文档库 最新最全的文档下载
当前位置:文档库 › 2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案
2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试

数学(理工农医类)

本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至9页。共150分。考试时间120分钟。

第I卷(选择题共60分)

注意事项:

1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:

三角函数的积化和差公式正棱台、圆台的侧面积公式

其中c′、c分别表示上、下底面周长,l表示斜高或母线长

其中S′、S分别表示上、下底面积,h表示高

一、选择题:本大题共12分,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()

(A)2 (B)3(C)4(D)5

(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)

(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)

(4)已知sinα>sinβ,那么下列命题成立的是

(A)若α、β是第一象限角,则cosα>cosβ

(B)若α、β是第二象限角,则tgα>tgβ

(C)若α、β是第三象限角,则cosα>cosβ

(D)若α、β是第四象限角,则tgα>tgβ

(5)函数y=-xcosx的部分图象是

(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率

不超过500元的部分5%

超过500元至2000元的部分10%

超过2000元至5000元的部分15%

……

某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于

(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元

(7)若a>b>1,,则

(A)R

(A)(B)

(C)(D)

(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是

(A)(B)(C)(D)

(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)

(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于

(A)2a(B)(C)4a(D)

(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分

成体积相等的两部分,则母线与轴的夹角为

(A)(B)(C)(D)

第II卷(非选择题共90分)

注意事项:

1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2.答卷前将密封线内的项目填写清楚。

题号二三总分

17 18 19 20 21 22

分数

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。

(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、第三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)

(14)椭圆的焦点为,点P为其上的动点。当为钝角时,点P横坐标的取值范围是__________________。

(15)设是首项为1的正项数列,且(n=1,2,3…),则它的通项公式是=_________。

(16)如图,E、F分别为正方体的面、面的中心,则四边形在

该正方体的面上的射影可能是__________________。

(要求:把可能的图的序号填上)

三、解答题:本大题共16小题,共74分,解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)

已知函数

(I)当函数y取得最大值时,求自变量x的集合;

(II)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

(18)(本小题满分12分)

如图,已知平行六面体的底面ABCD是菱形,且

(I)证明:;

(II)假定CD=2,,记面为α,面CBD为β,求二面角α BD β的平面角的余弦值;

(III)当的值为多少时,能使?请给出证明。

(19)(本小题满分12分)

设函数,其中a>0。

(I)解不等式f(x)≤1;

(II)求a的取值范围,使函数f(x)在区间[0,+∞]上是单调函数。

(20)(本小题满分12分)

(I)已知数列,其中,且数列为等比数列,求常数p;

(II)设是公比不相等的两个等比数列,,证明数列不是等比数列。

(21)(本小题满分12分)

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。

(I)写出图一表示的市场售价与时间的函数关系P=f(t);写出图二表求援种植成本与时间的函数关系式Q=g(t);

(II)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:市场售价和种植成本的单位:,时间单位:天)

(22)(本小题满分14分)

如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段所成的比为λ,双曲线过

C、D、E三点,且以A、B为焦点。当时,求双曲线离心率e的取值范围。

2000年普通高等学校招生全国统一考试

数学试题(理工农医类)参考解答及评分标准

说明:

一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。

四、只给整数分数,选择题和填空题不给中间分。

一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分。

(1)C(2)B(3)D(4)D(5)D(6)C(7)B(8)C(9)A(10)C(11)C(12)D

二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分。

(13)252 (14)(15)(16)②③

三、解答题

(17)本小题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力。满分12分。

解:(I)

…………6分

y取得最大值必须且只需即所以当函数y取得最大值时,自变量x的集合为…………………………8分

(II)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图象向左平移,得到函数的图象;(ii)把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数的图象;(iii)把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数的图象(iv)把得到的图象向上平移个单位长度,得到函数的图象;

综上得到函数的图象。………………12分

(18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12

分。

(I)证明:连结、AC,AC和BD交于O,连结

∵四边形ABCD是菱形

∴AC⊥BD,BC=CD

∵DO=OB

………………………………2分

但AC⊥BD,

………………………………4分

(II)解:由(I)知AC⊥BD,

是二面角αBD β的平面角

在中,BC=2,,

…………………………6分∵∠OCB=60°

作,垂足为H。

∴点H是OC的中点,且,

所以。…………………………8分(III)当时,能使

证明一:∵

由此可推得

∴三棱锥是正三棱锥。…………………………10分设相交于G.

又是正三角形的BD边上的高和中线,

∴点G是正三角形的中心。

即。…………………………12分

证明二:由(I)知,

。……………………10分

当时,平行六面体的六个面是全等的菱形。

同的证法可得

又……………………12分

(19)本小题主要考查不等式的解法、函数的单调性等基本知识,分数计论的数学思想方法和运算、推理能力。满分12分。

解:(I)不等式f(x)≤1即,由此得1≤1+ax,即ax≥0,其中常数a>0

所以,原不等式等价于

即…………………………3分

所以,当0

当a≥1时,所给不等式的解集为{x|x≥0}…………………………6分

(II)在区间[0,+∞]上任取,使得

…………………………8分

(i)当a≥1时

所以,当a≥1时,函数f(x )在区间[0,+∞]上是单调递减函数。………………10分

(ii)当0

综上,当且仅当a≥1时,函数f(x )在区间[0,+∞]上是单调函数。………………12分

(20)本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12分。

解:(I)因为是等比数列,故有

将代入上式,得

……………………3分

整理得

解得p=2或p=3。……………………6分

(II)设的公比分别是p=q,p≠q,

为证不是等比数列只需证。

事实上,,

由于p≠q,,又不为零,

因此,故不是等比数列。……………………12分

(21)本小题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分。

解:(I)由图一可得市场售价与时间的函数关系为

……………………2分

由图二可得种植成本与时间的函数关系为

……………………4分

(II)设t时刻的纯收益为h(t),则由题意得

h(t)=f(t)-g(t)

即……………………6分

当0≤t≤200时,配方整理得

所以,当t=50时,h(t)取得区间[0,200]上的最大值100;

当200

所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5。………………10分

综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大。…………………12分

(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、

运算能力和综合应用数学知识解决问题的能力,满分14分。

解:如图,以AB的垂直平分线为y轴,直线AB为x轴,建立直角坐标系xOy,

则CD⊥y轴。因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知

C、D关于x轴对称。………………2分

依题意,记A(-c,0),,其中为双曲线的半焦距,h是梯形的高。由定比分点坐标公式得

设双曲线的方程为,则离心率。

由点C、E在双曲线上,将点C、E的坐标和代入双曲线方程得

②……………………7分

由①式得③

将③式代入②式,整理得

故。……………………10分

由题设得,

解得

所以双曲线的离心率的取值范围为。……………………14分

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ). A .13 B .13- C .19 D .1 9- 4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ). A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ). A .1111+23 10+++ B .1111+2!3! 10!+++ C .1111+23 11+++ D .1111+2!3!11!+++ 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ). A .c >b >a B .b >c >a C .a >c >b D .a >b >c

2018高考数学理科全国卷1

2018年普通高等学校招生全国统一考试 理科数学 一、填空题 1. 设121i z i i -=++,则z = A . 0 B .12 C .1 D .2 2.已知集合{}220A x x x =-->,则R A = A . {}12x x -<< B .{}12x x -≤≤ C .{}{}12x x x x <-> D .{}{}12x x x x ≤-≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后, 养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A . 12- B .10- C .10 D .12 5.设函数32 ()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A . 2y x =- B .y x =- C .2y x = D .y x = 6.在ABC ?中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A . 3144A B A C - B .1344 AB AC -

C .3144AB AC + D .1344 AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表 面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在 左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路 径中,最短路径的长度为 A . 217 B .25 C .3 D .2 8.设抛物线2:4C y x =的焦点为F ,过点()2,0-且斜率为23 的直线与C 交于M ,N 两点,则FM FN ?= A . 5 B .6 C .7 D .8 9.已知函数,0()ln ,0 x e x f x x x ?≤=?>? ,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是 A . [)1,0- B .[)0,+∞ C .[)1,-+∞ D .[)1,+∞ 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,ABC ?的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为123,,p p p ,则 A . 12p p = B .13p p = C .23p p = D .123p p p =+ 11.已知双曲线2 2:13 x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与两条渐近线的交点分别为M ,N ,若OMN ?为直角三角形,则MN = A . 32 B .3 C .23 D .4 12.已知正方体的棱长为1,每条棱所在直线与平面α所 成的角都相等,则α截此正方体所得截面面积的最大值 为

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类 (全国卷I 新课标) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率 是( ). A .12 B .13 C .14 D .16 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程 为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3 =1-x 2 ,则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为 2 3 的等比数列{a n }的前n 项和为S n ,则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =POF 的面积为( ). A .2 B . ..4 9.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ). 10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2 A +cos 2A =0,a =7,c =6,则b =( ). A .10 B .9 C .8 D .5

2020高考理科数学全国三卷试题及答案

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆上,则面积的取值范围是( ) A. B. C. D. 7、函数的图像大致为( ) A. B. C. D.

8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D. 13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若 ,则 三.解答题 17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:

2017高考全国Ⅰ卷理科数学试卷及答案(word版)

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B =R C. {|1}A B x x => D. A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. 14 B. π8 C. 12 D. π4 3.设有下面四个命题 1:p 若复数z 满足1z ∈R ,则z ∈R ; 2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R . 其中的真命题为

A.13,p p B.14,p p C.23,p p D.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别 填入

2013年高考理科数学试题及答案-全国卷1

2013年普通高等学校招生全国统一考试(全国课标I) 理科数学 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B 2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ). A.-4 B. 4 5 - C.4 D. 4 5 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ). A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 4.已知双曲线C: 22 22 =1 x y a b -(a>0,b>0)的离心率为 5 2 ,则C的渐近线方程为( ). A.y= 1 4 x ± B.y= 1 3 x ± C.y= 1 2 x ± D.y=±x 5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).

A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ). A . 500π3cm 3 B .866π3 cm 3 C . 1372π3cm 3 D .2048π3 cm 3 7.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何体的体积为( ).

2013年高考理科数学全国卷1有答案

数学试卷 第1页(共21页) 数学试卷 第2页(共21页) 数学试卷 第3页(共21页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.已知集合2 0{}|2A x x x =-> ,{|B x x <<=,则 ( ) A .A B =R B .A B =? C .B A ? D .A B ? 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为 ( ) A .4- B .45 - C .4 D .45 3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样 D .系统抽样 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4y x =± B .1 3y x =± C .1 2 y x =± D .y x =± 5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 6.如图,有一个水平放置的透明无盖的正方体容器,容器 高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为 ( ) A .3866π cm 3 B . 3500π cm 3 C .31372πcm 3 D .32048πcm 3 7.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m = ( ) A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 9.设m 为正整数,2()m x y +展开式的二项式系数的最大值 为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m = ( ) A .5 B .6 C .7 D .8 10.已知椭圆 E :22 221(0)x y a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点. 若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A .22 14536 x y += B .2213627x y += C .2212718x y += D .22 1189x y += 11.已知函数22,0, ()ln(1),0.x x x f x x x ?-+=?+>? ≤若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,1]-∞ B .(,0]-∞ C .[2,1]- D .[2,0]- 12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3, n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++= ,12 n n n b a c ++=,则 ( ) A .{}n S 为递增数列 B .{}n S 为递减数列 C .21{}n S -为递增数列,2{}n S 为递减数列 D .21{}n S -为递减数列,2{}n S 为递增数列 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________. 14.若数列{}n a 的前n 项和21 33 n n S a = +,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ---------------- 姓名________________ 准考证号_____________

2018年高考全国卷一理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0 B . C . D . 2.已知集合,则 ( ) A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 此卷 只装 订不密封 班级 姓名 准考证号 考场号 座位号

则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则()A.B.C.D.12 5.设函数.若为奇函数,则曲线在点处的切线方程为() A.B.C.D. 6.在中,为边上的中线,为的中点,则() A.B. C.D. 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为, 则在此圆柱侧面上,从到的路径中,最短路径的长度为() A.B.C.D.2 8.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则() A.5 B.6 C.7 D.8 9.已知函数,,若存在2个零点,则的取值范围是() A.B.C.D. 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,

2013年高考数学全国卷1(理科)

绝密★启用前 2013年普通高等学校招生全国统一考试(新课标Ⅰ卷) 数 学(理科) 一、 选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。 1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=? B 、A ∪B=R C 、B ?A D 、A ?B 【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B. 2、若复数z 满足错误!未找到引用源。 (3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4 (B )-4 5 错误!未找到引用源。 (C )4 (D )45 【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题. 【解析】由题知z =|43|34i i +- ==3455i +,故z 的虚部为4 5,故选D. 3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样错误!未找到引用源。 C 、按学段分层抽样 D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题. 【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C. 4、已知双曲线C :22 22 1x y a b -=(0,0a b >> )的离心率为2,则C 的渐近线方程为 A . 14y x =± B .13y x =± C .1 2y x =± D .y x =± 【命题意图】本题主要考查双曲线的几何性质,是简单题.

2014年全国一卷高考理科数学试卷及答案

2014年普通高等学校招生全国统一考试全国课标I 理科数学 第Ⅰ卷 (选择题 共60分) 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2 230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.32 (1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 A .18 B .38 C .58 D . 78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边 为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A . 203 B .165 C .72 D .158

2018高考全国1卷理科数学试卷及答案

2018 年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1i 1. 设z 2i ,则z 1i 1 A.0 B. C.1 D. 2 2 2. 已知集合A x |x2 x 2 0 ,则C R A A. x | 1 x 2 B. x|1x2 C. x|x 1 x|x2 D. x|x 1 x| x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图: A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记S n为等差数列a n 的前n项和,若3S3 S2 S4,a1 2,则a5 A.-12 B.-10 C.10 D.12 5.设函数f x x3 a 1 x2 ax ,若f x 为奇函数,则曲线y f x 在点0,0 处的切 绝密★启用 前 则下面结论中不正确的 是

线方程为 10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆 的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC , ABC 的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。 在整个图形中随机取一点,此点取自的概率分 别记为 p 1, p 2, p 3 ,则 A. y 2x B.y x C.y 2x D. y x 6.在 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB 3 1 1 3 A. AB AC B. AB AC 4 4 4 4 3 1 1 3 C. AB AC D. AB AC 4 4 4 4 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面 上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视 图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度为 A.2 17 B.2 5 C.3 D.2 则 FM FN A.5 B.6 C.7 9.已知函数 f e x ,x 0 x ,g x ln x,x 0 fx 围是 A. 1,0 B. 0, 2 2,0 且斜率为 的直线与 C 交于 M ,N 两点, 3 D.8 x a ,若 g x 存在 2 个零点,则 a 的取值范 C. 1, D. 1, 8.设抛物线 C: y 2 4 x 的焦点为 F ,过点

2013年高考数学全国卷1答案与解析

2013年理科数学全国卷Ⅰ答案与解析 一、选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合{} {2|20,|A x x x B x x =->=<,则 ( ) A.A∩B=? B.A ∪B=R C.B ?A D.A ?B 考点 :集合的运算 解析:A=(-,0)∪(2,+ ), ∴A ∪B=R. 答案:B 2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为 ( ) A .4- B .45 - C .4 D . 45 考点 :复数的运算 解析:由题知== = ,故z 的虚部为 . 答案:D 3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C.按学段分层抽样 D.系统抽样 考点 :抽样的方法 解析:因该地区小学.初中.高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样. 答案:C 4.已知双曲线 : ( )的离心率为 ,则 的渐近线方程为 A. B. C.1 2 y x =± D. 考点 :双曲线的性质

解析:由题知,,即==,∴=,∴=,∴的渐近线方程为. 答案:C 5.运行如下程序框图,如果输入的,则输出s 属于 A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]- 考点 :程序框图 解析:有题意知,当时, ,当 时, , ∴输出s 属于[-3,4]. 答案:A 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( ) A . 3 5003 cm π B . 38663cm π C. 313723cm π D. 3 20483 cm π 考点 :球的体积的求法 解析:设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则 ,解得R=5,∴球的体积为 35003 cm π = . 答案:A 7.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A .3 B .4 C.5 D.6 考点 :等差数列

2013年高考文科数学全国卷1有答案

数学试卷 第1页(共15页) 数学试卷 第2页(共15页) 数学试卷 第3页(共15页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 文科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,2,3,4}A =,2 {|,}B x x n n A ==∈,则A B = ( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2. 2 12i (1i) +=- ( ) A .11i 2 -- B .11i 2 -+ C .11i 2 + D .11i 2 - 3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( ) A .12 B .1 3 C .14 D .16 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4 y x =± B .13y x =± C .1 2y x =± D .y x =± 5.已知命题p :x ?∈R ,23x x <;命题q :x ?∈R ,321x x =-,则下列命题中为真命题的 是 ( ) A .p q ∧ B .p q ?∧ C .p q ∧? D .p q ?∧? 6.设首项为1,公比为 2 3 的等比数列{}n a 的前n 项和为n S ,则 ( ) A .21n n S a =- B .32n n S a =- C .43n n S a =- D .32n n S a =- 7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 8.O 为坐标原点,F 为抛物线C :2y =的焦点,P 为C 上一点, 若||PF =,则 POF △的面积为 ( ) A .2 B .C .D .4 9.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为 ( ) 10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,2 23cos cos20A A +=,7a =, 6c =,则b = ( ) A .10 B .9 C .8 D .5 11.某几何体的三视图如图所示,则该几何体的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 12.已知函数22,0()ln(1),0.x x x f x x x ?-+=?+? ≤, >若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,0]-∞ B .(,1]-∞ C .[2,1]- D .[2,0]- 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________. 14.设x ,y 满足约束条件13, 10,x x y ??--? ≤≤≤≤,则2z x y =-的最大值为________. 15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________. 16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效---------------- 姓名________________ 准考证号_____________

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变 化情况,统计了该地区系农村建设前 后农村的经济收入构成比例。得到 如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视 图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面 上,从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数 字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

相关文档
相关文档 最新文档