文档库 最新最全的文档下载
当前位置:文档库 › 数学中考试题分类汇编 动态专题

数学中考试题分类汇编 动态专题

数学中考试题分类汇编 动态专题
数学中考试题分类汇编 动态专题

河北 周建杰 分类 (2008年南京市)27.(8分)如图,已知O 的半径为6cm ,射线PM 经过点O ,10cm OP =,

射线PN 与

O 相切于点Q .A B ,两点同时从点P 出发,

点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;

(2)当t 为何值时,直线AB 与O 相切?

以下是河南省高建国分类:

(2008年巴中市)已知:如图14,抛物线2

334

y x =-

+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线3

4y x b =-+与y 轴交于点E .

(1)写出直线BC 的解析式. (2)求ABC △的面积.

(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积

最大,最大面积是多少?

以下是湖北孔小朋分类: 21.(2008福建福州)(本题满分13分)

如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达

A

B Q

O P N

M

点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;

(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?

(2008年贵阳市)15.如图4,在126 的网格图中(每个小正方形的边长均为1个单位),A 的半径为1,B 的半径为2,要使A 与静止的B 相切,那么A 由图示位置需向右平移个单位.

以下是江西康海芯的分类:

1.(2008年郴州市)如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,

E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为

F .FE 与DC 的延长线相交于点

G ,连结DE ,DF .. (1) 求证:ΔBEF ∽ΔCEG .

(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由.

(3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少? 10分

辽宁省 岳伟 分类 2008年桂林市

如图,平面直角坐标系中,⊙A的圆心在X轴上,半径为1,直线L为y=2x-2,若⊙A沿X轴向右运动,当⊙A与L有公共点时,点A移动的最大距离是( )

A

B

(图4)

B A O D C

E 图8

553A、 B、3 C、2 D、3

原题错误???缺少圆心的坐标

24.(2008年湖州市) 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与

B C ,重合)

,过F 点的反比例函数(0)k

y k x

=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?

(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.

以下是安徽省马鞍山市成功中学的汪宗兴老师的分类

1. (2008年·东莞市)(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO

和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小;

(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O

C B O

D 图7 A E

图8

8

7

6

5

4

2

1E O

D

C

B A 3 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.

答案:

图7

O

6

5

4

321E

D

C

B

A

解:(1)如图7.

∵△BOC 和△ABO 都是等边三角形, 且点O 是线段AD 的中点,

∴ OD=OC=OB=OA,∠1=∠2=60°, ……1分 ∴∠4=∠5.

又∵∠4+∠5=∠2=60°,

∴∠4=30°.…………………………2分 同理,∠6=30°.…………………………3分 ∵∠AEB=∠4+∠6,

∴∠AEB=60°.………………………4分

(2)如图8. ∵△BOC 和△ABO 都是等边三角形, ∴ OD=OC, OB=OA,∠1=∠2=60°,………5分 又∵OD=OA, ∴ OD =OB ,OA =OC ,

∴∠4=∠5,∠6=∠7. …………………6分

∵∠DOB=∠1+∠3, ∠AOC=∠2+∠3,

∴∠DOB=∠AOC. …………………………………7分 ∵∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°, ∴ 2∠5=2∠6,

∴∠5=∠6.………………………………………………8分 又∵∠AEB=∠8-∠5, ∠8=∠2+∠6, ∴∠AEB =∠2+∠5-∠5=∠2,

∴∠AEB =60°.…………………………………………9分

解析:这是一道变换条件但结论不变的变式题,其解法十分相似,第(1)题是第(2)题的特殊情形,第(2)题是第(1)题结论的推广,这体现了从特殊到一般的数学思想,利于培养学生思维的深刻性和灵活性。题目的图形可变,数字可变,条件可变,结论亦可变,变,充满着神奇,孕育着创造!

26.(08年宁夏回族自治区)如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q 。

(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; (2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的

6

1; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运

动到什么位置时,△ADQ 恰为等腰三角形。

以下是辽宁省高希斌的分类 1.(2008年湖北省咸宁市)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ;

(2)当点O 运动到何处时,四边形AECF 是矩形? 并证明你的结论.

2.(2008年湖北省咸宁市)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.

(1) 当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数

图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2) 求正方形边长及顶点C 的坐标;

(3) 在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标. (1) 附加题:(如果有时间,还可以继续 解答下面问题,祝你成功!)

如果点P 、Q 保持原速度速度不 变,当点P 沿A →B →C →D 匀 速运动时,OP 与PQ 能否相等, 若能,写出所有符合条件的t 的 值;若不能,请说明理由.

3.(2008年湖北省鞥仙桃市潜江市江汉油田)小华将一张矩形纸片(如图1)沿对角线CA 剪开,得到两张三角形纸片(如图2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,?EFD 纸片的直角顶点D 落在?ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.

(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当?EFD 纸片沿

CA 方向平移时(如图3)

,请你观察、测量MB 、MD 的长度,猜想并写出MB 与A B

C E F M N O (第19题图)(第24题图①

)

(第24题图②)

MD 的数量关系,然后证明你的猜想;

(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°

时,BMD ?是什么三角形?

(3) 在图3的基础上,将?EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于

90°),此时CGD ?变成CHD ?,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ?为等边三角形.

)解

1.(2008年龙岩市)(14分)如图,等腰梯形ABCD 中,AB =4,CD =9,∠C =60°,动点P 从点C 出发沿CD 方向向点D 运动,动点Q 同时以相同速度从点D 出发沿DA 方向向终点A 运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD 的长;

(2)设CP =x ,问当x 为何值时△PD Q 的面积达到最大,并求出最大值;

(3)探究:在BC 边上是否存在点M 使得四边形PD Q M 是菱形?若存在,请找出点M ,并

求出BM 的长;不存在,请说明理由.

A B A B

C

D E

F 图1

图2

A B

C

D

E

F

G

M 图3

A

B

C

D

E

F

M

H

图4

(第25题图)

(备用图)

8(2008乌鲁木齐).将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.

以下是江苏省赣榆县罗阳中学李金光分类:

1.(2008年南昌市)如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:3

55

d x =-

(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_.

2.(2008年南昌市)如图1,正方形ABCD 和正三角形EFG 的边长都为1,点E F ,分别在线段AB AD ,上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).

(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);

(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);

(3)请你补充完成下表(精确到0.01):

0.03 0 0.29

(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.

6262

1.732sin150.259sin 750.96644

-+==,

≈,≈.)

(第1题) 图1

图2

B (E A (F D

图3

H D

A

C

B

图4

3.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =

ABOC 绕点O 按顺时针方

向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2

y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.

24. (2008年义乌市)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .

(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积

(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.

①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<

(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直.

线.AB ..

上是否存在点P ,使PDE ?为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.

y O 第26题图 D E C F A B

16.(2008年义乌市)如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,

点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点 A 的落点记为P .

(1)当AE =5,P 落在线段CD 上时,PD =▲;

(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于▲. 23.(2008年义乌市)如图1,四边形ABCD 是正方形,G 是CD 边上

的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,

k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =

1

2

,求22BE DG +的值.

24. (2008年义乌市)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .

(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积

(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.

①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<

(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直.线.AB..上是否存在点P,使PDE

为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O 出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.

(1)求直线BC的解析式;

(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积

的2

7

(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;

(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?若能,请求出此时动点P的坐标;若不能,请说明理由.

如图15,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.

(1)求OE的长;

(2)求过O,D,C三点抛物线的解析式;

(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分?

(威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0).

(1)试写出点A ,B 之间的距离d 与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?

(2008苏州)如图,在等腰梯形ABCD AD BC ∥5AB DC ==6AD =,

12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点

出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动.

(1)梯形ABCD 的面积等于;

(2)当PQ AB ∥时,P 点离开D 点的时间等于秒;

(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?

【评注】:动点问题是近几年来各地中考试题中出现得较多的一种题型.这类集几何、代数

知识于一体的综合题,既能考查学生的创造性思维品质,又能体现学生的实际水平和应变能

力.其解题策略是“动”中求“静”,“一般”中见“特殊”,抓住要害,各个击破.

(2008苏州)课堂上,老师将图①中AOB △绕O 点逆时针旋转,在旋转中发现图形的形

状和大小不变,但位置发生了变化.当AOB △旋转90时,得到11A OB ∠.已知(42)A ,,(30)B ,.

(1)11A OB △的面积是;

1A 点的坐标为(,);1B 点的坐标为(,);

(2)课后,小玲和小惠对该问题继续进行探究,将图②中AOB △绕AO 的中点(21)C ,逆

A B N

A C D P

B (第26题)

时针旋转90得到A O B '''△,设O B ''交OA 于D ,O A ''交x 轴于E .此时A ',O '和B '的坐标分别为(13),,(31)-,和(32),,且O B ''经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与AOB △重叠部分的面积不断变小,旋转到90时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CEBD 的面积. (3)在(2)的条件下,AOB △外接圆的半径等于.

【评注】:这是一道坐标几何题,中考中的坐标几何题,融丰富的几何图象于一题,包含的知识点较多;代数变换(包括数式变换、方程变换、不等式变换)与几何推理巧妙融合,交

相辉映,数形结合思想和方法得到充分运用.本题(2)中的面积的计算是根据旋转不变性,构造全等三角形,将四边形的面积进行转化,这是一种重要的数学思想方法.

(2008无锡)如图,已知点A 从(10),出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=;以(03)P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求: (1)点C 的坐标(用含t 的代数式表示);

(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.

(2008无锡)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全

y x 1 1 1- 1- B 1

1 A (4,2) B (3,0) O 图① y

x 1 1 1- 1- A (4,2)

B (3,0) O 图② A '(1,3) B '(3,2)

D

O '(3,-1) C E

覆盖这个城市.问:

(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求? 答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)

1.(2008年甘肃省白银市)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒).

(1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t =秒或秒时,MN =

2

1

AC ; (3) 设△OMN

的面积为S ,求S 与t 的函数关系式;

(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.

(2008年重庆市)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,

AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是()

图1 图2 图3 图4

以下是江苏省王伟根分类

2008年全国中考数学试题分类汇编(动态专题)

1.(2008盐城)如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是

2.(2008盐城)如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到

圆心O 的最短距离为 ▲ cm .

3.(2008盐城)如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,

动点P 从点A 出发,以 cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为 ▲ s 时,BP 与⊙O 相切.

4.2008盐城)如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:

(1)如果AB=AC ,∠BAC=90o.

①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ▲ ,数量关系为 ▲ . ②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

B

C

M

N

A

D

A B C D

第8题图

O

P

D

C

B

A

A B C D

A B

C

D

E

F

第28题图

图甲

图乙 F

E B

A F E D

C

B A 图丙

(2)如果AB ≠AC ,∠BAC ≠90o,点D 在线段BC 上运动.

试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出

相应图形,并说明理由.(画图不写作法)

(3)若AC =42,BC=3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值. 以下是湖南文得奇的分类:

1.(2008年湘潭)(本题满分8分)如图所示,

O 的直径AB =4,点P 是AB 延长线上的一

点,过P 点作

O 的切线,切点为C ,连结AC .

(1)若∠CPA =30°,求PC 的长;

(2)若点P 在AB 的延长线上运动,∠CPA 的平分线交AC 于点M . 你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠

CMP 的大小.

2.(2008年益阳)(本题10分)

23. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:

(1)如图11(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图11(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图11(3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα的值.

M

P O C

B A

A B E F

C D 图11(1)

A B F

C D 图11(2)

温馨提示:由平移性质可得CF ∥AD ,CF =AD

3.(2008年永州)(10分)如图,已知⊙O 的直径

上一动点(与点A 、点B 不重合),PO 的延长线与⊙O 相交于点C ,过点C 的切线与直线m 相交于点D .

(1)求证:△APC∽△COD.

(2)设AP =x ,OD =y ,试用含x 的代数式表示y . (3)试探索x 为何值时,△ACD 是一个等边三角形.

1.(2008年内江市)如图,当四边形PABN 的周长最小时,a =.

8(2008乌鲁木齐).将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.(00),

(08河南)

23.(12分)如图,直线43

4

+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).

(1)试说明△ABC 是等腰三角形;

(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S . ① 求S 与t 的函数关系式;

② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;

③在运动过程中,当△MON 为直角三角形时,求t 的值.

)

O A C

B

x

y

6.(08河南试验区)如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x

的函数关系的是( B )

22.(2008年湖北省宜昌市)如图,在Rt △ABC 中,AB=AC ,P 是边AB (含端点)上的动点,过P 作BC 的垂线PR ,R 为垂足,∠PRB 的平分线与AB 相交于点S ,在线段RS 上存在一点T ,若以线段PT 为一边作正方形PTEF ,其顶点E 、F 恰好分别在边BC 、AC 上. (1)△ABC 与△SBR 是否相似?说明理由;

(2)请你探索线段TS 与PA 的长度之间的关系;

(3)设边AB=1,当P 在边AB (含端点)上运动时,请你探索正方形PTEF 的面积y 的最小值和最大值.

25.(2008年湖北省宜昌市)如图1,已知四边形OABC 中的三个顶点坐标为O (0,0),A (0,n ),C (m ,0),动点P 从点O 出发一次沿线段OA ,AB ,BC 向点C 移动,设移动路程为x ,△OPC 的面积S 随着x 的变化而变化的图像如图2所示,m ,n 是常数,m>1,n>0.

(1)请你确定n 的值和点B 的坐标;

(2)当动点P 是经过点O 、C 的抛物线y=ax 2

+bx +c 的顶点,且在双曲线y=

x

511

上时,求这时四边形OABC 的面积.

以下是安徽省马鞍山市成功中学的汪宗兴老师的分类

21. (2008年·东莞市)(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO

B A O D C

E 图8

和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小;

(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O

旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.

答案:

图7

O

D

C

A

22. (2008年广东省中山市)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC=,BD=;四边形ABCD 是梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10

的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.

1.(2008年泰安市)1如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P 的横坐标为.

C B O

D 图7 A

E D

C

A

E

图9

图10

答案:2008

解析:由题意得:1P 的横坐标为1,2P 的横坐标为2,有一定的规律,横坐标每翻转一次,就增加1,所以点2008P 的横坐标为2008。

最新北京市中考数学一模分类汇编 函数操作

函数操作
2018 西城一模 25.如图, P 为⊙ O 的直径 AB 上的一个动点,点 C 在 ?AB 上,连接 PC ,过点 A 作 PC 的
垂线交⊙ O 于点 Q .已知 AB 5cm , AC 3cm .设 A 、 P 两点间的距离为 xcm , A 、 Q 两点间的距离为 ycm.
A
C
O P
Q
B
某同学根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行探究.
下面是该同学的探究过程,请补充完整:
(1)通过取点、画图、测量及分析,得到了 x 与 y 的几组值,如下表:
x (cm)
0
1
2.5
3
3.5
4
5
y (cm)
4.0
4.7
5.0
4.8
4.1
3.7
(说明:补全表格对的相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图
象.
(3)结合画出的函数图象,解决问题:当 AQ 2AP 时, AP 的长度均为__________ cm .

2018 石景山一模
25.如图,半圆 O 的直径 AB 5cm ,点 M 在 AB 上且 AM 1cm ,点 P 是半圆 O 上的 动 点, 过点 B 作 BQ PM 交 PM (或 PM 的 延 长线 )于点 Q . 设 PM x cm , BQ y cm .(当点 P 与点 A或点 B 重合时, y 的值为 0 )
P
AM
O
B
Q
小石根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.
下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:
x / cm
1
1.5
2
2.5
3
3.5
4
y / cm
0
3.7
3.8 3.3 2.5
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数
的图象;
(3)结合画出的函数图象,解决问题:
当 BQ 与直径 AB 所夹的锐角为 60 时, PM 的长度约为
cm .

2018中考数学试题分类汇编 压轴题(全)

综合性问题 一、选择题 1.(2018·湖北省孝感·3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为() A.5 B.4 C.3 D.2 【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB 即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断. 【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形, ∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°, ∴△CAD是等腰三角形,且顶角∠CAD=150°, ∴∠ADC=15°,故①正确; ∵AE⊥BD,即∠AED=90°, ∴∠DAE=45°, ∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°, ∴∠AGF=75°, 由∠AFG≠∠AGF知AF≠AG,故②错误; 记AH与CD的交点为P,

由AH⊥CD且∠AFG=60°知∠FAP=30°, 则∠BAH=∠ADC=15°, 在△ADF和△BAH中, ∵, ∴△ADF≌△BAH(ASA), ∴DF=AH,故③正确; ∵∠AFG=∠CBG=60°,∠AGF=∠CGB, ∴△AFG∽△CBG,故④正确; 在Rt△APF中,设PF=x,则AF=2x、AP==x, 设EF=a, ∵△ADF≌△BAH, ∴BH=AF=2x, △ABE中,∵∠AEB=90°、∠ABE=45°, ∴BE=AE=AF+EF=a+2x, ∴EH=BE﹣BH=a+2x﹣2x=a, ∵∠APF=∠AEH=90°,∠FAP=∠HAE, ∴△PAF∽△EAH, ∴=,即=, 整理,得:2x2=(﹣1)ax, 由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确; 故选:B. 【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点. 2.(2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发

全国中考数学试题分类汇编.docx

2015 年全国中考数学试题分类汇编————压轴题 1. 在平面直角坐标系xOy 中,抛物线的解析式是y = 1 x2 +1,点 C 的坐标为 (–4, 0),平行4 四边形 OABC 的顶点 A,B 在抛物线上, AB 与 y 轴交于点M,已知点 Q(x,y)在抛物线上,点 P(t ,0)在 x 轴上 . (1)写出点 M 的坐标; (2)当四边形 CMQP 是以 MQ , PC 为腰的梯形时 . ①求 t 关于 x 的函数解析式和自变量x 的取值范围; ②当梯形 CMQP 的两底的长度之比为1: 2 时,求t 的值 . 11 x210 1 4 (1)M(0,2)(2)1AC:y= 2 x+1.PQ // MC.x t= 2 2.如图,已知在矩形 ABCD 中, AB= 2, BC= 3, P 是线段 AD 边上的任意一点(不含端点 A、 D ),连结 PC,过点 P 作 PE⊥ PC 交 AB 于 E (1)在线段 AD 上是否存在不同于 P 的点 Q,使得 QC⊥ QE?若存在,求线段 AP 与AQ 之间的数量关系;若不存在,请说明理由; ( 2)当点 P 在 AD 上运动时,对应的点 E 也随之在AB 上运动,求BE 的取值范围. A P D E B C (3 )存在,理由如下: 如图 2 ,假设存在这样的点Q,使得 QC ⊥ QE. 由( 1)得:△ PAE ∽ △ CDP , ∴ , ∴ ,

∵QC ⊥ QE ,∠ D= 90°, ∴∠ AQE +∠ DQC = 90 °,∠ DQC +∠ DCQ = 90 °, ∴∠ AQE= ∠DCQ. 又∵∠ A=∠ D=90°, ∴△ QAE ∽ △ CDQ , ∴ , ∴ ∴ , 即, ∴ , ∴ , ∴. ∵AP≠ AQ,∴ AP + AQ = 3.又∵AP≠ AQ,∴AP≠,即 P 不能是 AD 的中点,∴当P是 AD 的中点时,满足条件的Q点不存在, 综上所述,的取值范围7 ≤< 2;8 3.如图,已知抛物线y=-1 x2+ x+ 4 交x 轴的正半轴于点 A ,交y 轴于点 B .2 ( 1)求 A 、B 两点的坐标,并求直线( 2)设 P( x,y)( x> 0)是直线为对角线作正方形 PEQF,若正方形( 3)在( 2)的条件下,记正方形 AB 的解析式; y= x 上的一点, Q 是 OP 的中点( O 是原点),以PQ PEQF 与直线AB 有公共点,求x 的取值范围; PEQF 与△ OAB 公共部分的面积为S,求 S 关于 x 的函 数解析式,并探究S 的最大值. (1) 令 x=0, 得 y=4 即点 B 的坐标为 (0,4) 令y=0, 得(-1/2)x2+x+4=0 则x2-2x-8=0 ∴x=-2 或 x=4 ∴点 A 的坐标为 (4,0) 直线 AB 的解析式为 (y-0)/(x-4)=(4-0)/(0-4) ∴y=-x+4 (2) 由(1),知直线AB的解析式为y=-x+4

2019年全国各地中考数学真题汇编:平移与旋转(含答案)

中考数学真题汇编:平移与旋转 一、选择题 1.下列图形中,可以看作是中心对称图形的是() A. B. C. D. 【答案】A 2.在平面直角坐标系中,点关于原点对称的点的坐标是() A. B. C. D. 【答案】C 3.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为() A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4) 【答案】B 4.如图,在平面直角坐标系中,的顶点在第一象限,点,的坐标分别为、, ,,直线交轴于点,若与关于点成中心对称,则 点的坐标为() A. B. C. D. 【答案】A 5.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()

A. 55° B. 60° C. 65° D. 70° 【答案】C 6.下列图形中,既是轴对称又是中心对称图形的是() A. B. C. D. 【答案】B 7.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出 发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从 转动到的角度(规定逆时针方向转动角度为正)来确定,即或或 等,则点关于点成中心对称的点的极坐标表示不正确的是( ) A. B. C. D. 【答案】D 8.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置, 若四边形的面积为25,,则的长为() A. 5 B. C. 7 D. 【答案】D

9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是() A. 主视图 B. 左视图 C. 俯视图 D. 主视图和左视图 【答案】C 10.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分 三角形的面积为4.若,则等于() A. 2 B. 3 C. D. 【答案】A 11.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0, ).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是() A. (1,0) B. (,) C. (1,) D. (-1,) 【答案】C 12.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移

全国中考数学试题分类汇编

A B C D P E 2015年全国中考数学试题分类汇编————压轴题 1. 在平面直角坐标系xOy 中,抛物线的解析式是y = 2 4 1x +1,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标; (2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值. (1)M(0,2)(2)1AC:y= 21x+1.PQ // MC.t x x --+0 14 12 =21 2. 如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不含端点 A 、D ),连结PC , 过点P 作PE ⊥PC 交A B 于E (1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量关系;若不存在,请说明理由; (2)当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围. (3)存在,理由如下: 如图2,假设存在这样的点Q ,使得QC ⊥QE. 由(1)得:△PAE ∽△CDP , ∴ , ∴ ,

∵QC ⊥QE ,∠D =90 ° , ∴∠AQE +∠DQC =90 ° ,∠DQC +∠DCQ =90°, ∴∠AQE=∠DCQ. 又∵∠A=∠D=90°, ∴△QAE ∽△CDQ , ∴ , ∴ ∴ , 即 , ∴ , ∴ , ∴ . ∵AP≠AQ ,∴AP +AQ =3.又∵AP≠AQ ,∴AP≠ ,即P 不能是AD 的中点, ∴当P 是AD 的中点时,满足条件的Q 点不存在, 综上所述, 的取值范围8 7 ≤ <2; 3.如图,已知抛物线y =-1 2 x 2+x +4交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. (1)令x=0,得y=4 即点B 的坐标为(0,4) 令y=0,得(-1/2)x2+x+4=0 则x2-2x-8=0 ∴x=-2或x=4 ∴点A 的坐标为(4,0) 直线AB 的解析式为 (y-0)/(x-4)=(4-0)/(0-4) ∴y=-x+4 (2)由(1),知直线AB 的解析式为y=-x+4

中考数学试题分类汇编——函数

2020年广东各地区中考数学试题分类汇编——函数 1、(佛山)15.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在 函数()的图象上,则点E的坐标是(,). 2、(肇庆)9.在直角坐标系中,将点P(3,6)向左平移4个单位长度, 再向下平移8个单位长度后,得到的点位于() A.第一象限 B.第二象限 C.第三象限D.第四象限 3、(茂名)9.已知反比例函数=(≠0)的图象,在每一象限内,的值随值的增 大而减少,则一次函数=-+的图象不经过() A.第一象限B.第二象限C.第三象限D.第四象限 4、(梅州)5.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了 一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是 () 5、(湛江)8.函数的自变量的取值范围是() A. B. C. D. 6、(湛江)11.已知三角形的面积一定,则它底边上的高与底边之间的函数关系 的图象大致是() 1 y x =0 x> y x a a y x y a x a 1 2 y x = - x 2 x=2 x≠2 x≠-2 x> a h a O A B C E F D x y 第15题图 h h h h

A . B . C . D . 7、(湛江)12. 如图2所示,已知等边三角形ABC 的边长为,按图中所示的规律,用个这样的三角形镶嵌而成的四边形的周长是( ) A. B. C. D. 8、(梅州)10. 函数的自变量的取值范围是_____. 9、(梅州)12. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______. 10、(东莞)7.经过点A (1,2)的反比例函数解析式是_____ _____; 11、(佛山)22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54 吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨. (1) 将这些货物一次性运到目的地,有几种租用货车的方案? (2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总 费用最少,应选择哪种方案? 12008 20082009 201020111 1-=x y x mx y =x k y = m k 图2 C A B ┅┅

北京各区2021年中考模拟分类汇编之填空题(数学)

y x A 3 A 2 A 1 P 2 P 3P 1 O 北京各区2021年中考模拟分类汇编 填空题(数学) 1.(2021昌平一模)1 2.已知:四边形ABCD 的面积为1. 如图1,取四边形ABCD 各边中点,则图中阴影部分的面积为 ;如图2,取四边形ABCD 各边三等分点,则图中阴影部分的面积为 ;如 图3,取四边形ABCD 各边的n (n 为大于1的整数)等分点,则图中阴影部分的面积为 . A 3 B 3 C 3 D 3 A A 1 A 2 B B 1 B 2 C C 1 C 2 D D 1 D 2 A 2 B 2 C 2 D 2 A 1 B 1 C 1 D 1 D 1 C 1 B 1 图3 图2 图1 C D A B C D A 1B A 2.(2021东城一模)12. 在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从(0,3)出发,沿所示方 向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第5次碰到矩形的边时,点P 的坐标为 ;当点P 第2014次碰到矩形的边时,点P 的坐标为____________. 3.(2021房山一模)12.如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )都在函数k y x (x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数),已知点A 1的坐标为(2,0),则点P 1的坐标为 ;点P 2的坐标为 ;点P n 的坐标为 (用含n 的式子表示).

数学中考试题分类汇编 动态专题

河北 周建杰 分类 (2008年南京市)27.(8分)如图,已知O 的半径为6cm ,射线PM 经过点O ,10cm OP =, 射线PN 与 O 相切于点Q .A B ,两点同时从点P 出发, 点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长; (2)当t 为何值时,直线AB 与O 相切? 以下是河南省高建国分类: (2008年巴中市)已知:如图14,抛物线2 334 y x =- +与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线3 4y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积 最大,最大面积是多少? 答 以下是湖北孔小朋分类: 21.(2008福建福州)(本题满分13分) 如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达 A B Q O P N M

点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? (2008年贵阳市)15.如图4,在126 的网格图中(每个小正方形的边长均为1个单位),A 的半径为1,B 的半径为2,要使A 与静止的B 相切,那么A 由图示位置需向右平移个单位. 以下是江西康海芯的分类: 1.(2008年郴州市)如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4, E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为 F .FE 与DC 的延长线相交于点 G ,连结DE ,DF .. (1) 求证:ΔBEF ∽ΔCEG . (2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由. (3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少? 10分 辽宁省 岳伟 分类 2008年桂林市 如图,平面直角坐标系中,⊙A的圆心在X轴上,半径为1,直线L为y=2x-2,若⊙A沿X轴向右运动,当⊙A与L有公共点时,点A移动的最大距离是( ) A B (图4)

35、2020年北京初三数学二模分类汇编:几何综合(教师版)

2020年北京初三数学二模分类汇编: 几何综合 【题1】(2020·东城27二模) 27.在△ABC中AB=AC,BACα ∠=,D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,E不共线,连接AD,BD,CD. (1)如图1,当60 α=?,∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系; (2)当90 α=?,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明; (提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中) (3)当 1 2 ADBα ∠=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之 间的关系.

【题2】(2020·西城27二模) 27. 在正方形ABCD中,E是CD边上一点(CE >DE),AE,BD交于点F. (1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H. 求证:∠EAB =∠GHC; (2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN. ①依题意补全图形; ②用等式表示线段AE与CN之间的数量关系,并证明. 图1 备用图27.(1)证明:在正方形ABCD中,AD∥BC,∠BAD = 90°, ∴∠AGH =∠GHC. ∵GH⊥AE, ∴∠EAB =∠AGH. ∴∠EAB =∠GHC. (2)①补全图形,如图所示. ② AE . 证明:连接AN,连接EN并延长,交AB边于点Q. ∵四边形ABCD是正方形, ∴点A,点C关于BD对称. ∴NA =NC,∠1=∠2. ∵PN垂直平分AE, ∴NA =NE. ∴NC =NE. ∴∠3=∠4. 在正方形ABCD中,BA∥CE,∠BCD = 90°, ∴∠AQE =∠4. ∴∠1+∠AQE =∠2+∠3=90°. ∴∠ANE =∠ANQ =90°. 在Rt△ANE中, A F D C E B G H A F D C E B G H A F D C E B E C

份全国中考数学真题汇编

份全国中考数学真题汇编

100份全国中考数学真题汇编 一、选择题 1;如图.在△ABC 中,∠B=90°, ∠A=30°,AC=4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A ′B ′C ′的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( ) A. B. 8cm C. 163cm π D. 8 3 cm π 【答案】D 2. 如图2,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧 ⌒BC 的弧长为( ). A .3 3π B .32π C .π D .32π 图2 【答案】A 3. (2011山东德州7,3分)一个平面封闭图形内(含边界)任意两点距离的最大值称 为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面 B′ A′ C B A (第11题图)

图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a , 4a ,则下列关系中正确的是 (A )4a >2a >1a (B )4a >3a >2a (C )1a >2a >3a (D )2a >3a >4a 【答案】B 4. (2011山东济宁,9,3分)如图,如果从半径为9cm 的圆形纸片剪去1 3 圆周的一 个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6cm B .35cm C .8cm D .53cm 【答案】B 5. (2011山东泰安,14 ,3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( ) A.5π B. 4π C.3π D.2π 【答案】C 6. (2011山东烟台,12,4分)如图,六边形ABCDEF 是正六边形,曲线 FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K , 56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4, l 5,l 6,…….当AB =1时,l 2 011等于( ) (第9题) 剪

2020年全国中考数学分类汇编(压轴题)

2020年全国中考数学试题分类汇编————压轴题 1.(2020年浙江杭州) 在平面直角坐标系xOy 中,抛物线的解析式是y = 2 4 1x +1,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标; (2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值. (第24题)

2.(2020年浙江湖州)如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、 D),连结PC,过点P作PE⊥PC交AB于E (1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由; (2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围. B C 第25题

3.(2020年浙江嘉兴市)如图,已知抛物线y=-1 2 x2+x+4交x轴的正半轴于点A,交y轴于点B. (1)求A、B两点的坐标,并求直线AB的解析式; (2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围; (3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

4.(2020年浙江金华)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以2个单位每秒速度运动,运动时间为t。求:Array(1)C的坐标为▲; (2)当t为何值时,△ANO与△DMR相似? (3)△HCR面积S与t的函数关系式; 并求以A、B、C、R为顶点的四边形是梯形 时t的值及S的最大值。

2020年中考数学试题分类汇编: 四边形(含答案解析)

2020年中考数学试题分类汇编之十一 四边形 一、选择题 1.(2020广州)如图5,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE EF +的值为( * ). (A ) 485 (B )325 (C )24 5 (D ) 12 5 【答案】C 2.(2020陕西)如图,在?ABCD 中,AB =5,BC =8.E 是边BC 的中点,F 是?ABCD 内一点,且∠BFC =90°.连接AF 并延长,交CD 于点G .若EF ∥AB ,则DG 的长为( ) A . B . C .3 D .2 【解答】解:∵E 是边BC 的中点,且∠BFC =90°, ∴Rt △BCF 中,EF =BC =4, ∵EF ∥AB ,AB ∥CG ,E 是边BC 的中点, ∴F 是AG 的中点, ∴EF 是梯形ABCG 的中位线, ∴CG =2EF ﹣AB =3, 又∵CD =AB =5, ∴DG =5﹣3=2, 故选:D . 图5 O F E D C B A

3.(2020乐山)如图,在菱形ABCD 中,4AB =,120BAD ∠=?,O 是对角线BD 的中点,过点O 作OE CD ⊥ 于点E ,连结OA .则四边形AOED 的周长为( ) A. 9+ B. 9+ C. 7+ D. 8 【答案】B 【详解】∵四边形ABCD 是菱形,O 是对角线BD 的中点, ∵AO∵BD , AD=AB=4,AB∵DC ∵∵BAD=120o, ∵∵ABD=∵ADB=∵CDB=30o, ∵OE∵DC , ∵在RtΔAOD 中,AD=4 , AO=1 2 AD =2 ,= 在RtΔDEO 中,OE= 1 2 OD =,3=, ∵四边形AOED 的周长为 故选:B. 4.(2020贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A. 5 B. 20 C. 24 D. 32 【答案】B 【详解】解:如图所示,根据题意得AO =1842 ?=,BO =1 632?=, ∵四边形ABCD 是菱形, ∵AB =BC =CD =DA ,AC∵BD , ∵∵AOB 是直角三角形, ∵AB 5==, ∵此菱形的周长为:5×4=20. 故选:B .

2019年全国各地中考数学试卷试题分类汇编

2019年全国各地中考数学试卷试题分类汇编 第2章 实数 一、选择题 1. (2018,1,3分)如在实数0,-3,3 2 - ,|-2|中,最小的是( ). A .3 2- B . - 3 C .0 D .|-2| 【答案】B 2. (2018市,1,3分)四个数-5,-0.1,1 2,3中为 无理数的是( ). A. -5 B. -0.1 C. 1 2 D. 3 【答案】D 3. (2018滨州,1,3分)在实数π、13 、 2、sin30°,无理 数的个数为( ) A.1 B.2 C.3 D.4 【答案】B 4. (2018,2,3分)(-2)2 的算术平方根是( ). A . 2 B . ±2 C .-2 D . 2 【答案】A

5. (2018,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0-n m 【答案】C 6. (2018,1,3分)2×(-2 1)的结果是( ) A.-4 B.-1 C. -4 1 D.2 3 【答案】B 7. (2018,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C 8. (2018,2,3分)下列运算正确的是( ) A . (1)1x x --+=+ B =C 22=.222()a b a b -=- 【答案】C 9. ( 2018江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1·

【答案】D · 10. (20181,3)如计算:-1-2= A.-1 B.1 C.-3 D.3 【答案】C 11. (2018滨州,10,3分)在快速计算法中,法国的“小 九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出 的 手 指 数 应 该 分 别 为 ( ) A.1,2 B.1,3 C.4,2 D.4,3 【答案】A 12. (2018,10,3分)计算()221222 -+---1 (-) =( ) A .2 B .-2 C .6 D .10 【答案】A 13. (2018,6,3分)定义一种运算☆,其规则为a☆b=1a + 1 b ,根据这个规则、计算2☆3的值是

2008-2019年北京中考数学分类汇编:圆(pdf版)

2008~2019北京中考数学分类(圆) 一.解答题(共12小题) 1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD. (1)求证:AD=CD; (2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数. 2.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD. (1)求证:OP⊥CD; (2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.

3.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O 的切线交CE的延长线于点D. (1)求证:DB=DE; (2)若AB=12,BD=5,求⊙O的半径. 4.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E. (1)求证:AC∥DE; (2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路. 5.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E. (1)求证:△ACD是等边三角形; (2)连接OE,若DE=2,求OE的长. 6.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是

OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH. (1)求证:AC=CD; (2)若OB=2,求BH的长. 7.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E. (1)求证:∠EPD=∠EDO; (2)若PC=6,tan∠PDA=,求OE的长. 8.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE. (1)求证:BE与⊙O相切; (2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长. 9.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC

全国各地2018年中考数学真题汇编(含答案)

全国各地2018年中考数学真题汇编(含答案) 实数与代数式(选择+填空28题) 一、选择题 1. (2018山东潍坊)( ) A. B. C. D. 【答案】B 2.(2018四川内江)已知:,则的值是() A. B. C. 3 D. -3 【答案】C 3.按如图所示的运算程序,能使输出的结果为的是() A. B. C. D. 【答案】C 4.下列无理数中,与最接近的是() A. B. C. D. 【答案】C 5.四个数0,1,,中,无理数的是() A. B.1 C. D.0 【答案】A 6.下列计算正确的是()

A. B. C. D. 【答案】D 7.估计的值在() A. 5和6之间 B. 6和7之间 C. 7和8之间 D. 8和9之间 【答案】D 8.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 的展开式的各项系数,此三角形称为“杨辉三角”. 根据“杨辉三角”请计算的展开式中从左起第四项的系数为() A. 84 B. 56 C. 35 D. 28 【答案】B 9.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为() A. B. C. D. 【答案】A 10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚

图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( ) A. 16张 B. 18张 C. 20张 D. 21张 【答案】D 11.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为() A. 12 B. 14 C. 16 D. 18 【答案】C 12.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n 次移动到,则△的面积是() A.504 B. C. D. 【答案】A 13.将全体正奇数排成一个三角形数阵 1 3 5 7 9 11

2019-2020年中考数学试题分类汇编 统计

2019-2020年中考数学试题分类汇编 统计 一.选择题 1.(2015安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学 B .该班学生这次考试成绩的众数是45分 C .该班学生这次考试成绩的中位数是45分 D .该班学生这次考试成绩的平均数是45分 2.(2015广东) 3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B. 【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。 3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为 20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10 C .中位数是17 D .方差是 3 44 4.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定 亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2 141.7S 甲= ,2 433.3S 乙=,则产量稳定,适合推广的品种为: A 、甲、乙均可 B 、甲 C 、乙 D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B 5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元 6. )(2015?益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动

北京中考数学试题分类汇编

目录 北京中考数学试题分类汇编 (2) 一、实数(共18小题) (2) 二、代数式(共2小题) (4) 三、整式与分式(共14小题) (5) 四、方程与方程组(共11小题) (6) 五、不等式与不等式组(共6小题) (8) 六、图形与坐标(共4小题) (9) 七、一次函数(共11小题) (11) 八、反比例函数(共5小题) (16) 九、二次函数(共10小题) (18) 一十、图形的认识(共11小题) (23) 一十一、图形与证明(共33小题) (26) 一十二、图形与变换(共12小题) (37) 一十三、统计(共15小题) (41) 一十四、概率(共6小题) (50) 北京中考数学试题分类汇编(答案) (52) 一、实数(共18小题) (52) 二、代数式(共2小题) (60) 三、整式与分式(共14小题) (62) 四、方程与方程组(共11小题) (68) 五、不等式与不等式组(共6小题) (75) 六、图形与坐标(共4小题) (78) 七、一次函数(共11小题) (83) 八、反比例函数(共5小题) (99) 九、二次函数(共10小题) (106) 一十、图形的认识(共11小题) (122) 一十一、图形与证明(共33小题) (130) 一十二、图形与变换(共12小题) (178) 一十三、统计(共15小题) (190) 一十四、概率(共6小题) (206)

2011-2016年北京中考数学试题分类汇编 本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。学生可通过试卷针对自己薄弱知识点进行加强练习,通过真题感受中考题目的难易程度,有效的节省复习时间,省时高效地进行数学中考冲刺。 一、实数(共18小题) 【命题方向】实数这部分在初中数学中属于基础知识,课程标准对这部分知识点的要求都比较低,在各地中考中多以选择题、填空题的形式出现,也有少量计算题。 【备考攻略】这部分的主要任务是:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义。进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式,呈现试题,也可以建立在应用知识解决实际问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况。了解乘方与开方的概念,并理解这两种运算之间的关系,了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质。 1.2的相反数是() A.2 B.﹣2 C.﹣ D. 2.﹣9的相反数是() A.﹣ B.C.﹣9 D.9 3.﹣的绝对值是() A.﹣ B.C.﹣ D. 4.﹣的倒数是() A.B.C.﹣ D.﹣ 5.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为() A.2.8×103B.28×103 C.2.8×104D.0.28×105

2019年中考数学真题知识分类汇编全集 2020中考数学复习

有理数 一、单选题 1.【湖南省娄底市2019年中考数学试题】2019的相反数是() A. B. 2019 C. -2019 D. 【答案】C 2.【山东省德州市2019年中考数学试题】3的相反数是() A. 3 B. C. -3 D. 【答案】C 分析:根据相反数的定义,即可解答. 详解:3的相反数是﹣3.故选C. 点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义. 3.【山东省淄博市2019年中考数学试题】计算的结果是() A. 0 B. 1 C. ﹣1 D. 【答案】A 【解析】分析:先计算绝对值,再计算减法即可得. 详解:=﹣=0,故选:A. 点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则. 4.【山东省潍坊市2019年中考数学试题】( ) A. B. C. D. 【答案】B 分析:根据绝对值的性质解答即可. 详解:|1-|=.故选B. 点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 5.【江西省2019年中等学校招生考试数学试题】﹣2的绝对值是 A. B. C. D. 【答案】B

6.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是() A. 0 B. 1 C. D. ﹣1 【答案】D 分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可. 详解:∵-1<-<0<1,∴最小的数是-1,故选D. 点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小. 7.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是() A. 0 B. 1 C. D. ﹣1 【答案】D 8.【江苏省连云港市2019年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为() A. 1.5×108 B. 1.5×107 C. 1.5×109 D. 1.5×106 【答案】A 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 详解:150 000 000=1.5×108,故选:A. 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 9.【江苏省盐城市2019年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为() A. B. C. D. 【答案】A 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

相关文档
相关文档 最新文档