文档库 最新最全的文档下载
当前位置:文档库 › 全国高考1卷文科数学试题及答案

全国高考1卷文科数学试题及答案

全国高考1卷文科数学试题及答案
全国高考1卷文科数学试题及答案

第Ⅰ卷

考生注意:

1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选

项中,只有一项是符合题目要求的.

1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )

A .{1,3}

B .{3,5}

C .{5,7}

D .{1,7}

2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )

A .-3

B .-2

C .2

D . 3

3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,

余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是

( )

A .13

B .12

C .23

D .56

4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3

a c A ===, 则b=( )

A .

B

C .2

D .3

5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的

14

,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34

6.若将函数y =2sin (2x +6

π)的图像向右平移14个周期后,所得图像对应的函数为 ( )

A .y =2sin(2x +4π)

B .y =2sin(2x +3π)

C .y =2sin(2x –4π)

D .y =2sin(2x –3

π) 7.如图,某几何体的三视图是三个半径相等的圆及每个

圆中两条相互垂直的半径.若该几何体的体积是283

π, 则它的表面积是( )

A .17π

B .18π

C .20π

D .28π

8.若a >b >0,0

A .log a c

B .log c a

C .a c

D .c a >c b

9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )

10

A .y =2x

B .y =3x

C .y =4x

D .y =5x

11.平面α过正方体ABCD -A 1B 1C 1D 1 α223131()sin 23f x x -x a =+个试题考生都必须作答,第22题~第24二、填空题:本大题共4小题,每小题513.设向量a =(x ,x +1),b =(1,2),且a ⊥= . 14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4

)= . 15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=

则圆C 的面积为 .

16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A

需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为

元.

三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.

17.(本题满分12分)

已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=3

1,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.

B E G P D

C A

18.(本题满分12分)

如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC

内的正投影为点D ,D 在平面PAB 内的正投影为点E ,

连接PE 并延长交AB 于点G .

(Ⅰ)证明G 是AB 的中点; (Ⅱ)在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.

19.(本小题满分12分)

某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.

(Ⅰ)若n =19,求y 与x 的函数解析式;

(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件

20.(本小题满分12分)

在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.

(Ⅰ)求OH

ON

;(Ⅱ)除H以外,直线MH与C是否有其它公共点说明理由.

21.(本小题满分12分)

已知函数f(x)=(x -2)e x+a(x -1)2.

(Ⅰ)讨论f(x)的单调性;(Ⅱ)若有两个零点,求a的取值范围.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号

22.(本小题满分10分)选修4-1:几何证明选讲

如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,1

2

OA为半径作圆.

(Ⅰ)证明:直线AB与⊙O相切;

(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

23.(本小题满分10分)选修4—4:坐标系与参数方程

在直线坐标系xoy中,曲线C1的参数方程为

cos

1sin

x a t

y a t

=

?

?

=+

?

(t为参数,a>0).

B E G P F D

C A 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.

(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;

(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .

24.(本小题满分10分),选修4—5:不等式选讲

已知函数f (x )=| x +1| -|2x -3|.

(Ⅰ)在答题卡第24题图中画出y =f (x )的图像;

(Ⅱ)求不等式| f (x )|>1的解集.

2016年全国高考新课标1卷文科数学试题参考答案

一、选择题,

B A

C

D B D A B D C A C

二、填空题:

13.23- 14.43

- 15.4π 16.216000 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.

17.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=3

1,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分

(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为3

1的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n

n --=-?- …12分 18.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面PAB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分 又PG 平面PDE ,∴AB ⊥PG .依题PA=PB ,∴G 是AB 的中点.…6分

(Ⅱ)解:在平面PAB 内作EF ⊥PA (或EF …7分

理由如下:∵PC ⊥PA ,PC ⊥PB ,∴ PC ⊥平面PAB . ∴EF ⊥PC

作EF ⊥PA ,∴EF ⊥平面PAC .即F 是点E 在平面PAC 内的正投影.…9分 连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .

易知DE 2233PG =?=1433

V S DE =?= …12分 19.解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700.

所以y 与x 的函数解析式为3800,19(*)5005700,19

x y x N x x ≤?=∈?->? …3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为,不大于19为,所以n 的最小值为19. …6分

(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100

(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100

(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分

20.解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t

=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分

所以H (2

2t p ,2t ). 所以N 是OH 的中点,所以OH ON

=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t

-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .

所以除H 以外,直线MH 与C 没有其它公共点. …12分

21.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分

(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;

在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分

(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).

①若a =2

e -,ln(-2a ) =1,

f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②若a >2

e -,ln(-2a )<1,在(ln(-2a ),1)上,

f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.

③若a <2

e -,ln(-2a )>1,在(1,ln(-2a ))上,

f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分

(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分

(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.

最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b

a . 从而f (

b )>223(2)(1)()022

a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2

e -,由(Ⅰ)知

f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2

e -,

f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.

综上a 的取值范围是(0,1). …12分

}

2018年全国统一高考数学试卷文科全国卷1详解版

2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则() A.A∩B={x|x<}B.A∩B=?C.A∪B={x|x<}D.A∪B=R 2.(5分)(2017?新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差 C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数 3.(5分)(2017?新课标Ⅰ)下列各式的运算结果为纯虚数的是() A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i) 4.(5分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 5.(5分)(2017?新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 6.(5分)(2017?新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C. D. 7.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 8.(5分)(2017?新课标Ⅰ)函数y=的部分图象大致为() A.B.C. D. 9.(5分)(2017?新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则() A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()

2019年全国统一高考数学试卷文科Ⅰ

2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题(本大题共12小题,共60.0分) 1.设z=,则|z|=() A. 2 B. C. D. 1 2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A= () A. B. C. D. 6, 3.已知a=log20.2,b=20.2,c=0.20.3,则() A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂 维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚 脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿 长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A. 165 cm B. 175 cm C. 185 cm D. 190 cm 5.函数f(x)=在[-π,π]的图象大致为() A. B. C. D. 6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些 新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生

7.tan255°=() A. B. C. D. 8.已知非零向量满足||=2||,且(-)⊥,则与的夹角为() A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. B. C. D. 10.双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率 为() A. B. C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-, 则=() A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若 ,,则C的方程为() A. B. C. D. 二、填空题(本大题共4小题,共20.0分) 13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________. 14.记S n为等比数列{a n}的前n项和,若a1=1,S3=,则S4=______. 15.函数f(x)=sin(2x+)-3cos x的最小值为______. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离 均为,那么P到平面ABC的距离为______.

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2 ,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. B .11+ i 2 - C . D . 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) C 的渐近线方程 为( ). A . B . C .1 2 y x =± D . 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵2e = 2c a =,即2254 c a =.

2020年高考文科数学全国1卷试题

2020年高考全国一卷文科数学试题 一、选择题 1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B ?=( ) A.{4,1}- B.{1,5} C.{3,5} D.{1,3} 2.若312i i z =++,则||z =( ) A.0 B.1 D.2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( ) 4.设O 为正方形ABCD 的中心,在,,,,O A B C D 中任取3点,则取到的3点共线的概率为( ) A. 15 B.25 C.12 D.45 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不 同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图: 由此散点图,在10C ?至40C ?之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A.y a bx =+ B.2y a bx =+ C.e x y a b =+ D.ln y a b x =+ 6.已知圆2260x y x +-=,过点()1,2的直线被该圆所截得的弦的长度的最小值为( ) A.1 B.2 C.3 D.4

7.设函数()cos π ()6 f x x ω=+在[π,π]-的图像大致如下图,则()f x 的最小正周期为( ) A.10π9 B.7π 6 C. 4π3 D. 3π2 8.设3log 42a =,则4a -= ( ) A. 116 B.19 C.18 D. 16 9.执行下面的程序框图,则输出的n = ( ) A.17 B.19 C.21 D.23 10.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A.12 B.24 C.30 D.32 11.设12,F F 是双曲线2 2 :13 y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则 12PF F △的面积为( ) A. 72 B.3 C. 52 D.2 12.已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2018高考数学全国3卷文科试卷

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试(全国3卷) 文科数学 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012, , 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫 卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

4.若1 sin 3 α=,则cos2α=( ) A .89 B . 79 C .79 - D .89 - 5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A .0.3 B .0.4 C .0.6 D .0.7 6.函数 ()2tan 1tan x f x x = +的最小正周期为( ) A . 4 π B . 2 π C .π D .2π 7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ 8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2 222x y -+=上,则ABP ?面积的取值围是( ) A .[]26, B .[]48, C . D .??

2019年全国I卷高考文科数学真题及答案

2019年全国I 卷高考文科数学真题及答案 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则 A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[-π,π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求 112122 + +的程序框图,图中空白框中应填入 A .A = 12A + B .A =12A + C .A = 1 12A + D .A =112A +

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

高考数学试卷文科001

高考数学试卷(文科) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩?∪A=() A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5} 2.(5分)已知,则双曲线C1:与C2: 的() A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等 3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A.(¬p)∨(¬q)B.p∨(¬q) C.(¬p)∧(¬q)D.p∨q 4.(5分)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y与x负相关且=2.347x﹣6.423; ②y与x负相关且=﹣3.476x+5.648; ③y与x正相关且=5.437x+8.493; ④y与x正相关且=﹣4.326x﹣4.578. 其中一定不正确的结论的序号是() A.①②B.②③C.③④D.①④ 5.(5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()

A.B. C.D. 6.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是() A.B.C.D. 7.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为() A.B.C.D. 8.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为() A.奇函数B.偶函数C.增函数D.周期函数 9.(5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为() A.31200元B.36000元C.36800元D.38400元 10.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是() A.(﹣∞,0)B.(0,)C.(0,1)D.(0,+∞) 二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.

2019年全国高考1卷文科数学试题及答案

2019年全国高考新课标1卷文科数学试题 第Ⅰ卷 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( ) A .{1,3} B .{3,5} C .{5,7} D .{1,7} 2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( ) A .-3 B .-2 C .2 D . 3 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中, 余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A .13 B .12 C .2 3 D .56 4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2 2,cos 3 a c A ===, 则b=( ) A . C .2 D .3 5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的 1 4 ,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34 6.若将函数y =2sin (2x +6π)的图像向右平移1 4 个周期后,所得图像对应的函数 为 ( ) A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4 π ) D .y =2sin(2x –3 π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283 π , 则它的表面积是( ) A .17π B .18π C .20π D .28π 8.若a >b >0,0c b

2017全国卷文科数学高考大纲

文科数学 I、考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。 对知识的要求依次是了解、理解、掌握三个层次。 1、了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。 2、理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。 3、掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 1。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、

全国统一高考数学试卷(文科)(全国一卷)

2011年全国统一高考数学试卷(文科)(新课标) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有() A.2个B.4个C.6个D.8个 2.(5分)复数=() A.2﹣iB.1﹣2iC.﹣2+iD.﹣1+2i 3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x| 4.(5分)椭圆=1的离心率为() A.B.C.D. 5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是() A.120B.720C.1440D.5040

6.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为() A.B.C.D. 7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=() A.﹣B.﹣C.D. 8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为() A.B.C.D. 9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为() A.18B.24C.36D.48 10.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,) 11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称 B.y=f(x)在(0,)单调递增,其图象关于直线x=对称

2018年全国1卷(文科数学)高考

2018年普通高等学校招生全国统一考试文科数学 一、选择题: 1. 已知集合,,,,,,,则 A. , B. , C. D. ,,,, 2. 设,则 A. 0 B. C. D. 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4. 已知椭圆:的一个焦点为,,则的离心率为 A. B. C. D. 5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D. 6. 设函数.若为奇函数,则曲线在点, 处的切线方程为 A. B. C. D. 7. 在△中,为边上的中线,为的中点,则 A. B. C. D. 8. 已知函数,则

A. 的最小正周期为,最大值为3 B. 的最小正周期为,最大值为4 C. 的最小正周期为,最大值为3 D. 的最小正周期为,最大值为4 9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中, 最短路径的长度为 A. B. C. D. 2 10. 在长方体中,,与平面所成的角为,则该长方体的体积为 A. B. C. D. 11. 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,, ,,且,则 A. B. C. D. 12. 设函数 , , ,则满足的x的取值范围是 A. , B. , C. , D. , 二、填空题(本题共4小题,每小题5分,共20分) 13. 已知函数,若,则________. 14. 若,满足约束条件,则的最大值为________. 15. 直线与圆交于,两点,则________. 16. △的内角,,的对边分别为,,,已知 ,,则△的面积为________. 三、解答题:共70分。 17. 已知数列满足,,设. (1)求,,; (2)判断数列是否为等比数列,并说明理由; (3)求的通项公式.

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 文科数学(必修+选修) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)2- 12 (C)12 (D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1 cos300cos 36060cos 602 ?=?-?=?= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则() U N M ?=e{}1,3,5{}2,3,5?={}3,5

2018年全国高考新课标1卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B= A .{0,2} B .{1,2} C .{0} D .{-2,-1,0,1,2} 解析:选A 2.设z= 1-i 1+i +2i ,则|z|= A .0 B .1 2 C .1 D . 2 解析:选C z=1-i 1+i +2i=-i+2i=i 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A 4.已知椭圆C :x 2 a 2+y 2 4=1的一个焦点为(2,0),则C 的离心率为 A .13 B .12 C . 22 D . 22 3 解析:选C ∵ c=2,4=a 2 -4 ∴a=2 2 ∴e= 22 5.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2 =12π

(完整word)2017年高考全国一卷文科数学试卷

2017年普通高等学校招生全国统一考试(I 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 已知集合}023|{}2|{>-=<=x x B x x A ,,则 A. }23 |{<=x x B A I B. ?=B A I C. }2 3 |{<=x x B A Y D. R =B A Y 2. 为评估一种农作物的种植效果,选了n 块地作试验田。这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A. x 1,x 2,…,x n 的平均数 B. x 1,x 2,…,x n 的标准差 C. x 1,x 2,…,x n 的最大值 D. x 1,x 2,…,x n 的中位数 3. 下列各式的运算结果为纯虚数的是 A. i(1 + i)2 B. i 2(1 - i) C. (1 + i)2 D. i(1 + i) 4. 如图,正方形ABCD 内的图形来自中国古代的太极图。正方形内切圆中的黑色部分 和白色部分关于正方形的中心成中心对称。在正方形内随机取一点,则此点取自黑 色部分的概率是 A. 41 B. 8π C. 2 1 D. 4 π 5. 已知F 是双曲线C :13 2 2 =-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 A. 3 1 B. 2 1 C. 3 2 D. 2 3 6. 如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中, 直线AB 与平面MNQ 不平行的是 A. B. C. D. 2017.6

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

相关文档
相关文档 最新文档