文档库 最新最全的文档下载
当前位置:文档库 › 2010高考数学文科试题及答案-全国卷1

2010高考数学文科试题及答案-全国卷1

2010高考数学文科试题及答案-全国卷1
2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)

文科数学(必修+选修)

本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。

第I 卷

注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:

如果事件A 、B 互斥,那么 球的表面积公式

()()()P A B P A P B +=+ 2

4S R π=

如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3

34

V R π=

n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)

(0,1,2,)k

k

n k

n n P k C p p k n -=-=…

一、选择题 (1)cos 300?=

(A)2

-

12

(C)

12

(D)

2

1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1co s 300co s 36060co s 602

?=?-?=?=

(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ?=e

A.{}1,3

B. {}1,5

C. {}3,5

D. {}4,5

2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则()U N M ?=e{}1,3,5{}2,3,5?={}3,5

(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??

+≥??--≤?

则2z x y =-的最大值为

(A)4 (B)3 (C)2 (D)1

3.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222

z x y y x z =-?=

-

,由图可知,当直线l 经过点

A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-?-=.

(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =

(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.

【解析】由等比数列的性质知

3

1231322()5

a a a a a a a === ,

3

7897988()a a a a a a a ===

10,所以1

3

28

50a a =,

所以1

3

3

3

6456

4655()(50)a a a a a a a =====

(5)4

3(1)(1x --的展开式 2

x 的系数是

(A)-6 (B)-3 (C)0 (D)3

5.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.

x +20

y -=

【解析】()13

4

3

2

3

4

22(1)(11464133x x x x x x x x ??

--

=-+---+- ???

2

x 的系数是 -12+6=-6

(6)直三棱柱111A B C A B C -中,若90B A C ∠=?,1A B A C A A ==,则异面直线

1B A 与1A C 所成的角等于

(A)30° (B)45°(C)60° (D)90°

6.C 【命题意图】本小题主要考查直三棱柱111A B C A B C -的性质、异面直线所成的角、异面直线所成的角的求法.

【解析】延长CA 到D ,使得A D A C =,则11A D A C 为平行四边形,1D A B ∠就是异面直线

1B A 与1A C 所成的角,又三角形1A D B 为等边三角形,0

160D A B ∴∠=

(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞

7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a

+≥,从而错选D,这也

是命题者的用苦良心之处.

【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a

=

,所以a+b=1a a

+

又0

=+1

a 由“对勾”函数的性质知函数()f a 在a ∈(0,1)上

为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).

【解析2】由0

11x y xy <

z x y =+的取值范围问题,z x y y x z =+?=-+,2

111y y x

x

'=

?=-

<-?过点()

1,1时z 最小为2,∴(C) (2,)+∞

(8)已知1F 、2F 为双曲线C:2

2

1x y -=的左、右焦点,点P 在C 上,∠1F P 2F =0

60,

A

B

C D

A 1

B 1

C 1

D 1 O

12||||P F P F =

(A)2 (B)4 (C) 6 (D) 8

8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得 cos ∠1F P 2F

=

2

2

2

121212||||||

2||||

P F P F F F P F P F +-

()

(

2

2

2

2

121

2

1212

12

12

2221co s 6

022

2P F P F P F

P F P F P

F F F P F P F P F P F +--+-?=

?

=

12||||P F P F = 4

【解析2】由焦点三角形面积公式得:

1

2

2

2

1212

6011co t

1co t

sin 602

2

2

2

2

F P F S b P F P F

P F P F θ?====

=

1

2||||P F P F = 4

(9)正方体A B C D

-1111A B C D 中,1B B 与平面1A C D 所成角的余弦值为

(A ) 3

(B )3

(C )23

(D )

3

9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.

【解析1】因为BB 1//DD 1,所以B 1B 与平面

AC 1D 所成角和DD 1与平

面AC 1D 所成角相等,设

DO ⊥平面AC 1D ,由等体积法得

1

1

D A C D D

A C D

V V --=,即1

1113

3

A C D A C D S D O S D D ???=

?.设DD 1=a,

1

2

2

111

sin 60)2

2

2

2

A C D S A C A D ?=

=

??

=

,2

112

2

A C D S A D C D a ?=

=

.

所以13

1

3

A

C D

A

C D

S D D a

D O a S ??=

=

,记DD 1

与平面AC

1

D 所成角为θ,则

1

sin 3

D O D

D θ=

=

,

所以co s 3

θ=

.

【解析2】设上下底面的中心分别为1,O O ;

1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,1111

co s 1/

3

O O O O D O D ∠=

==

(10)设1

2

3log 2,ln 2,5

a b c -===则

(A )a b c <<(B )b c a << (C) c a b << (D)

c b a <<

10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用

. 【解析1】 a=3log 2=

21lo g 3

, b=In2=

21lo g e

,而22lo g 3lo g 1e >>,所以a

c=12

5

-

1,222log 4log 3>=>,所以c

【解析2】a =3log

2=

3

2

1lo g ,

b =ln2=

2

1lo g e

, 3

221lo g lo g 2e <<< ,

3

2

2

11112

lo g lo g e

<

<

<;

c

=12

15

2

-

=

<

=

,∴c

(11)已知圆

O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么P A P B ?

最小值为 (A) 4-+

3

-+

(C) 4

-+3-+

11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠

APB=2α,sin α=

||||cos 2P A P B P A P B α

?=?

=22

(12sin )

x α-=

22

2

(1)1

x x x -+=4

2

21

x x

x -+,令P A P B y ?= ,则42

21x x

y x -=+,

即4

2(1)0x y x y -+-=,由2

x 是实数,所以

2[

(1)]41()0y y ?=-+-??-≥,2

610y y ++≥

,解得3y ≤--或3y ≥-+.

故m in ()3P A P B ?=-+

此时x =

【解析2】设,0A P B θθπ∠=<<,()()2

co s 1/tan co s 2P A P B P A P B θθθ

?

??== ??

? 222

222

1sin 12sin cos 22212sin 2sin

sin

2

2

θθθ

θθθ

????-- ? ?

???

???=

?-=

?

??换元:2

s i n

,01

2

x x θ=<≤,()()1121

233

x x P A P B x x x

--?==+-≥

【解析3】建系:园的方程为

22

1

x y +=,设11110(,),(,),(,0)A x y B x y P x -

()()22

11101110110,,001A O P A x y x x y x x x y x x ⊥?

?-=?-+=?=

()22222222

1100110110221233

P A P B x x x x y x x

x x x ?=-+-=

-+--=+-≥

(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 3

3

(C) 3

12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过

球这个载体考查考生的空间想象能力及推理运算能力.

【解析】过CD 作平面

PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有

A

B C D 1122232

3

V h h =

??

??=

四面体,当直径通过AB 与CD 的中点时,m ax h ==故

m ax 3

V =

第Ⅱ卷

注意事项:

()()222

10110111001

,,2P A P B x x y x x y x x x x y ?=-?--=-+-

1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.........。 3.第Ⅱ卷共10小题,共90分。

二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)不等式

2

2032

x x x -++ 的解集是 .

13. {}21,2x x x -<<->或【命题意图】本小题主要考查不等式及其解法 【解析】:

2

2032

x x x -++ ()()

()()()2

0221021x x x x x x -?

>?

-++>

++,数轴标根

得:{}21,2x x x -<<->或 (14)已知α为第二象限的角,3sin 5

a =,则tan 2α= .

14.247

-

【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的

正切公式,同时考查了基本运算能力及等价变换的解题技能. 【解析】因为α为第二象限的角,又3sin 5

α=, 所以4c o s 5

α=-

,sin 3tan co s 4

ααα

=

=-

,

所2

2tan 24tan (2)1tan 7

ααα

=

=-

-

(15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课

程中各至少选一门,则不同的选法共有 种.(用数字作答) 15. A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论

的数学思想.

【解析1】:可分以下

2种情况:(1)A 类选修课选1门,B 类选修课选2门,有

1

2

34

C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不

同的选法.所以不同的选法共有1234C C +21

34181230

C C =+=种.

【解析2】: 3

3

3

73430

C C C --=

(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段B F 的延长线交C 于点D , 且

B F 2FD =uu r uur

,则C 的离心率为 .

16.3

【命题意图】本小题主要考查椭圆的方程与

几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.

【解析1】如图,||B F a =

=,

作1D D y ⊥轴于点D 1,则由B F 2FD =uu r uur

,得 1||||2||

||

3

O F B F D D B D ==

,所以133||||2

2

D D O F c =

=

,

即32

D c x

=

,由椭圆的第二定义得2

2

33||(

)22a

c c

F D e a c

a

=-

=-

又由||2||B F F D =,得2

32,c a a a

=-

3

e ?=

【解析2】设椭圆方程为第一标准形式

222

2

1x y a

b

+

=,设()22,D x y ,F 分 BD 所成的比为2,

222230223330;12

2

2

12

2

2

2

c c

c c y b x b y b b x x x c y y -++?-=?===

?=

==-++,代入

222

2

91144c b a

b

+

=,3

e ?=

三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)(注意:在试题卷上作答无效............

) 记等差数列{}n a 的前n 项和为n S ,设312S =,且1232,,1a a a +成等比数列,求n S . (18)(本小题满分12分)(注意:在试题卷上作答无效............

) 已知A

B C V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .

(19)(本小题满分12分)(注意:在试题卷上作答无效.........).

投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.

(I)求投到该杂志的1篇稿件被录用的概率;

(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.

(20)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .

(Ⅰ)证明:SE=2EB ;

(Ⅱ)求二面角A-DE-C 的大小 .

(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数4

2

()32(31)4f x ax a x x =-++ (I )当16

a =

时,求()f x 的极值;

(II )若()f x 在()1,1-上是增函数,求a 的取值范围

(22)(本小题满分12分)(注意:在试题卷上作答无效

.........)

已知抛物线2

:4

C y x

=的焦点为F,过点(1,0)

K-的直线l与C相交于A、B两点,点A关于x轴的对称点为D .

(Ⅰ)证明:点F在直线B D上;

(Ⅱ)设

8

9

F A F B=

,求B D K

?的内切圆M的方程 .

三,解答题:接答应写出文字说明,证明过程或演算步骤。

(17) 解:

(1)由a m=a1+(n-1)d及a1=5,a w=9得

a

1

+2d=5

a1+9d=-9

解得a

1

=9

d=-2

数列{a m}的通项公式为a n=11-2n。

因为Sm=(n-5)2+25.

所以n=5时, Sm取得最大值。

(18)解:

(1)因为PH是四棱锥P-ABCD的高。

所以A C⊥PH又AC⊥BD,PH,BD都在平面PHD内,且PH∩BD=H.

所以AC⊥平面PBD

故平面PAC平面PBD

(2)由(1)知Sm=na1+n(n-1)

2d=10n-n

2

(2)因为ABCD为等腰梯形,AB CD,AC⊥

所以因为∠APB=∠ADR=600

所以,HD=HC=1.

可得

等腰梯形ABCD的面积为S=1

2

……..9分

所以四棱锥的体积为V=13

x (3

……..12分

(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为

7014%

500

=. ……4分

(2)

2

2

500(4027030160)

9.967

20030070430

k ??-?=

≈???

由于9.967 6.635>所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. ……8分

(3)由于(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男,女的比例,再把老年人分成男,女两层并采用分层抽样方法比采用简单反随即抽样方法更好. ……12分 (20)解:(1)由椭圆定义知2

2F +F |A ||A B |+|B |=4

又2A B =

A F F A

B 224||||+|B |,||=

3

L 的方程式为y=x+c,其中c=1-b 2

(2)

设A,(x 1,y 1),B(x 1,y 1)则A,B 两点坐标满足方程组

y=x+c

x2+y 2

b 2 =1 化简得(1+b 2)x 2+2cx+1-2b 2=0

则x 1+x 2=-2c 1+b 2 .x 1x 2=1-2b 2

1+b 2 (2)

即 2143x x =

|-|

.

2

2

42

12122

22

2

84(1)4(12)8()49

(1)

11b b b

x x x x b b

b

--=+-=

-

=

+++解得

2

b =

.

(21)解: (Ⅰ)12

a

=时,2

1()

(1)2

x

f x x e x

=--

,'()1(1)(1)x x x

f

x e xe x e x =-+-=-+。当(),1x ∈-∞-时'()f x >0;当()1,0x ∈-时,'()0f x <;当()

0,x ∈+∞时,

'()0

f x >。

()

f x 在(),1-∞-,()0,+∞单调增加,在(-1,0)单调减少。

(Ⅱ)

()(1)a

f x x x a x =--。令()1a

g x x a x

=--,则'()x

g x e a =-。若1a ≤,则

当()0,x ∈+∞时,'()g x >0,()g x 为减函数,而(0)0g =,从而当x ≥0时()g x ≥0,即()

f x ≥0.

若a

>1

,则当()0,ln x a ∈时,'()g x <0,()g x 为减函数,而(0)0g =,从而当

()0,ln x a ∈时()g x <0,即

()

f x <0. 综合得a 的取值范围为(],1-∞

(22)解: (1) 因为AC=BD 所以∠BCD =∠ABC

又因为EC 与圆相切于点C,故∠ACE =∠ABC 所以∠ACE=∠BCD

(II)因为∠ECB=

∠CDB, ∠EBC=∠BCD, ……5分 所以□BDC □□ECB,故BC BE =CD

BC

即 BC

2

=BE ×CD

……10分

(23)解:(I )当3

π

α=

时,C 1

的普通方程为1)

y

x =-,C 2的普通方程为

2

2

1x y +=.

联立方程组

{

2

2

1),

1,

y x x x y -=+=解得C 1与C 2的交点为(1,0),1(

,2

2

-

(II )C 1的普通方程为sin cos sin 0x y ααα--=.

A 点坐标为2(sin ,cos sin )a a a -,故当a 变化时,P 点轨迹的参数方程为

2

1sin 2

1sin co s 2

x a y a a

=

=-

???

(a 为参数)P 点轨迹的普通方程为22

11()4

16

x y -

+=

故P 点是圆心为1(,0)

4,半径为1

4

的圆

(24)解:: -2x+5,x <2

(1)由于f (x)== 2x-3,x ≥2 则函数y=f (x)的图像如图所示.。

……5分 (Ⅱ)由函数()

x y f =与函数y

ax

=的图像可知,当且仅当2a

<-时,函数()

x y f =与函数y

ax

=的图像有交点。故不等式

()x f a x ≤的解集非空时,a

的取值范围为

()1

,2,2??-∞-?+∞

???

。10分

2018年全国统一高考数学试卷文科全国卷1详解版

2017年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则() A.A∩B={x|x<}B.A∩B=?C.A∪B={x|x<}D.A∪B=R 2.(5分)(2017?新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差 C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数 3.(5分)(2017?新课标Ⅰ)下列各式的运算结果为纯虚数的是() A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i) 4.(5分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A.B.C.D. 5.(5分)(2017?新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 6.(5分)(2017?新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C. D. 7.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 8.(5分)(2017?新课标Ⅰ)函数y=的部分图象大致为() A.B.C. D. 9.(5分)(2017?新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则() A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 10.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷) 理科数学试题 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合{||2}A x R x =∈≤ },{| 4}B x Z =∈≤,则A B ?= (A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2) 已知复数z = ,z 是z 的共轭复数,则z z ?= (A) 14 (B)1 2 (C) 1 (D)2 (3)曲线2 x y x =+在点(1,1)--处的切线方程为 (A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为 0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为 A B C D (5)已知命题 1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数, 则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ?∨和4q :()12p p ∧?中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4 q (D )2q ,4q

(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400 (7)如果执行右面的框图,输入5N =,则输出的数等于 (A)54 (B )45 (C)65 (D )56 (8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->= (A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或 (9)若4 cos 5 α=- ,α是第三象限的角,则1tan 21tan 2 αα +=- (A) 12- (B) 12 (C) 2 (D) 2- (10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2 a π (B) 273 a π (C) 2 113 a π (D) 25a π (11)已知函数|lg |,010,()16,10.2 x x f x x x <≤?? =?-+>??若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是 (A) (1,10) (B) (5,6) (C) (10,12) (D) (20,24) (12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两 点,且AB 的中点为(12,15)N --,则E 的方程式为 (A) 22136x y -= (B) 22 145x y -= (C) 22163x y -= (D) 22 154 x y -=

高考文科数学真题全国卷

2010年普通高等学校招生全国统一考试 文科数学(全国I 卷) 第I 卷 一、选择题 (1)cos300°= (A ) (B )12- (C )12 (D (2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ?(C ,M ) (A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5) (3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤? 则z =x-2y 的最大值为 (A )4 (B )3 (C )2 (D )1 (4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (A ) (B)7 (C)6 (5)(1-x )2(1 )3的展开式中x 2的系数是 (A)-6 (B )-3 (C)0 (D)3 (6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于 (A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 (A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞) (8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF = (A )2 (B)4 (C)6 (D)8 (9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 3 (B) 3 (C) 23 (D) 3 (10)设a =log 3,2,b =ln2,c =1 25 -,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的 最小值为 (A )- (B )- (C )- (D )-

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

近五年高考数学全国1卷

一.选填题(每题5分) 1. (2017年,第6题)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 2. (2017年,第16题)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。 3. (2016年,第7题)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 3 28π ,则它的表面积是 ( ) (A )17π (B )18π (C )20π (D )28π 4.(2016年,第11题)平面过正文体ABCD —A1B1C1D1的顶点A,,,则m ,n 所成角的正弦值为 ( ) (A )(B )(C )(D ) 5.(2015年,第6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问 题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有 斛 斛 斛 斛 6.(2015年,第11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r = (A )1 (B) 2 (C) 4 (D) 8 7.(2014年,第8题)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2010年高考理科数学试题(全国卷1)

填空题(共15题,每题1分) 1.楼板层通常由以下三部分组成(B)。 A、面层、楼板、地坪 B、面层、楼板、顶棚 C、支撑、楼板、顶棚 D、垫层、梁、楼板 2.当预制板在楼层布置出现较大缝隙,板缝宽度≤120mm时,可采用(D)的处理方法。 A、用水泥砂浆填缝 B、灌注细石混凝土填缝 C、重新选择板的类型 D、沿墙挑砖或挑梁填缝 3.踢脚板的高度一般为(B)mm。 A、80~120 B、120~150 C、150~180 D、180~200 4.防水混凝土的设计抗渗等级是根据(D)确定的。 A、防水混凝土的壁厚 B、混凝土的强度等级 C、工程埋置深度 D、最大水头与混凝土壁厚的比值 5.砖基础采用等高式大放脚时,一般每两皮砖挑出( B )砌筑。 A、1皮砖 B、3/4皮砖 C、1/2皮砖 D、1/4皮砖 6.门窗洞口与门窗实际尺寸之间的预留缝隙大小与(B)无关。 A、门窗本身幅面大小 B、外墙抹灰或贴面材料种类 C、门窗有无假框 D、门窗种类(木门窗、钢门窗或铝合金门窗)7.下列关于散水的构造做法表述中,(C)是不正确的。 A、在素土夯实上做60~l00mm厚混凝土,其上再做5%的水泥砂浆抹面 B、散水宽度一般为600~1000mm C、散水与墙体之间应整体连接,防止开裂 D、散水宽度应比采用自由落水的屋顶檐口多出200mm左右 8.下列哪种砂浆既有较高的强度又有较好的和易性(C) A. 水泥砂浆 B. 石灰砂浆 C. 混合砂浆 D. 粘土砂浆 9.屋顶的设计应满足(D)、结构和建筑艺术三方面的要求。 A、经济 B、材料 C、功能 D、安全 10.预制钢筋混凝土楼板间留有缝隙的原因是(B)。 A、有利于预制板的制作 B、板宽规格的限制,实际尺寸小于标志尺寸 C、有利于加强板的强度 D、有利于房屋整体性的提高 11.下列建筑屋面中,(D)应采用有组织的排水形式。 A、高度较低的简单建筑 B、积灰多的屋面 C、有腐蚀介质的屋面 D、降雨量较大地区的屋面 12.(D)开启时不占室内空间,但擦窗及维修不便;(D)擦窗安全方便,但影响家具布置和使用。 A、内开窗、固定窗 B、内开窗、外开窗 C、立转窗、外开窗 D、外开窗、内开窗 13.防滑条应突出踏步面(C)。 A、1~2mm B、2~3mm C、3~5mm D、5mm

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学 试题及答案 The document was prepared on January 2, 2021

年普通高等学校招生全国统一考试 文科数学卷3 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出 的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.4 2.复平面内表示复数(2) =-+的点位于 z i i A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 - B. 2 9 -C. 2 9 D. 7 9 5.设,x y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是 A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 6.函数 1 ()sin()cos() 536 f x x x ππ =++-的最大值为 A.6 5 B.1 C. 3 5 D. 1 5

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

近几年全国卷高考文科数学线性规划高考题

线性规划高考题 1.[2013.全国卷 2.T3]设,x y 满足约束条件10,10,3,x y x y x -+≥??+-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 2.[2014.全国卷2.T9]设x ,y 满足的约束条件1010330x y x y x y +-≥??--≤??-+≥? ,则2z x y =+的最大值为( ) A.8 B.7 C.2 D.1 3.[201 4.全国卷1.T11]设1,y 满足约束条件,1, x y a x y +≥??-≤-?且z x ay =+的最小值为7,则a =( ) A .-5 B. 3 C .-5或3 D. 5或-3 4. [2012.全国卷.T5] 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 5.[2010.全国卷.T11]已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 6. [2016.全国卷3.T13]设x ,y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则z =2x +3y –5的最小值为 7.[2016.全国卷2.T14]若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则z =x -2y 的最小值为 8.[2015.全国卷2.T14]若x ,y 满足约束条件50210210x y x y x y +-≤??--≥??-+≤? ,则2z x y =+的最大值为

2010年高考理科数学试题及答案(全国一卷)

第1/10页 2010年普通高等学校招生全国统一考试 理科数学(必修+选修II ) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。第I 卷1至2页。第II 卷3至4页。考试结束后,将本草纲目试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。 3.第I 卷共12小题,第小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 )(()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 )( ()()P A B P A P B ?=? 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34 3 v R π= n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκ ηηρκρ ρκη-A A =-=??? 一. 选择题 (1)复数3223i i +-= (A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°= (A ) (B ). — (C.) (D ).

第2/10页 (3)若变量x ,y 满足约束条件则z=x —2y 的最大值为 (A ).4 (B )3 (C )2 (D )1 (4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (B) 7 (C) 6 (5) 3 5的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 (6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。若要求两类课程中各至少一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体1111ABCD A BC D -中,1BB 与平面1ACD 所成角的余弦值为 (A ) 3 (B )33 (C )23 (D )6 3 (8)设1 2 3102,12,5 a g b n c -===则 (A )a b c << (B )b c a << (C )c a b << (D )c b a << (9)已知1F 、2F 为双曲线2 2 :1C χγ-=的左、右焦点,点在P 在C 上,12F PF ∠=60°, 则P 到χ轴的距离为 (A ) 2 (B )6 2 (C 3 (D 6(10)已知函数()|1|f g χχ=,若0a b <<,且()()f a f b =,则2a b +的取值范围是 (A ))+∞ (B )[22,)+∞ (C )(3,)+∞ (D )[3,)+∞ (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA 〃PB 的最小值为 (A ) (B ) (C ) (D ) (12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体 积的最大值

高考文科数学真题全国卷

高考文科数学真题全国 卷 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则 =+FC EB A. AD B. AD 21 C. BC D. BC 2 1 (7)在函数①|2|cos x y =,②|cos |x y = , ③)62cos(π+=x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事 一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

近5年高考数学全国卷23试卷分析报告

2013----2017年高考全国卷2、3试卷分析从2012年云南进入新课标高考至今,已有六年时间,数学因为容易拉分,加上难度变幻不定,可以说是我省考生最为害怕的一个学科,第一天下午开考的数学考得如何直接决定着考生第二天的考试情绪。近5年全国卷数学试题从试卷的结构和试卷的难度上逐渐趋于平稳,稳中有新,难度都属于较为稳定的状态。选择、填空题会以基础题呈现,属于中等难度。选择题在前六题的位置,填空题在前二题的位置;解答题属于中等难度,且基本定位在前三题和最后一题的位置。 一、近五年高考数学考点分布统计表:

从近五年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。具体

来说几个方面: 1.整体稳定,覆盖面广 高考数学全国卷2、3全面考查了新课标考试说明中各部分的内容,可以说教材中各章的内容都有所涉及,如复数、旋转体、简易逻辑、概率等教学课时较少的内容,在试卷中也都有所考查。有些内容这几年轮换考查,如统计图、线性回归、直线与圆、线性规划,理科的计数原理、二项式定理、正态分布、条件概率等。 2.重视基础,难度适中 试题以考查高中基础知识为主线,在基础中考查能力。理科前8道选择题都是考查基本概念和公式的题型,相当于课本习题的变式题型。填空题前三题的难度相对较低,均属常规题型。解答题的前三道题分别考查解三角形,分布列、数学期望,空间线面位置关系等基础知识,利用空间直角坐标系求二面角,属中低档难度题。 4.全面考查新增内容,体现新课改理念 如定积分、函数的零点、三视图、算法框图、直方图与茎叶图、条件概率、几何概型、全称命题与特称命题等。 5.突出通性通法、理性思维和思想方法的考查 数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法,是高考考查的核心。数形结合的思想、方程的思想、分类讨论的思想等在高考中每年都会考查。尤其数形结合,每年还专门有一道“新函数”的大致图象问题 6.注重数学的应用和创新

2010年高考数学理全国卷1(精校版)

绝密★启用前 2010年普通高等学校招生全国统一考试 理科数学(必修+选修II ) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)复数3223i i +=- (A)i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -?=,那么tan100?= A.k B. -k (3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1

2017全国卷文科数学高考大纲

文科数学 I、考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。 对知识的要求依次是了解、理解、掌握三个层次。 1、了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。 2、理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。 3、掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 1。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、

近五年高考数学全国1卷

1. (2017年,第6题)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 2. (2017年,第16题)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。 3. (2016年,第7题)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 3 28π ,则它的表面积是 ( ) (A )17π (B )18π (C )20π (D )28π 4.(2016年,第11题)平面α过正文体ABCD —A1B1C1D1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值 为 ( ) (A ) 3(B )2(C )3(D )13 5.(2015年,第6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问 题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有 斛 斛 斛 斛 6.(2015年,第11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

高考文科数学真题及答案全国卷

高考文科数学真题及答 案全国卷 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. ?1?1 2i B .1 1+i 2 - C .1+1 2i D .1?1 2i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),

2010年全国高考理科数学试题及答案-全国1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 理科数学(必修+选修II) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... 。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)复数3223i i +=- (A)i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -?=,那么tan100?=

(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为 (A)4 (B)3 (C)2 (D)1 (4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则 456a a a = (A) (5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4 (6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种 (7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 3 B 3 C 23 D 3 (8)设a=3log 2,b=In2,c=1 25-,则 A a

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

相关文档
相关文档 最新文档