文档库 最新最全的文档下载
当前位置:文档库 › 高考数学文科全国卷

高考数学文科全国卷

高考数学文科全国卷
高考数学文科全国卷

2015·新课标Ⅰ卷

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2

2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →

=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 3.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-i D .2+i

4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )

5.已知椭圆E 的中心在坐标原点,离心率为1

2

,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与

E 的两个交点,则|AB |=( )

A .3

B .6

C .9

D .12 6.

《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有( )

A .14斛

B .22斛

C .36斛

D .66斛

7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) C .10 D .12 8.

函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( ) ,k ∈Z ,k ∈Z ,k ∈Z ,k ∈Z

9.执行下面所示的程序框图,如果输入的t =,则输出的n =( )

A .5

B .6

C .7

D .8

10.已知函数f (x )=?

????

2x -1-2, x ≤1,

-log 2?x +1?, x >1,且f (a )=-3,则f (6-a )=( )

A .-74

B .-54

C .-34

D .-14

第11题图

11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )

A .1

B .2

C .4

D .8

12.设函数y =f (x )的图象与y =2x +

a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( ) A .-1 B .1 C .2 D .4

二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)

13.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 14.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.

15.若x ,y 满足约束条件????

?

x +y -2≤0,x -2y +1≤0,

2x -y +2≥0,

则z =3x +y 的最大值为________.

16.已知F是双曲线C:x2-y2

8=1的右焦点,P是C的左支上一点,A(0,66).当△APF周长最小时,该三角形

的面积为________.

三、解答题(解答应写出文字说明,证明过程或演算步骤)

17.(本小题满分12分)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sin C.

(1)若a=b,求cos B;

(2)设B=90°,且a=2,求△ABC的面积.

18(本小题满分12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.

(1)证明:平面AEC⊥平面BED;

(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为

6

3,求该三棱锥的侧面积.

19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

x y w

8

i=1

(x i-x)2

8

i=1

(w i-w)2

8

i=1

(x i-x)(y i

-y)

8

i=1

(w i-

w)(y i-y)

563 1 469

表中w i=x i,w=1

8

8

i=1

w i.

2015·新课标Ⅰ卷第4页(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x

的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

(3)已知这种产品的年利润z与x,y的关系为z=-x.根据(2)的结果回答下列问题:

①年宣传费x=49时,年销售量及年利润的预报值是多少?

②年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为

β^=

n

i=1

?u i-u??v i-v?

n

i=1

?u i-u?2

,α^=v-β^u.

20.(本小题满分12分)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;

(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.

21.(本小题满分12分)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数;

(2)证明:当a >0时,f (x )≥2a +a ln 2

a

.

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲

如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (1)若D 为AC 的中点,证明:DE 是⊙O 的切线;

(2)若OA =3CE ,求∠ACB 的大小.

23.(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.

(1)求C 1,C 2的极坐标方程;

(2)若直线C 3的极坐标方程为θ=π

4

(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.

24.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;

(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.

2018年全国统一高考数学试卷文科全国卷1详解版

2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则() A.A∩B={x|x<}B.A∩B=?C.A∪B={x|x<}D.A∪B=R 2.(5分)(2017?新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差 C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数 3.(5分)(2017?新课标Ⅰ)下列各式的运算结果为纯虚数的是() A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i) 4.(5分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 5.(5分)(2017?新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 6.(5分)(2017?新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C. D. 7.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 8.(5分)(2017?新课标Ⅰ)函数y=的部分图象大致为() A.B.C. D. 9.(5分)(2017?新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则() A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()

2015年高考理科数学试题及答案-全国卷2

绝密★启用前 2015年普通高等学校招生全国统一考试(全国卷2) 理 科 数 学 注意事项: 1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。 2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( ) (A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2} (2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( ) (A )-1 (B )0 (C )1 (D )2 (3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( ) (A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现 (C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 (4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) (A )21 (B )42 (C )63 (D )84

高考文科数学真题全国卷

2010年普通高等学校招生全国统一考试 文科数学(全国I 卷) 第I 卷 一、选择题 (1)cos300°= (A ) (B )12- (C )12 (D (2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ?(C ,M ) (A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5) (3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤? 则z =x-2y 的最大值为 (A )4 (B )3 (C )2 (D )1 (4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (A ) (B)7 (C)6 (5)(1-x )2(1 )3的展开式中x 2的系数是 (A)-6 (B )-3 (C)0 (D)3 (6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于 (A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 (A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞) (8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF = (A )2 (B)4 (C)6 (D)8 (9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 3 (B) 3 (C) 23 (D) 3 (10)设a =log 3,2,b =ln2,c =1 25 -,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的 最小值为 (A )- (B )- (C )- (D )-

2019年全国统一高考数学试卷文科Ⅰ

2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题(本大题共12小题,共60.0分) 1.设z=,则|z|=() A. 2 B. C. D. 1 2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A= () A. B. C. D. 6, 3.已知a=log20.2,b=20.2,c=0.20.3,则() A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂 维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚 脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿 长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A. 165 cm B. 175 cm C. 185 cm D. 190 cm 5.函数f(x)=在[-π,π]的图象大致为() A. B. C. D. 6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些 新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生

7.tan255°=() A. B. C. D. 8.已知非零向量满足||=2||,且(-)⊥,则与的夹角为() A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. B. C. D. 10.双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率 为() A. B. C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-, 则=() A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若 ,,则C的方程为() A. B. C. D. 二、填空题(本大题共4小题,共20.0分) 13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________. 14.记S n为等比数列{a n}的前n项和,若a1=1,S3=,则S4=______. 15.函数f(x)=sin(2x+)-3cos x的最小值为______. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离 均为,那么P到平面ABC的距离为______.

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学 试题及答案 The document was prepared on January 2, 2021

年普通高等学校招生全国统一考试 文科数学卷3 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出 的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.4 2.复平面内表示复数(2) =-+的点位于 z i i A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 - B. 2 9 -C. 2 9 D. 7 9 5.设,x y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是 A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 6.函数 1 ()sin()cos() 536 f x x x ππ =++-的最大值为 A.6 5 B.1 C. 3 5 D. 1 5

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2015年全国高考数学卷文科卷1及解析

2015年全国高考数学卷文科卷1 一、选择题 1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( ) (A ) 5 (B )4 (C )3 (D )2 2.已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =( ) (A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5.已知椭圆E 的中心为坐标原点,离心率为12 ,E 的右焦点与抛物线2 :8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = ( ) (A ) 172 (B )19 2 (C )10 (D )12 8.函数()cos()f x x ω?=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13 (,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13 (,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈

2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 文科数学(必修+选修) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)2- 12 (C)12 (D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1 cos300cos 36060cos 602 ?=?-?=?= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则() U N M ?=e{}1,3,5{}2,3,5?={}3,5

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

2017全国卷文科数学高考大纲

文科数学 I、考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。 对知识的要求依次是了解、理解、掌握三个层次。 1、了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。 2、理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。 3、掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 1。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、

2017年高考全国卷一理科数学试题及答案

绝密★启用前 2017年普通高等学校招生全国统一考试 全国卷一理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2.如图,形ABCD 的图形来自中国古代的太极图.形切圆中的黑色部分和白色部分关于形的中心成中心对称.在形随机取一点,则此点取自黑色部分的概率是 A . 14 B . π8 C .12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

2015年高考全国卷1理科数学(解析版)

注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设复数z满足1+z 1z - =i,则|z|= (A)1 (B)2(C)3(D)2 【答案】A 考点:1.复数的运算;2.复数的模. (2)sin20°cos10°-con160°sin10°= (A)3 (B 3 (C) 1 2 -(D) 1 2 【答案】D 【解析】 试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=1 2 ,故选D. 考点:诱导公式;两角和与差的正余弦公式 (3)设命题P:?n∈N,2n>2n,则?P为 (A)?n∈N, 2n>2n(B)?n∈N, 2n≤2n (C)?n∈N, 2n≤2n(D)?n∈N, 2n=2n

【答案】C 【解析】 试题分析:p ?:2,2n n N n ?∈≤,故选C. 考点:特称命题的否定 (4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A 【解析】 试题分析:根据独立重复试验公式得,该同学通过测试的概率为 22330.60.40.6C ?+=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式 (5)已知M (x 0,y 0)是双曲线C :2 212 x y -=上的一点,F 1、F 2是C 上的两个焦 点,若1MF u u u u r ?2MF u u u u r <0,则y 0的取值范围是 (A )(- 33,3 3 ) (B )(- 36,3 6 ) (C )(223- ,223) (D )(233-,23 3 ) 【答案】A 考点:向量数量积;双曲线的标准方程

高考数学文科全国卷

2015·新课标Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC → =( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 3.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-i D .2+i 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) 5.已知椭圆E 的中心在坐标原点,离心率为1 2 ,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与 E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 6. 《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) C .10 D .12 8.

2014年高考数学全国二卷(理科)完美版

2014年高考数学全国二卷(理科)完美版

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷(选择题共60分) 2014·新课标Ⅱ卷第1页一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1}B.{2} C.{0,1}D.{1,2} 2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=() A.-5 B.5 C.-4+i D.-4-i 3.设向量a,b满足|a+b|=10,|a-b|=6,则a·b=() A.1 B.2 C.3 D.5 4.钝角三角形ABC的面积是1 2,AB=1, BC=2,则AC=() A.5 B. 5 C.2 D.1 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是() A.0.8 B.0.75 C.0.6 D.0.45

6.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A.1727 B.59 C.1027 D.13 7.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6 D .7

8.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3 9.设x ,y 满足约束条件???? ? x +y -7≤0,x -3y +1≤0, 3x -y -5≥0, 则z =2x -y 的最大值为( ) A .10 B .8 C .3 D .2 10.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94 11.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 2014·新课标Ⅱ卷 第2页12.设函数f (x )= 3sin πx m .若存在f (x )的极值点x 0满足x 20+[f (x 0)]2

年高考全国卷1文科数学真题及答案

2013年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对 值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为5 2,则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3 =1-x 2 ,则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为 2 3 的等比数列{a n }的前n 项和为S n ,则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2 =42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( ). A .2 B .22 C .23 D .4 9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ). 10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2 A +cos 2A =0,a =7,c =6,则b =( ).

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题 1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=( ) A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2} 2、若a 为实数,且(2+ai)(a –2i)= – 4i ,则a=( ) A .–1 B .0 C .1 D .2 3、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显著 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫排放量呈减少趋势 D .2006年以来我国二氧化硫排放量与年份正相关 4、已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84 5、设函数f(x)=? ??1+log 2(2–x)(x<1) 2x –1(x≥1),则f(–2)+f(log 212)=( ) A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如下左1图,则截去部分体积与剩余部分体积的比值为( ) A . B . C . D . 7、过三点A(1,3),B(4,2),C(1,–7)的圆交y 轴于M ,N 两点,则IMNI=( ) A .2 6 B .8 C .4 6 D .10 8、如上左2程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a=( ) A .0 B .2 C .4 D .14 9、已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 10、如上左3图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x ,将动点P 到A ,B 两点距离之和表示为x 的函数,则y=f(x)的图像大致为( )

相关文档
相关文档 最新文档