数为_____ 4. 一个算式的伪代码如图所示,执行此算法,最后输出的S 的值为______ 5. 函数1log )(2-=x x f 的定义域为______ 6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加, 则恰好有2名女生的概率为_______ 7. 已知函数)22)(2sin(π?π?<<-+=x y 的图象关于直线3 π =x 对称,则?的值是______ 8. 在平面直角坐标系xOy 中.若双曲线0)b 0(122 22>>=-,a b y a x 的右焦点F(c ,0)到一 条渐近线的距离为 c 2 3 ,则其离心率的值是_____ 9. 函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间]2,2(-上,??? ??? ?≤<-+≤<=,02,21 ,20,2cos )(x x x x x f π则))15((f f 的值为______ 10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面 体的体积为_______ 11. 若函数)(12)(2 3 R a ax x x f ∈+-=在),0(+∞有且只有一个 零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______ 12. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限的点,B (5,0),以 8 99 9 011 (第3题) I ←1 S ←1 While I<6 I ←I+2 S ←2S End While Pnint S (第4题)

2018年高考试题分类汇编之概率统计精校版 2

2017年高考试题分类汇编之概率统计 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2017课标I理)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆 中 的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() 4 1 .A 8 . π B 2 1 .C 4 . π D 2.(2017课标III理)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是() .A月接待游客量逐月增加.B年接待游客量逐年增加 .C各年的月接待游客量高峰期大致在8,7月 .D各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标Ⅱ文)从分别写有5,4,3,2,1的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为() .A 1 10 .B 1 5 .C 3 10 .D 2 5 4.(2017课标I文)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为n x x x? , , 2 1 ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() n x x x A? , , . 2 1 的平均数n x x x B? , , . 2 1 的标准差n x x x C? , , . 2 1 的最大值n x x x D? , , . 2 1 的中位数 5.(2017天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5 (第1题)(第2题)

(完整)2018年上海高考数学试卷

2018年普通高等学校招生全国统一考试 上海 数学试卷 时间120分钟,满分150分 一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.行列式41 25的值为_________. 2.双曲线2 214 x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。若()f x 的反函数的图像经过点(3,1),则 a =_________. 5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________. 6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________. 7.已知12,1,,1,2,32α? ?∈---???? 。若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________. 8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r ,则AE BF ?u u u r u u u r 的最小值为_________. 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)

10.设等比数列{}n a 的通项公式为1n n a q -=(*n ∈N ),前n 项和为n S 。若1 1lim 2n n n S a →+∞+=,则q =_________. 11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ?? ???、1,5Q q ??- ?? ?。若236p q pq +=,则a =_________. 12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y += ,则的最大值为_________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A ) (B ) (C ) (D )14.已知a ∈R ,则“1a >”是“11a <”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。设1AA 是正六棱柱的一条侧棱,如图。若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( ) (A )4 (B )8 (C )12 (D )16 16.设D 是含数1的有限实数集,()f x 是定义在D 上的函数。若()f x 的图像绕原点逆时针旋转6 π后与原图像重合,则在以下各项中,(1)f 的可能取值只能是( ) A 1

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后 农村的经济收入构成比例。得到如下 饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视图 上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上, 从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

2018年高考数学试题分类汇编_选修 精品

十五、选修4 1.(山东理4)不等式|5||3|10x x -++≥的解集是 A .[-5,7] B .[-4,6] C .(][),57,-∞-+∞ D .(][),46,-∞-+∞ 【答案】D 2.(北京理5)如图,AD ,A E ,BC 分别与圆O 切于点D ,E , F ,延长AF 与圆O 交于另一点 G 。给出下列三个结论: ①AD+AE=AB+BC+CA ;②AF· AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是A .①② B .②③C .①③ D .①②③ 【答案】A 3.(安徽理5)在极坐标系中,点θρπ cos 2)3,2(=到圆的圆心的距离为 (A )2 (B )942π+ (C )9 12π+ (D )3【答案】D 4.(北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 A .(1,)2π B .(1,)2π - C . (1,0) D .(1,π)【答案】B 5.(天津理11)已知抛物线C 的参数方程为28,8. x t y t ?=?=?(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2 224(0)x y r r -+=>相切,则r =________.【答 6.(天津理12)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长 线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则线 段CE 的长为__________. 【答案】2 7.(天津理13)已知集合{}1|349,|46,(0,)A x R x x B x R x t t t ??= ∈++-≤=∈=+-∈+∞????,则集合A B ?=________.【答案】{|25}x x -≤≤ 8.(上海理5)在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。 【答案】arccos 5 9.(上海理10)行列式a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。【答案】6 (陕西理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评10.分) A .(不等式选做题)若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 。 B .(几何证明选做题)如图,,,90B D AE B C AC D ∠=∠⊥∠= ,且6,4,12A B A C A D ===,则B E = 。 C .(坐标系与参数方程选做题)直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

2018高考理科数学模拟试题

2018学年高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

2018年高考理科数学试卷及答案(清晰word版)

理科数学试题 第1页(共9页) 绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 12 C .1 D 2.已知集合2{|20}A x x x =-->,则A =R e A .{|12}x x -<< B .{|12}x x -≤≤ C .{|1}{|2}x x x x <->U D .{|1}{|2}x x x x -≤≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

理科数学试题 第2页(共9页) 4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的 切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu r A .3144A B A C -uu u r uuu r B .1344AB AC -uu u r uuu r C .3144AB AC +uu u r uuu r D .1344 AB AC +uu u r uuu r 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A . B .C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?uuu r uuu r A .5 B .6 C .7 D .8 9.已知函数e ,0, ()ln ,0,x x f x x x ?=?>? ≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的 取值范围是 A .[1,0)- B .[0,)+∞ C .[1,)-+∞ D .[1,)+∞ 10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个 半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则 A .12p p = B .13p p = C .23p p = D .123p p p =+

2018年高考理科数学试题及答案-全国卷3

2018 年普通高等学校招生全国统一考试 ( 全国卷 3) 理科数学 2. 1 i 2 i B . 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右 可以是 1 4 .若 sin ,则 cos 2 3 、选择题本: 题共 12 小题, 每小题 5 分,共 60 分。 在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合 A x | x 1≥ 0 , B 0 ,1,2 ,则 A B B . C . 1,2 D . 0 ,1 ,2 方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯 视 图 D . 边的小长

A. 7 B. 9 7 C. 9 8 D. 9 5. 的展开式中 4 x 的系数 A.10 B.20 C.40 D.80 6.直线x y 2 0 分别与x 轴,y轴交于A , B 两点, 点 P 在圆 上,则△ABP 面积的取值范围

A . B . 4,8 C . 2 ,3 2 D . 2 2 , 3 2 7.函数 4 2 2 y x x 的图像大致为 8.某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为该群体的 10 位成员 中使用移动支付的人数, DX 2.4 , P X 4 P X 6 ,则 p A . 0.7 B . 0.6 C . 0.4 D . 0.3 9. △ ABC 的内角 A ,B ,C 的对边分别为 a , b , c ,若 △ABC 2 2 2 的面积为 a b c ,则 C π π π 4 π A . B . C . D . 2 3 4 6 10.设 A ,B ,C , D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC 体积的最大值为 A . 12 3 B . 18 3 C . 24 3 2 2 11.设 F 1 ,F 2 是双曲线 x y D . 54 3 O 是坐标原点.过 F 2 作 C 的一条渐近线 垂线,垂足为 a b P .若 PF 1 6 OP ,则 C 的离心 率为 A . 5 B .2 C . 3 C : 2 2 1( a 0,b 0 )的左,右焦点, 的 log 2 0.3 ,则 A . a b ab 0 C . a b 0 ab 12 .设 a log 0.2 0.3 , b B . ab a b 0 D ab 0 a b 、填空题:本题共 4 小题,每小题 5 分,共 20 分。

【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且.若, 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当 时,,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则 但 ,即

,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数 列.已知,,,. (I)求和的通项公式;

(II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力. 4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s

相关文档
相关文档 最新文档