文档库 最新最全的文档下载
当前位置:文档库 › 高三文科数学统计概率汇总

高三文科数学统计概率汇总

高三文科数学统计概率汇总
高三文科数学统计概率汇总

高三文科数学统计概率汇总

————————————————————————————————作者:————————————————————————————————日期:

统计概率考点总结

【考点一】分层抽样

01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社

区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()

A、101

B、808

C、1212

D、2012

02、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的

样本,则此样本中男生人数为____________.

03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若干人,若抽取的男运

动员有8人,则抽取的女运动员有______人。

04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机

编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()

A.11 B.12 C.13 D.14

05、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样

本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()

A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9

【考点二】频率分布直方图(估计各种特征数据)

01、从某小区抽取100户居民进行月用电量调查,发现其用电

量都在50到350度之间,频率分布直方图所示.

(I)直方图中x的值为________;

100,250内的户数为_____.

(II)在这些用户中,用电量落在区间[)

02、下图是样本容量为200的频率分布直方图。根据样本的频率分布直

方图估计,样本数据落在[6,10]内的频数为,数据落在(2,

10)内的概率约为

03、有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据

落在区间)

10,12

??内的频数为

A.18 B.36 C.54 D.72

04、如上题的频率分布直方图,估计该组试验数据的众数为_______,

中位数为_______,平均数为________

【考点三】数据特征

01、抽样统计甲、乙两位设计运动员的5次训练成绩(单位:环),结果如下:

则成绩较为稳定(方差较小)的那位运动员成绩的方差为_____________.

02、某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职

工随机按1-200编号,并按编号顺序平均分为40组(1

-5号,6-10号…,196-200号).若第5组抽出的号

码为22,则第8组抽出的号码应是。若用分层抽

样方法,则40岁以下年龄段应抽取人.

03、在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰

好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是

(A)众数(B)平均数(C)中位数(D)标准差

04、总体由编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是从随

机数表第1行第5列和第6列数字开始由左到右依次选取两个数字,则选出的第5个个体编号为

A.08 B.07 C.02 D.01

05、容量为20的样本数据,分组后的频数如下表

则样本数据落在区间[10,40]的频率为

第1

第2

第3

第4

第5

甲87 91 90 89 93

乙89 90 91 88 92

A 0.35

B 0.45

C 0.55

D 0.65

06、小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占

总开支的百分比为

A.30%

B.10%

C.3%

D.不能确定

07、对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所

示),则该样本的中位数、众数、极差分别是( )

A .46,45,56

B .46,45,53

C .47,45,56

D .45,47,53

08、考察某校各班参加课外书法小组人数,在全校随机抽取5个班级,把每个班级

参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为__

【考点四】求回归直线、相关系数、相关指数

01、设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,

y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )

C.若该大学某女生身高增加1cm ,则其体重约增加0.85kg

D.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg

02、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图如下左图;对变量u ,v 有观测

数据(1u ,1v )(i=1,2,…,10),得散点图如下右图. 由这两个散点图可以判断。 (A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关

03、设(1x ,1y ),(2x ,2y ),…,(n x ,n y )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过

最小二乘法得到的线性回归直线(如图),以下结论中正确的是 A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间

C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同

D .直线l 过点(,)x y

04、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所

有样本点(x i ,y i )(i =1,2,…,n )都在直线y =1

2

x +1上,则这组样本数据的样本相关系数为

(A )-1 (B )0 (C )1

2 (D )1

05、如表提供了某厂节能降耗技术改造后生产甲产品过程中

记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据。请根据表格提供的数据,用最小二乘法求出

y 关于x 的线性回归方程为:______+=x y

(∑∑==-?-=

n i i

n

i i i

x

n x

y

x n y x

b 1

2

21^

,x b y a ?-=^

^,3 2.543546 4.566.5?+?+?+?=)

06、某产品的广告费用x 与销售额y 的统计数据如下表

根据上表可得回归方程y ^=b ^x +a ^中的b ^

为9.4,据此模型预报广告费用为6万元时销售额为( )

A .63.6万元

B .65.5万元

C .67.7万元

D .72.0万元

07、某地2008年第二季各月平均气温x (℃)与某户用水量y (吨)

如下表,根据表中数据,用最小二乘法求得用水量y 关于月平均气温x 的线性回归方程是

A .5.115?-=x y

B .5.115.6?-=x y

C .5.112.1?-=x y

D .5.113.1?-=x y 广告费用x (万元) 4 2 3 5 销售额y (万元)

49

26

39

54

08、(2015年全国I 18题)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千

元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值. (1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜

作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;

(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:

①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?

附: (1)在下表中w i =x i ,w =∑=8

1

81i i w

(2)对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘法

计算公式分别为∑∑==∧

---=

n

i i

n

i i i

u u

v v u u

1

2

1

)()

)((β,α^=v -β^

u

x y w ∑=-8

1

2

)(i i

x x

∑=-8

1

2

)(i i

w w

∑=--8

1

))((i i i y y x x

∑=--8

1

))((i i i

y y w w

46.6

563

6.8

289.8 1.6 1 469

108.8

【考点五】独立性检验

01、通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

男 女 总计

爱好

40 20 60 不爱好

20 30 50 总计

60 50 110 由()()()()()2

2n ad bc K a b c d a c b d -=++++算得,()2

2110403020207.8

60506050K ??-?=≈???.

2()P K k ≥ 0.050 0.010 0.001

k

3.841 6.635 10.828

参照附表,得到的正确结论是

A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

C .有99%以上的把握认为“爱好该项运动与性别有关”

D .有99%以上的把握认为“爱好该项运动与性别无关”

【考点六】古典概型——列举法(6选3,5选3)

01、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为1

14

,则n =____

02、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概

率为_____.

03、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是

A.49

B.13

C.29

D.19

04、某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1的离心率e >3

2

的概率是 ( )

A .118

B .536

C .16

D .13

05、一袋中装有10个球, 其中3个黑球, 7个白球, 先后两次从袋中各取一球(不放回). 则第二次取出的是

黑球的概率是 ;已知第一次取出的是黑球,则第二次取出的仍是黑球的概率是 .

06、从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )

A.110

B.310

C.35

D.910

07、从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率

是____

【考点七】几何概型(显性、隐性)

01、小波通过做游戏的方式来确定周末活动,他随机的往单位圆内投掷一点,若此点到圆心的距离大于

2

1

,则周末去看电影;若此点到圆心的距离小于

4

1

,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为 .

02、利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________

03、在长为12cm 的线段AB 上任取一点C.现作一矩形,令边长分别等于线段AC ,CB 的长,则该矩形面

积小于32cm 2的概率为 (A) 16 (B) 13 (C) 23 (D) 4

5

04、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为____3

1

05、如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在

扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .21π-

B .11

2π- C .2π D .1π

06、在BAC RT ?中,2

π

=

A ,A

B = 1,B

C = 2

(1)在BC 上取一点D ,则ABD Δ的面积比ABC Δ的面积的2

1

还大的概率为________21

(2)过A 作射线与BC 交于点D ,则ABD Δ的面积比ABC Δ的面积的2

1

还大的概率为____31

07、在一个圆上任取三点A 、B 、C ,则ABC Δ为锐角三角形的概率为______4

1

答案:有注明讲的题目为下次上课必讲对象 【考点一】1.B 2.160 3.6 4.B 5(讲)

【考点二】1.0.0044 70 2. 64 0.4 3. B 4(讲)

【考点三】1. 2 2. 37, 20 3. D 4. D 5. B 6. C 7. A 8. 10 【考点四】1. D 2. C 3. D 4. D 5. y=0.7x+0.35 6. B 7 .D 8(讲) 【考点五】1. C 【考点六】1. 8 2.

20

63

3.D

4. C

5. 92103

6.D

7. 0.75

高三文科数学统计概率的总结课件.doc

实用标准文案 统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社 区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96 人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为() A 、101 B、808 C、1212 D、2012 02、某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体学生中抽取一个容量为280 的 样本,则此样本中男生人数为____________. 03、一支田径运动队有男运动员56 人,女运动员42 人。现用分层抽样的方法抽取若干人,若抽取的男运 动员有8 人,则抽取的女运动员有______人。 04、某单位有840 名职工, 现采用系统抽样方法, 抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机 编号, 则抽取的42 人中, 编号落入区间[481, 720] 的人数为() A .11 B.12 C.13 D.14 05、将参加夏令营的600 名学生编号为:001,002,,, 600,采用系统抽样方法抽取一个容量为50 的样 本,且随机抽得的号码为003.这600 名学生分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26, 16, 8 B.25,17,8 C.25,16,9 D.24,17, 9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100 户居民进行月用电量调查, 发现其用电 量都在50 到350 度之间, 频率分布直方图所示. (I) 直方图中x的值为________; (II) 在这些用户中, 用电量落在区间100,250 内的户数为_____. 02、下图是样本容量为200 的频率分布直方图。根据样本的频率分布直 方图估计,样本数据落在[6,10]内的频数为,数据落在(2, 10)内的概率约为 精彩文档

历年高考全国1卷文科数学真题分类汇编-概率与统计含答案

历年高考新课标Ⅰ卷试题分类汇编—概率与统计 1、(2012年第19题)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。 2、(2013年第3题) 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( B ) (A )错误!未找到引用源。 (B )错误!未找到引用源。 (C )1 4 错误!未找到引用源。(D ) 16 3、(2013年第19题) 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

文科统计与概率1-回归分析

文科统计与概率1-回归分析 一、回归分析 1、函数关系 函数关系是一种确定性的关系,如一次函数,二次函数 2、相关关系 变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系带有随机性 3、散点图 把两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图,通过散点图可以初步判断两个变量之间是否具有相关关系。 (1)正相关 散点图中,点分布在左下角到右上角的区域 (2)负相关 散点图中,点分布在坐上角到右下角的区域 4、回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 5、求回归直线方程的一般步骤: ①作出散点图→②由样本点是否呈条状分布来判断两个量是否具有线性相关关系(粗略)或者计算相关系数r (||r 越接近于1,两个变量的线性相关性越强),若存在线性相关关系→③求回归系数 →④写出回归直线方程 ,并利用回归直线方程进行预测说明. 6、线性回归方程:a x b y ???+= 其中,?? ????? ?? -=--=---=∑∑∑∑====x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ??)())((?21 21 121 注意:①线性回归直线经过定点),(y x ,点),(y x 称为样本点的中心。②最小二乘法是使得样 本数据的点到回归直线的距离的平方和最小的方法,以上公式是a ?和b ?的值的最好估计③b ?是斜率的估计值,若b ?>0,x 每增加一个单位,y 的值就增加b ?;若b ?<0,x 每增加一个单位,y 的值就减少|b ?| 7、相关系数(判定两个变量线性相关性):∑∑∑===----= n i n i i i n i i i y y x x y y x x r 1 1 2 21 )()() )(( 注:⑴r >0时,变量y x ,正相关;此时0?>b 相当于回归直线方程中的斜率为正 r <0时,变量y x ,负相关;此时0?r 时,认为两个变量有很强的线性相关关系。如果两个变量不具有 线性相关关系,即使求出回归方程也毫无意义,用其进行预测也是不可信的。 8、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。 9、回归方程拟合效果分析 评价回归效果的三个统计量:总偏差平方和(总的效应);残差平方和(随机误差的效应);

2020高考文科数学概率与统计专项练习

概率与统计专项练习 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.[2019·山东滨州模考]若复数(1-a i)2 -2i 是纯虚数,则实数a =( ) A .0 B .±1 C .1 D .-1 答案:C 解析:(1-a i)2 -2i =1-a 2 -2a i -2i =1-a 2-(2a +2)i. ∵(1-a i)2 -2i 是纯虚数,∴? ?? ?? 1-a 2 =0,2a +2≠0,解得a =1,故选C. 2.[2019·广东广州执信中学测试]从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是( ) A .系统抽样 B .分层抽样 C .简单随机抽样 D .各种方法均可 答案:B 解析:因为社会购买力的某一项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应采用分层抽样的方法,故选B. 3.用反证法证明命题“设a ,b 为实数,则方程x 3 +ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 3 +ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 答案:A 解析:因为“方程x 3 +ax +b =0至少有一个实根”等价于“方程x 3 +ax +b =0的实根的个数大于或等于1”,因此,要做的假设是“方程x 3 +ax +b =0没有实根”. 4.[2019·山东烟台模拟]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽到的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8

高三文科数学统计概率总结

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规得知晓情况,对甲、乙、丙、丁四个社区 做分层抽样调查。假设四个社区驾驶员得总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员得人数分别为12,21,25,43,则这四个社区驾驶员得总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 02、某个年级有男生560人,女生420人,用分层抽样得方法从该年级全体学生中抽取一个容量为280得样 本,则此样本中男生人数为____________、 03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样得方法抽取若干人,若抽取得男运动 员有8人,则抽取得女运动员有______人。 04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机 编号, 则抽取得42人中, 编号落入区间[481, 720]得人数为( ) A.11 B.12 C.13 D.14 05、将参加夏令营得600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50得样本, 且随机抽得得号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中得人数依次为( ) A.26, 16, 8 B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电 量都在50到350度之间,频率分布直方图所示、 (I)直方图中x 得值为________; (II)在这些用户中,用电量落在区间[)100,250内得户数为_____、 02、下图就是样本容量为200得频率分布直方图。 根据样本得频率分布直方图估计,样本数据落在[6,10] 内得频数为 ,数据落在(2,10)内得概率约为 03、有一个容量为200得样本,其频率分布直方图如图所示,根据样本得频率分布直方图估计,样本数据落 在区间)10,12??内得频数为 A.18 B.36 C.54 D.72 04、如上题得频率分布直方图,估计该组试验数据得众数为_______,

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

概率与统计高考解答题(文科)专题

概率与统计高考解答题(文科)专题 1、(2018全国新课标Ⅱ文、理)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型 ①:?30.413.5 y t =-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:?9917.5 y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 2、(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 超过m不超过m 第一种生产方式 第二种生产方式 (3 附: 2 2 () ()()()() n ad bc K a b c d a c b d - = ++++ , 2 ()0.0500.0100.001 3.8416.63510.828 P K k k ≥ .

3、(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位: m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 日 用 水 量 [) 00.1 ,[) 0.10.2 ,[) 0.20.3 ,[) 0.30.4 ,[) 0.40.5 ,[) 0.50.6 ,[) 0.60.7 , 频 数 1 3 2 4 9 26 5 日用 水量 [) 00.1 ,[) 0.10.2 ,[) 0.20.3 ,[) 0.30.4 ,[) 0.40.5 ,[) 0.50.6 ,频数 1 5 13 10 16 5 ( (2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

高中数学概率统计知识万能公式文科

第六部分 概率与统计万能知识点及经典题型Ⅰ 【考题分析】 1、考试题型:选择填空1个,解答题:18(必考) 2、考题分值:17分; 3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率 4、难度系数:0.7-0.8左右,(120分必须全对,100以上者全对) 【知识总结】 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 2 2 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。 分析:?i e 越小越好; 2、残差平方和:21 ?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑

高考文科数学试题分类汇编11:概率与统计

高考文科数学试题分类汇编11:概率与统计 一、选择题 1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的 机会均等,则甲或乙被录用的概率为 ( ) A . 23 B . 25 C . 35 D . 910 【答案】D 2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某 产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( ) A .0.2 B .0.4 C .0.5 D .0.6 【答案】B 3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发 生的概率为.2 1 ,则 AD AB =____ ( ) A . 12 B . 14 C D 【答案】D 4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的 概率是 ( ) A . 2 3 B . 1 3 C . 12 D . 16 【答案】C 5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件. 为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均 分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为 ( ) A . 116 9 B . 367 C .36 D 【答案】B 7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎 叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是 8 7 7 9 4 0 1 0 9 1 x

高中文科数学(统计与概率)综合练习

《概率与统计》练习 求:(Ⅰ)年降雨量在) 200 , 100 [范围内的概率; (Ⅱ)年降雨量在) 150 , 100 [或) 300 , 250 [范围内的概率; (Ⅲ)年降雨量不在) 300 , 150 [范围内的概率; (Ⅳ)年降雨量在) 300 , 100 [范围内的概率. > · 2.高三某班40名学生的会考成绩全部在40分至100分 之间,现将成绩分成6段:) 50 , 40 [、) 60 , 50 [ 、) 70 , 60 [、 ) 80 , 70 [、) 90 , 80 [、] 100 , 90 [.据此绘制了如图所示的频率分布直方图。在这40名学生中, (Ⅰ)求成绩在区间) 90 , 80 [内的学生人数; (Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间] 100 , 90 [内的概率. " @

3.已知集合}1,1(},2,0,2{-=-=B A . ; (Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ; (Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区 域D :?? ? ??-≥≤-+≥+-10202y y x y x 内的概率. . 4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组 C 组 ? 疫苗有效 673 x y 疫苗无效 77 90 z > 已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0. (Ⅰ)求x 的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.

高三文科数学概率与统计

达濠侨中高三数学(文科)第二轮复习题 概率与统计 一 选择题 1.(2015·新课标全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显着 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 2.为了解某社区居民的家庭收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 3.一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( ) A .15 B .16 C .17 D .19 4. 【2015高考新课标文】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π - 6.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是( ) A .23 B .33 C .43 D .53 7.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等

2020高考文科数学主观题专项练习:概率

主观题专项练习:概率 1.[2019·吉林长春市实验中学开学考试]针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”“保留”和“不支持”态度的人数如下表所示: (1)支持”态度的人中抽取了30人,求n 的值; (2)在参与调查的人中,有10人给这项活动打分,打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,8.3,9.7,把这10个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率. 解析:(1)参与调查的总人数为8 000+4 000+2 000+1 000+2 000+3 000=20 000. 因为持“不支持”态度的有2 000+3 000=5 000(人),且从其中抽取了30人,所以n =20 000×305 000 =120. (2)总体的平均数x -=1 10×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2+8.3+9.7)= 9, 与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7, 所以任取一个数,该数与总体平均数之差的绝对值超过0.6的概率P =3 10 . 2.[2019·安徽示范高中联考]某市为了鼓励居民节约用水,拟确定一个合理的月用水量阶梯收费标准,规定一位居民月用水量不超过a 吨的部分按平价收费,超出a 吨的部分按议价收费.为了解居民的月均用水量(单位:吨),现随机调查1 000位居民,并对收集到的数据进行分组,具体情况见下表:

(2)若该市希望使80%的居民月均用水量不超过a吨,试估计a的值,并说明理由; (3)根据频率分布直方图估计该市居民月用水量的平均值. 解析:(1)由已知得6x=1 000-(50+80+220+250+80+60+20),解得x=40. 则月均用水量的频率分布表为 月均 用水 量/吨 [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 3) [3, 3.5) [3.5, 4) [4, 4.5) 频率0.050.080.200.220.250.080.060.040.02 (2)由(1)知前5组的频率之和为0.05+0.08+0.20+0.22+0.25=0.80,故a=2.5. (3)由样本估计总体,该市居民月用水量的平均值为0.25×0.05+0.75×0.08+1.25×0.20+1.75×0.22+2.25×0.25+2.75×0.08+3.25×0.06+3.75×0.04+4.25×0.02=1.92. 3.[2019·河北唐山摸底]某厂分别用甲、乙两种工艺生产同一种零件,尺寸(单位:mm)在[223,228]内的零件为一等品,其余为二等品,在使用两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示. (1)分别计算抽取的用两种工艺生产的零件尺寸的平均数; (2)已知用甲工艺每天可生产300个零件,用乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个,视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高. 解析:(1)使用甲工艺生产的零件尺寸的平均数x - 甲= 1 10 ×(217+218+222+225+226

2018年高考文科数学分类之统计与概率

统计与概率 一、选择题: 1.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3B.0.4C.0.6D.0.7 3.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为() A.0.6B.0.5C.0.4D.0.3 二、填空题: 4.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽样,则最适合的抽样方法是______. 5.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为___________. 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为___________. 7.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是___________(结果用最简分数表示).三、解答题: 8.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表

高考文科数学常考题型训练统计概率

常考题型大通关:第19题统计概率 1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示. (1)下表是年龄的频数分布表,求正整数a,b的值; (2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数; (3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率. 2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示. (1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表: 年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60] 频数 5 10 10 5 10 赞成人数 4 6 8 4 9 1.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?

15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[) 本亊件,并求选取2人中恰有1人持不赞成态度的概率. 4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者 . 组号分组频数频率 160,165 5 0.05 第1组[) 第2组[165,170)0.35 第3组[170,175) 第4组[175,180)20 0.20 第5组[180,185)10 合计100 1.00 1.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;

高三文科数学统计概率总结

高三文科数学统计概率 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对 甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() 02、A、101 B、808 C、1212 D、2012 03、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽 取一个容量为280的样本,则此样本中男生人数为____________. 04、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若 干人,若抽取的男运动员有8人,则抽取的女运动员有______人。 05、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() 06、A.11 B.12 C.13 D.14 07、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取 一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营 区,三个营区被抽中的人数依次为() 08、A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间, 频率分布直方图所示. 02、(I)直方图中x的值为________; 100,250内的户数为_____. 03、(II)在这些用户中,用电量落在区间[) 04、下图是样本容量为200的频率分布直方图。根据样本的 频率分布直方图估计,样本数据落在[6,10]内的频数 为,数据落在(2,10)内的概率约为

高考文科数学大题专项统计概率A精编版

……………………………………………………………最新资料推荐………………………………………………… 四统计概率(A) 1.(2018·大庆模拟)某人租用一块土地种植一种瓜类作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455 kg.已知当年产量低于450 kg时,单位售价为12元/kg,当年产量不低于450 kg时,单位售价为10元/kg. (1)求图中a,b的值; (2)估计年销售额大于3 600元小于6 000元的概率. 2.(2018·沈阳三模)根据相关数据统计,沈阳市每年的空气质量优良天数整体好转,2013年沈阳优良天数是191天,2014年优良天数为178

天,2015年优良天数为193天,2016年优良天数为242天,2017年优良天数为256天,把2013年年份用代码1表示,以此类推,2014年用2表示,2015年用3表示,2016年用4表示,2017年用5表示,得到如下数据: 1 ……………………………………………………………最新资料推荐………………………………………………… (1)试求y关于x的线性回归方程(系数精确到0.1); (2)试根据(1)求出的线性回归方程,预测2018年优良天数是多少天 (精确到整数). =3 374,=55. x附:y参考数据ii -==. ,参考公式:

3.(2018·厦门一模)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如表所示: 2 ……………………………………………………………最新资料推荐………………………………………………… 若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条 形图.

统计与概率高考题(文科)

统计与概率高考题(文 科) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

统计与概率高考题1(文科) 一、选择题 1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则 选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.3 3.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3 B .0.4 C .0.6 D .0.7 4.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验 田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .1x ,2x ,…,n x 的平均数 B .1x ,2x ,…,n x 的标准差

C .1x ,2x ,…,n x 的最大值 D .1x ,2x ,…,n x 的中位数 5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12 D .4 π 6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取 1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A .110 B .15 C .310 D .25 7.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月

2020年高考文科数学概率与统计题型归纳与训练

2020年高考文科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一古典概型 例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(). A. 1 5B. 2 5 C. 8 25 D. 9 25 【答案】B 【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42 105 =.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】2 3 【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6 种,其中2本数学书相邻的有4种,则其概率为:42 63 p==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二几何概型 1 / 18

例 1 如图所示,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π 4 【答案】B 【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为 8 22122 ππ=??? ????a a .故选B. 例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】3 2 【解析】方程2 2320x px p 有两个负根的充要条件是2121244(32)0 20320 p p x x p x x p ??=--≥? +=-? 即 2 1,3 p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503 -+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化. 【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. D

相关文档
相关文档 最新文档