文档库 最新最全的文档下载
当前位置:文档库 › (完整版)2019年全国I卷理科数学高考真题

(完整版)2019年全国I卷理科数学高考真题

(完整版)2019年全国I卷理科数学高考真题
(完整版)2019年全国I卷理科数学高考真题

2019年普通高等学校招生全国统一考试

理科数学

注意事项:

1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<<

B .}42{x x -<<-

C .}{22x x -<<

D .}{23x x <<

2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .2

2

+11()x y +=

B .221(1)x y +=-

C .22(1)1y x +-=

D .2

2(+1)1y x +=

3.已知0.20.32

log 0.220.2a b c ===,,,则 A .a b c <<

B .a c b <<

C .c a b <<

D .b c a <<

4.古希腊时期,0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚

.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是

A .165 cm

B .175 cm

C .185 cm

D .190 cm

5.函数f (x )=

2

sin cos ++x x

x x

在[,]-ππ的图像大致为 A .

B .

C .

D .

6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是

A .

516

B .

1132

C .

2132

D .

1116

7.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .

π6

B .

π3

C .

2π3

D .

5π6

8.如图是求

112122

+

+的程序框图,图中空白框中应填入

A .A =

12A

+ B .A =12A

+

C .A =

1

12A

+

D .A =112A

+

9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-

B . 310n a n =-

C .2

28n S n n =-

D .2

122

n S n n =

- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,

1||||AB BF =,则C 的方程为

A .2

212x y += B .22

132x y += C .22

143x y += D .22

154

x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:

①f (x )是偶函数

②f (x )在区间(

2

π,π)单调递增

③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2

其中所有正确结论的编号是 A .①②④

B .②④

C .①④

D .①③

12.已知三棱锥P ?ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F

分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为

A .

B .

C .

D

二、填空题:本题共4小题,每小题5分,共20分。

13.曲线23()e x

y x x =+在点(0)0,

处的切线方程为____________. 14.记S n 为等比数列{a n }的前n 项和.若2

1461

3

a a a ==,,则S 5=____________.

15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前

期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.

16.已知双曲线C :22

221(0,0)x y a b a b

-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线

分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F B F B ?=u u u r u u u u r

,则C 的离心率为____________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生

都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。

17.(12分)

ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.

(1)求A ;

(22b c +=,求sin C . 18.(12分)

如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.

(1)证明:MN ∥平面C 1DE ; (2)求二面角A?MA 1?N 的正弦值. 19.(12分)

已知抛物线C :y 2=3x 的焦点为F ,斜率为3

2

的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;

(2)若3AP PB =u u u r u u u r

,求|AB |.

20.(12分)

已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2

π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 21.(12分)

为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,

若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;

(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中

(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.

(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4—4:坐标系与参数方程](10分)

在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ?-=??+?

?=?+?

,(t 为参数).以坐标原点O 为极点,x 轴的

正半轴为极轴建立极坐标系,直线l

的极坐标方程为2cos sin 110ρθθ+=. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.[选修4—5:不等式选讲](10分)

已知a ,b ,c 为正数,且满足abc =1.证明: (1)

222111

a b c a b c

++≤++; (2)3

3

3

()()()24a b b c c a +++≥++.

2019年普通高等学校招生全国统一考试

理科数学?参考答案

一、选择题

1.C 2.C 3.B 4.B 5.D 6.A 7.B 8.A 9.A 10.B 11.C 12.D 二、填空题 13.y =3x 14.

121

3

15.0.18 16.2

三、解答题

17.解:(1)由已知得2

22sin

sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.

由余弦定理得2221

cos 22

b c a A bc +-=

=. 因为0

180A ?

?<<,所以60A ?=.

(2)由(1)知120

B C ?

=-()sin 1202sin A C C ?+-=,

1cos sin 2sin 222C C C ++=,可得()cos 602

C ?+=-.

由于0

120C ?

?<<,所以()sin 602

C ?+=

,故 ()sin sin 6060C C ??=+-

()()sin 60cos60cos 60sin 60C C ????=+-+

4

=

. 18.解:(1)连结B 1C ,ME .

因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =

1

2

B 1

C . 又因为N 为A 1

D 的中点,所以ND =

1

2

A 1D .

由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =

P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ?平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .

以D 为坐标原点,DA uuu r

的方向为x 轴正方向,建立如图所示的空间直角坐标系D ?xyz ,则

(2,0,0)A ,A 1(2,0,4)

,2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r

,1(12)A M =--u u u u r

,1(1,0,2)A N =--u u u u r

,(0,MN =u u u u r

设(,,)x y z =m 为平面A 1MA 的法向量,则1

100

A M A A ??=???=??u u u u r u u u r m m ,

所以2040x z z ?-+-=??-=??

可取=m .

设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ??=???=??u u u u r u u u u

r ,

.n n

所以020p r ?=??--=??

.可取(2,0,1)=-n .

于是cos ,||???=

==

‖m n m n m n ,

所以二面角1A MA N --

的正弦值为

5

. 19.解:设直线()()11223

:,,,,2

l y x t A x y B x y =

+. (1)由题设得3,04F ??

???

,故123||||2AF BF x x +=++,由题设可得1252x x +=.

由232

3y x t y x

?

=+???=?,可得22

912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --

=,得7

8

t =-. 所以l 的方程为37

28

y x =

-. (2)由3AP PB =u u u r u u u r

可得123y y =-. 由232

3y x t y x

?

=+???=?,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得121

3,3

x x ==

故||3

AB =

. 20.解:(1)设()()g x f 'x =,则1

()cos 1g x x x

=-

+,21sin ())(1x 'x g x =-++.

当1,2x π?

?∈- ???时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π?

?- ???

有唯一零点,

设为α.

则当(1,)x α∈-时,()0g'x >;当,

2x α?

π?

∈ ???

时,()0g'x <.

所以()g x 在(1,)α-单调递增,在,2απ?? ???单调递减,故()g x 在1,2π?

?- ???存在唯一极大值点,

即()f 'x 在1,2π?

?- ??

?存在唯一极大值点.

(2)()f x 的定义域为(1,)-+∞.

(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.

(ii )当0,2x ?π?∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ??

???单调递减,而(0)=0f ',

02f 'π??< ???,所以存在,2βαπ??∈ ???,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ??

∈ ?

??时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ??

???

单调递减.

又(0)=0f ,1ln 1022f ππ????=-+> ? ?????,所以当0,2x ?π?∈ ???时,()0f x >.从而,()f x 在0,2??

?

??

π没有零点.

(iii )当,2x π??∈π ???时,()0f 'x <,所以()f x 在,2π??

π ???单调递减.而

02f π??

> ???

,()0f π<,所以()f x 在,2π??

π ???

有唯一零点.

(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.

21.解:X 的所有可能取值为1,0,1-.

(1)(1)(0)(1)(1)(1)(1)P X P X P X αβαβαβαβ=-=-==+--==-,

所以X 的分布列为

(2)(i )由(1)得0.4,

0.5,0.1a b c ===.

因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-,即

()114i i i i p p p p +--=-.

又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=L 为公比为4,首项为1p 的等比数列. (ii )由(i )可得

()()()88877610087761013

4 1 p p p p p p p p p p p p p p p -=-+-++-+=-+-++-=L L .

由于8=1p ,故18

3

41

p =

-,所以 ()()()()44433221101411

.325 7

p p p p p p p p p p -=-+-+-+=-=

4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治

愈率为0.8时,认为甲药更有效的概率为41

0.0039257

p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.

22.解:(1)因为221111t t --<≤+,且()

2

2

2

22

222141211y t t x t t ??-??+=+= ? ?+????+,所以C 的直角坐标方程为2

2

1(1)4

y x x +=≠-.

l

的直角坐标方程为2110x +=.

(2)由(1)可设C 的参数方程为cos ,

2sin x y αα

=??

=?(α为参数,ππα-<<).

C 上的点到l

π4cos 11

α?

?-+ ?=.

当2π3α=-

时,π4cos 113α?

?-+ ??

?取得最小值7,故C 上的点到l .

23.解:(1)因为2

2

2

2

2

2

2,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有

222111

ab bc ca a b c ab bc ca abc a b c

++++≥++=

=++.

所以

222111

a b c a b c

++≤++. (2)因为, , a b c 为正数且1abc =,故有

333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c

3≥???

=24.

所以3

3

3

()()()24a b b c c a +++++≥.

2016全国一卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求 的. 1.设集合{ }2 430A x x x =-+<,{ } 230x x ->,则A B =I (A )33,2? ?-- ??? (B )33,2??- ??? (C )31,2?? ??? (D )3,32?? ??? 2.设yi x i +=+1)1(,其中y x ,是实数,则=+yi x (A )1 (B )2 (C )3 (D )2 3.已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )3 4 5.已知方程22 2 213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A )()1,3- (B )(- (C )()0,3 (D )( 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 283 π ,则它的表面积是 (A )17π (B )18π (C )20π (D )28π 7.函数2 2x y x e =-在[]2,2-的图像大致为 (A ) B )

(C ) (D ) 8.若101a b c >><<,,则 (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 9.执行右面的程序框图,如果输入的011x y n ===,,,则输出 x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x = 10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |= DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 13 12.已知函数()sin()(0),2 4 f x x+x π π ω?ω?=>≤=- , 为()f x 的零点,4 x π = 为()y f x =图 像的对称轴,且()f x 在51836ππ?? ??? ,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5 二、填空题:本大题共3小题,每小题5分 13.设向量a =(m ,1),b =(1,2),且|a +b |2 =|a |2 +|b |2 ,则m = . 14.5(2x + 的展开式中,x 3的系数是 .(用数字填写答案) 15.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三.解答题:解答应写出文字说明,证明过程或演算步骤. 结束

(完整版)2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.已知集合{}|1{|31}x A x x B x =<=<,,则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A . 1 4 B . 8π C .12 D . 4 π 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

2019全国II卷理科数学高考真题-精华版

2019年普通高等学校招生全国统一考试 理科数学 本试卷共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 2.设z =–3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知AB u u u r =(2,3),AC u u u r =(3,t ),||BC u u u r =1,则AB BC ?u u u r u u u r = A .–3 B .–2 C .2 D .3 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 121223 ()()M M M R r R r r R +=++.设r R α=,由于α的值很小,因此在近似计算中

2016全国三卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试 理科数学 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的. (1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T = (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则 41 i zz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量1(,22BA =uu v ,1 ),2 BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。下面叙述不正确的是 (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3 tan 4 α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625 (6)已知4 3 2a =,34 4b =,13 25c =,则 (A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n = (A )3 (B )4 (C )5 (D )6

高考理科数学试卷及答案

绝密★启封并使用完毕前 2019年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页, 150分。考试时长120分钟。考生务必将答案答在答题卡上, 在试卷上作答无效。考试结束后, 将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题, 每小题5分, 共40分。在每小题列出的四个选项中, 选出符合题目要求的一项。(1)若复数(1–i)(a+i)在复平面内对应的点在第二象限, 则实数a的取值范围是 (A)(–∞, 1) (B)(–∞, –1) (C)(1, +∞) (D)(–1, +∞) (2)若集合A={x|–2x1}, B={x|x–1或x3}, 则AB= (A){x|–2x–1} (B){x|–2x3} (C){x|–1x1} (D){x|1x3} (3)执行如图所示的程序框图, 输出的s值为 (A)2 (B)3 2

(C )53 (D )85 (4)若x, y 满足 , 则x + 2y 的最大值为 (A )1 (B )3 (C )5 (D )9 (5)已知函数1(x)33x x f ?? =- ??? , 则(x)f (A )是奇函数, 且在R 上是增函数 (B )是偶函数, 且在R 上是增函数 (C )是奇函数, 且在R 上是减函数 (D )是偶函数, 且在R 上是减函数 (6)设m,n 为非零向量, 则“存在负数λ, 使得m n λ=”是“m n 0?<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为

高三-高考真题理科数学

登录 我的首页 账号设置 退出 职业资格类 建筑类 学历类 财会类 医药类 全部考试 教师招募 社会工作师 企业法律顾问教师资格证 助理社会工作师一级建造师 二级建造师 考研 高考 会计从业资格中级会计师 注册会计师CPA 中级经济师 初级会计师

计算机四级 警察招考 政法干警 国考 临床执业医师临床助理医师执业中药师 执业西药师 护士资格 职业资格类 社会工作师 企业法律顾问教师资格证 助理社会工作师建筑类 一级建造师 二级建造师 学历类 考研 高考 财会类 会计从业资格中级会计师 注册会计师CPA

中级经济师 初级会计师 计算机类 计算机四级 公务员 警察招考 政法干警 国考 医药类 临床执业医师 临床助理医师 执业中药师 执业西药师 护士资格 2019年高考真题理科数学 (北京卷) 单选题 填空题 前去估分立即下载 手机扫一扫 高考热点随时看 单选题 填空题 立即下载前去估分

理科数学热门试卷 2017年高考真题理科数学 (全国I卷) 2017年高考真题理科数学 (全国II卷) 2016年高考真题理科数学 (全国I卷) 2016年高考真题理科数学 (全国II卷) 2017年高考真题理科数学 (全国III卷) X 查看更多试卷 单选题本大题共8小题,每小题5分,共40分。在每小题给出的4个选项中,有且只有一项是符合题目要求。 1 C3 D5 分值: 5分查看题目解析 > 1 2.执行如图所示的程序框图,输出的s值为 A1 B2 C3 D4 分值: 5分查看题目解析 >

1 3.已知直线l(t为参数),则点(1,0)到直线l的距离是 分值: 5分查看题目解析 > 1 4.已知椭圆(a>b>0,则 Aa2=2b2. B3a2=4b2 Ca=2b D3a=4b 分值: 5分查看题目解析 > 1 5.若,满足,且,则的最大值为 A-7 B1 C5 D7 分值: 5分查看题目解析 > 1

2018全国Ⅰ卷理科数学高考真题

2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.设,则 、 A . B . C . D 2.已知集合,则 A . B . C . D . 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 ( 1i 2i 1i z -= ++||z =01 2 1{} 2 20A x x x =-->A =R {} 12x x -<<{} 12x x -≤≤} {}{|1|2x x x x <->} {}{|1|2x x x x ≤-≥

A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A . B . C . D . 5.设函数.若为奇函数,则曲线在点处的切 线方程为 A . B . C . D . — 6.在中,为边上的中线,为的中点,则 A . B . C . D . 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A . B . C .3 D .2 8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为 的直线与C 交于M ,N 两点,则= A .5 B .6 C .7 D .8 n S {}n a n 3243S S S =+12a ==5a 12-10-101232 ()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =31 44AB AC -13 44 AB AC -31 44 AB AC +13 44 AB AC +M A N B M N 172522 3 FM FN ?

99全国高考理科数学试题

1995年普通高等学校招生全国统一考试 数学(理工农医类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分. 第Ⅰ卷(选择题共65分) 一、选择题(本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知I 为全集,集合M ,N ?I ,若M ∩N =N ,则 () (A)N M ? (B)N M ? (C)N M ? (D)N M ? 2.函数y =1 1 +-x 的图像是 () 3.函数y =4sin(3x +4π)+3cos(3x +4 π )的最小正周期是 () (A)6π (B)2π (C)3 2π (D)3 π 4.正方体的全面积是a 2 ,它的顶点都在球面上,这个球的表面积是 () (A) 3 2 a π (B) 2 2 a π (C)2πa 2 (D)3πa 2 5.若图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则()

(A)k 1arccos x 成立的x 的取值范围是 () (A)?? ? ??220, (B)?? ? ??122, (C)??? ? ???-221, (D)[)01, - 8.双曲线3x 2 -y 2 =3的渐近线方程是 () (A)y =±3x (B)y =±3 1 x (C)y =± 3x (D)y =± 3 3x 9.已知θ是第三象限角,且sin 4 θ+cos 4 θ=9 5,那么sin2 θ等于 () (A) 3 22 (B)3 22- (C)3 2 (D)3 2- 10.已知直线l ⊥平面α,直线m ?平面β,有下面四个命题: ①α∥β?l ⊥m ②α⊥β?l ∥m ③l ∥m ?α⊥β④l ⊥m ? α∥β 其中正确的两个命题是 () (A)①与② (B)③与④ (C)②与④ (D)①与③ 11.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是 () (A)(0,1) (B)(1,2) (C)(0,2) (D)[)∞+,2 12.等差数列{a n },{b n }的前n 项和分别为S n 与T n ,若

2017年全国二卷理科数学高考真题及详解(全)

20XX 年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.=++i 1i 3 A .i 21+ B .i 21- C .i 2+ D .i 2- 2. 设集合{}4 2 1,,=A ,{} 042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π36 5.设y x 、满足约束条件?? ? ??≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是 A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A .12种 B .18种 C . 24种 D .36种 理科数学试题 第1页(共4页)

高考理科历年数学真题及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例

则下面结论中不正确的是() 新农村建设后,种植收入减少 新农村建设后,其他收入增加了一倍以上 新农村建设后,养殖收入增加一倍 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 7某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

A.5 B.6 C.7 D.8 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形ABC 的斜边BC , 直角边AB,AC 。△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ, 在整个图形中随机取一点, 此点取自Ⅰ 、Ⅱ 、Ⅲ的概率分别记为 123 ,,p p p ,则()

最新史上最难的全国高考理科数学试卷

创难度之最的1984年普通高等学校招生全国统一考试理科数学试题 (这份试题共八道大题,满分120分 第九题是附加题,满分10分,不计入总分) 一.(本题满分15分)本题共有5小题,每小题选对的得3分;不选,选错或多选得负1分1.数集X = {(2n +1)π,n 是整数}与数集Y = {(4k ±1)π,k 是整数}之间的关系是 ( C ) (A )X ?Y (B )X ?Y (C )X =Y (D )X ≠Y 2.如果圆x 2+y 2+Gx +Ey +F =0与x 轴相切于原点,那么( C ) (A )F =0,G ≠0,E ≠0. (B )E =0,F =0,G ≠0. (C )G =0,F =0,E ≠0. (D )G =0,E =0,F ≠0. 3.如果n 是正整数,那么)1]()1(1[8 1 2---n n 的值 ( B ) (A )一定是零 (B )一定是偶数 (C )是整数但不一定是偶数 (D )不一定是整数 4.)arccos(x -大于x arccos 的充分条件是 ( A ) (A )]1,0(∈x (B ))0,1(-∈x (C )]1,0[∈x (D )]2 ,0[π∈x 5.如果θ是第二象限角,且满足,sin 12sin 2cos θ-=θ-θ那么2 θ ( B ) (A )是第一象限角 (B )是第三象限角 (C )可能是第一象限角,也可能是第三象限角 (D )是第二象限角 二.(本题满分24分)本题共6小题,每一个小题满分4分

1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积 答:.84π π或 2.函数)44(log 25.0++x x 在什么区间上是增函数? 答:x <-2. 3.求方程2 1 )cos (sin 2=+x x 的解集 答:},12|{},127|{Z n n x x Z n n x x ∈π+π -=?∈π+π= 4.求3)2| |1 |(|-+x x 的展开式中的常数项 答:-205.求1 321lim +-∞→n n n 的值 答:0 6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算) 答:!647?P 三.(本题满分12分)本题只要求画出图形 1.设???>≤=, 0,1,0,0)(x x x H 当当画出函数y =H (x -1)的图象 2.画出极坐标方程)0(0)4 )(2(>ρ=π -θ-ρ的曲线 解(1) (2)

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

全国Ⅱ理科数学高考真题 附答案

2018年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 12i 12i +=-( ) A .43i 5 5 -- B .43i 5 5 -+ C .34i 5 5 -- D .34i 5 5 -+ 2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为( ) A .9 B .8 C .5 D .4 3.函数2 e e ()x x f x x --=的图象大致为( ) 4.已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b ( ) A .4 B .3 C .2 D .0 5.双曲线22 221(0,0)x y a b a b -=>>3 ) A .2y x = B .3y x = C .2 y = D .3y = 6.在ABC △中,5 cos 2C = 1BC =,5AC =,则AB =( ) A .42.30.29.257.为计算11111 123499100 S =-+-++-L ,设计了右 侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+ 开始0,0 N T ==S N T =-S 输出1i =100 i <1 N N i =+1 1 T T i =+ +结束 是否

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A . 112 B .114 C .115 D .1 18 9.在长方体1111ABCD A B C D -中,1AB BC == ,1AA 1AD 与1 DB 所成角的余弦值为( ) A .15 B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( ) A .π 4 B .π2 C . 3π 4 D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A .50- B .0 C .2 D .50 12.已知1F ,2F 是椭圆22 221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点, 点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=?,则C 的离心率为( ) A .23 B .12 C .13 D .14 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件250,230,50,x y x y x +-?? -+??-? ≥≥≤则z x y =+的最大值为__________. 15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78 ,SA 与圆锥底面所成角为45°,若SAB △ 的面积为,则该圆锥的侧面积为__________.

2019年高考理科数学考试大纲

理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ) 理科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.已知集合A ={ } 22 (,)1x y x y +=│ ,B ={} (,)x y y x =│,则A I B 中元素的个数为 A .3 B .2 C .1 D .0 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A . 1 2 B . 2 C .2 D .2 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5 的展开式中x 3 y 3 的系数为 A .-80 B .-40 C .40 D .80 5.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5 2y x =,且与椭圆22 1123 x y +=有公共焦点,则C 的方程为

A . 22 1810 x y -= B . 22 145x y -= C .22 154x y -= D .22 143 x y -= 6.设函数f (x )=cos(x + 3 π ),则下列结论错误的是 A .f (x )的一个周期为?2π B .y =f (x )的图像关于直线x =83 π 对称 C .f (x +π)的一个零点为x = 6π D .f (x )在( 2 π ,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4 9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24 B .-3 C .3 D .8 10.已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直 径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A 6 B 3 C . 23 D . 13 11.已知函数2 1 1()2()x x f x x x a e e --+=-++有唯一零点,则a =

2016全国二卷理科数学高考真题及答案

2016年全国高考理科数学试题全国卷2 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知z=(m+3)+(m –1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(–3,1) B .(–1,3) C .(1,+∞) D .(–∞,–3) 2、已知集合A={1,2,3},B={x|(x+1)(x –2)<0,x ∈Z},则A ∪B=( ) A .{1} B .{1,2} C .{0,1,2,3} D .{–1,0,1,2,3} 3、已知向量a =(1,m),b =(3,–2),且(a +b )⊥b ,则m=( ) A .–8 B .–6 C .6 D .8 4、圆x 2+y 2–2x –8y+13=0的圆心到直线ax+y –1=0的距离为1,则a=( ) A .–43 B .–3 4 C . 3 D .2 5、如下左1图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) A .24 B .18 C .12 D .9 6、上左2图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π 7、若将函数y=2sin2x 的图像向左平移π 12个单位长度,则平移后图象的对称轴为( ) A .x=kπ2–π6(k ∈Z) B .x=kπ2+π6(k ∈Z) C .x=kπ2–π12(k ∈Z) D .x=kπ2+π 12(k ∈Z) 8、中国古代有计算多项式值的秦九韶算法,上左3图是实现该算法的程序框图。执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=( ) A .7 B .12 C .17 D .34 9、若cos(π4–α)=3 5,则sin2α= ( ) A .7 B .1 C .–1 D .–7

2018全国Ⅰ理科数学高考真题

2 2018 年普通高等学招生全国统一考试(全国一卷)理科数学 一、选择题:本题有12 小题,每小题 5 分,共60 分。 1、设z= ,则|z|= A、0 B、 C、1 D、 2、已知集合A={x|x -x-2>0} ,则A= A、{x|-12} D、{x|x -1} ∪{x|x 2} 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解 该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是: A、新农村建设后,种植收入减少。 B、新农村建设后,其他收入增加了一倍以上。 C、新农村建设后,养殖收入增加了一倍。 D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。 4、记S n 为等差数列{ a n} 的前n 项和,若3S3=S2+S4,a1=2,则a5= A、-12 B、-10 C、10 D、12 5、设函数 f (x)=x 切线方程为: A、y=-2x +(a-1)x +ax,若f (x)为奇函数,则曲线y=f (x)在点(0,0)处的2 3

B、y=-x C、y=2x D、y=x 6、在ABC中,AD为BC边上的中线, E 为AD的中点,则= A、- - B、- - C、- + D、- 7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对 应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A、 B 、 C、3 D、2 8. 设抛物线C:y 2=4x 的焦点为F,过点(-2 ,0)且斜率为的直线与 C 交于M,N 两点, 则·= A.5 B.6 C.7 D.8 9. 已知函数 f (x)= g(x)=f (x)+x+a,若g(x)存在 2 个零点,则 a 的 取值范围是 A. [-1 ,0) B. [0 ,+∞) C. [-1 ,+∞) D. [1 ,+∞)

相关文档
相关文档 最新文档