文档库 最新最全的文档下载
当前位置:文档库 › 免费北京高考文科数学试题及答案Word版

免费北京高考文科数学试题及答案Word版

免费北京高考文科数学试题及答案Word版
免费北京高考文科数学试题及答案Word版

2014年普通高等学校招生全国统一考试北京卷

文科数学

本试卷共6页,150分。考试时长120分钟,。考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题

共40分)

一、选择题共8小题,每小题5分,共40分。在每小题列出的4个选项中,选出符合题目要求的一项。 1.若集合{}0,1,2,4A =,{}1,2,3B =,则A

B =( )

A .{}0,1,2,3,4 B.{}0,4 C.{}1,2

D.{}3

2.下列函数中,定义域是R 且为增函数的是( )

A.x

y e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )

A.()5,7

B.()5,9

C.()3,7

D.()3,9

4.执行如图所示的程序框图,输出的S 值为( )

A.1 B.3 C.7

D.15

输出

5.设a 、b 是实数,则“a b >”是“2

2

a b >”的( )

A.充分而不必要条件 B .必要而不必要条件

C.充分必要条件 D.既不充分不必要条件 6.已知函数()26

log f x x x

=

-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4

D.()4,+∞

7.已知圆()()2

2

:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点

P ,使得90APB ∠=,则m 的最大值为( )

A.7

B.6

C.5

D.4

8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率

p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图

记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )

A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟

第2部分(非选择题

共110分)

二、填空题共6小题,每小题5分,共30分。

9.若()()12x i i i x R +=-+∈,则x = . 10.设双曲线C

的两个焦点为()

)

,一个顶点式()1,0,则C 的方程为

.

11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .

侧(左)视图

正(主)视图

12.在ABC ?中,1a =,2b =,1

cos 4

C =

,则c = ;sin A = . 13.若x 、y 满足11010y x y x y ≤??

--≤??+-≥?

,则z y =+的最小值为 .

14.顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这

项任务,每件颜料先由徒弟完成粗加工,学科 网再由工艺师进行精加工完成制作,两件工艺品都

则最短交货期为 工作日.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。

15.(本小题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.

(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.

16.(本小题满分13分)函数()3sin 26f x x π?

?=+ ??

?的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值;

(2)求()f x

在区间,212π

π??-

-????

上的最大值和最小值. 17.(本小题满分14分)111垂直于底面,AB BC ⊥,

12AA AC ==,E 、F 分别为11A C 、BC 的中点.

(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.

C 1

B 1

A 1

F

E C

B

A

18. (本小题满分13分)

从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b的值;

(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 19. (本小题满分14分)

已知椭圆C :2

2

24x y +=. (1) 求椭圆C的离心率;

(2)设O为原点,若点A 在直线2y =,点B 在椭圆C上,且OA OB ⊥,求线段长度的最小值. 20. (本小题满分13分) 已知函数3

()23f x x x =-.

(1)求()f x 在区间[2,1]-上的最大值;

(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;

(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

2015年北京高考数学文科试题及答案

绝密★启封并使用完毕前 2015年普通高等学校招生全国统一考试 数学(文)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并交回。 第一部分(选择题 共40分) 一、选择题:共8个小题,每小题5分,共40分。在每小题的四个选项中,选出符合题目要求的一项。 (1)若集合{} 52,A x x =-<<{} 33,B x x =-<<则A B =( ) ( A ) {} 32x x -<< ( B ) {}52x x -<< ( C ) {}33x x -<< ( D ) {} 53x x -<< (2)圆心为(1,1)且过原点的圆的方程是( ) (A )()()2 2 111x y -+-= (B )()()2 2 111x y ++-= (C )()()2 2 112x y +++= (D )()()2 2 112x y -+-= (3)下列函数中为偶函数的是( ) (A )2sin y x x = (B )2cos y x x = (C )ln y x = (D )2x y -= (4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年人数为( ) (A )90 (B )100 (C )180 (D )300 (5) 执行如图所示的程序框图,输出的k 值为( ) (A )3 (B ) 4 (C) 5 (D) 6 (6)设,a b 是非零向量,“a b a b ?=”是“a //b ”的( ) (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3} (C) { x -1≤ x ≤1} (D) { x -1≤ x < 1} 3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A 7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 2 4 0 ,则 C U M = A. x 2 x 2 B. x 2 x 2 C . x x 2或 x 2 D. x x 2或 x 2 2 8. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 2 9},则 PI M = 第一章 集合与常用逻辑用 语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2 <4},则 A ) p Q B )Q P ( C ) p CR Q (D ) Q CR P 2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1} B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9 C ) 3,5,9 D ) 3,9 4. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, x R , A. x| 1 x 1 B. x|x 0 C. x|0 x 1 D. 6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 2 4},则 P Q (A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4} (D) {x| 2 x 1}

高考数学文科分类--集合与简易逻辑

2014年高考数学文科分类------集合与简易逻辑 (安徽)2命题“0||,2 ≥+∈?x x R x ”的否定是( ) A.0||,2<+∈?x x R x B. 0||,2≤+∈?x x R x C. 0||,2000<+∈?x x R x D. 0||,2000≥+∈?x x R x 北京1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 5.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 (福建卷)1若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P I 等于( ) A .}43|{<≤x x B .}43|{<

2018高考北京文科数学带答案

2018高考北京文科数 学带答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

绝密★启封并使用完毕前 2018年普通高等学校招生全国统一考试(北京卷) 数学(文) 本试卷共150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合A={(x||x|<2)},B={?2,0,1,2},则A B= (A){0,1} (B){?1,0,1} (C){?2,0,1,2}(D){?1,0,1,2} (2)在复平面内,复数 1 1i- 的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限 (3)执行如图所示的程序框图,输出的s值为 (A)1 2 (B) 5 6 (C) 7 6 (D) 7 12 (4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的

(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必 要条件 (5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半 音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f ,则第八个单音频率为 (A )32f (B )322f (C )1252f (D )1272f (6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 (7)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图), 点P 在其中一段上,角α以O x 为始边,OP 为终边,若 tan cos sin ααα<<,则P 所在的圆弧是

高考数学文科集合习题大全完美

第一章集合与函数的概念 一、选择题 1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)= ( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2} 2 .设集合A ={x |1

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

北京高考文科数学试题及答案(整理版)

2013年普通高等学校招生全国统一考试 数学(文)(北京卷) 本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效, 第一部分(选择题 共40分) 一、选择题(共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =I ( ) A .{}0 B .{}1,0- C .{}0,1 D .{}1,0,1- 2.设a ,b ,c R ∈,且a b >,则( ) A .ac bc > B .11a b < C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( ) A .1y x = B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.在ABC ?中,3a =,5b =,1sin 3 A =,则sin B =( ) A .15 B .59 C .53 D .1 6.执行如图所示的程序框图,输出的S 值为( ) A .1 B . 23 C .1321 D .610987 7.双曲线2 2 1y x m -=的离心率大于2的充分必要条件是 A .12 m > B .1m ≥ C .1m > D .2m > 8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到 各顶点的距离的不同取值有( ) A .3个 B .4个 C . 5个 D .6

高考文科数学双向细目表

模块 知识点考查内容了解理解集合的含义、元素与集合的属于关系√列举法、描述法√包含于相等的含义√识别给定集合子集√全集于空集√并集于交集的含义与运算√补集的含义与运算√韦恩图表达集合的关系与运算√简单函数定义域和值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质指数函数模型背景√有理、实数指数幂、幂的运算指数函数概念、单调性√指数函数图像√对数的概念与运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数的图像指数函数与对数函数互为反函数√幂函数的概念√幂函数的图像√二次函数、零点与方程的根√一元二次方程根的存在性及跟的个数√集合图像,用二分法求近似解指、对、幂函数的增长特征√函数模型的应用√柱、锥、台的结构特征√三视图√斜二测画法和直观图√平行、中心投影√三视图和直观图√球、柱、锥、台的表面积和体积公式√线面的位置关系定义√线面平行的判定 √面面平行的判定 √线面垂直的判定 √面面垂直的判定 √线面平行的性质 √面面平行的性质 √线面垂直的性质 √面面垂直的性质 √ 用已获结论证明空间几何体中的位置关系点、线、面位置关系集合的含义与表示集合间的基本关系集合的基本运算函数指数函数对数函数知识要求集合 函数概念 与基本初 等函数1 立体几何初步幂函数函数与方程函数模型及应用空间几何体

结合图形,确定直线位置关系的几何要素√直线倾斜角和斜率的概念√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间的距离公式√ 点到直线的距离公式两条平行线间的距离公式√圆的几何要素,标准方程和一般方程判断直线与圆的位置关系应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标表示点的位置√空间两点间的距离公式√算法的含义与思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√简单随机抽样√分层抽样和系统抽样√样本频率分布表、频率分布直方图、折线图√茎叶图√标准差的意义和作用√平均数和标准差√用样本估计总体的思想√会画散点图,认识变量间的相关关系√最小二乘法,线性回归方程√频率和概率的意义√互斥事件的概率加法公式√古典概型古典概型及其计算公式√随机事件所含的基本事件数及发生的概率√随机数的意义,运用模拟方法估计概率√几何概型的意义√任意角的概念√弧度制的概念、弧度与角度的互化√正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√三角函数的图像√ 三角函数的周期性√ 正余弦函数的单调性、最值、对称 中心 √正切函数性质 √同角三角函数的基本关系式 √正弦型函数的参数对图像变化的影响√向量的实际背景√ 平面向量的概念√ 向量的实际背景用样本估计总体变量的相关性事件与概率几何概型任意角的概念、弧度制三角函数直线与方程 圆的方程空间直角坐标系算法的含义、程序框图随机抽样统计 基本初等函数2平面解析几何初步算法初步

2018年北京市高考数学试卷(文科)

2018年北京市高考数学试卷(文科) 一、选择题(每小题5分,共40分) 1.(5分)圆心为(1,1)且过原点的圆的标准方程是() A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2 2.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3} 3.(5分)下列函数中为偶函数的是() A.y=x2sinx B.y=x2cosx C.y=|lnx|D.y=2﹣x 4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查 教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为() 类别人数 老年教师900 中年教师1800 青年教师1600 合计4300 A.90 B.100 C.180 D.300 5.(5分)执行如图所示的程序框图,输出的k值为()

A.3 B.4 C.5 D.6 6.(5分)设,是非零向量,“=||||”是“”的() A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() A.1 B.C.D.2 8.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况

加油时间加油量(升)加油时的累计里程(千米) 2018年5月1日1235000 2018年5月15日4835600 注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为() A.6升 B.8升 C.10升D.12升 二、填空题 9.(5分)复数i(1+i)的实部为. 10.(5分)2﹣3,,log25三个数中最大数的是. 11.(5分)在△ABC中,a=3,b=,∠A=,则∠B= . 12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b= . 13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为. 14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看, ①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.

高考文科数学一轮复习专题 集合(学生版)

专题1:集合 【考试要求】 1、集合的含义与表示 (1)了解集合的含义、元素与集合的“属于”关系。 (2)能用自然语言、图形语言、集合语言(列举法和描述法)描述不同的具体集合。 2、集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集。 (2)在具体情境中,了解全集与空集的含义。 3、集合的基本运算 (1)理解两个集合并集与交集的含义,会求两个简单集合的并集和交集。 (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 (3)能用Venn 图表达集合的关系及运算。 【知识要点】 1、元素与集合 (1)集合中元素的三个特性:、、。 (2)集合中元素与集合的关系: 2、集合间的基本关系: 思考:a {}a ;?{0};?{}? 感悟:正确理解集合的含义,正确使用集合的基本符号。 3、集合的基本运算 是任何非空集A ??,?B(B ≠?)

4、常用的结论 (1))()()(B C A C B A C U U ?=?B)(C )()(U ?=?A C B A C U (2)A B A B ??= ;A B A B ??= 【考点精练】 考点一:集合的有关概念 1、已知集合2{2013,10122013,2012}A a a a =+-+,且2013A ∈,求实数a 的取值集合。 变式:已知集合{,,1}b a a 与集合2{,,0}a a b +相等,求20132013a b +的值。 2、用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则由:17A ;5-A ;17B 。 3、设集合{1,1,3}A =-,2{2,4}B a a =++,则{3}A B = 时,实数a 的值为。 考点二:集合间的基本关系 1、设全集为R ,集合{|21}M x y x ==+,2 {|}N y y x ==-,则( ) A 、M N ? B 、N M ? C 、M N = D 、{(1,1)}M N =-- 2、设集合{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,则满足()C A B ? 的集合C 的个数是( )A 、0 B 、1 C 、2 D 、3 3、若x A ∈,则 1A x ∈,就称A 是伙伴关系的集合,集合11 {1,0,,,1,2,3}32 M =-的所有非空子集中具有伙伴关系的集合各数是。 4、设2 {|8150}A x x x =-+=,{|10}B x ax =-= (1)若1 5 a =,试判定集合A 与B 的关系;(2)若B A ?,求实数a 组成的集合C 。

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

2017年北京高考文科数学试题及答案解析

2017年北京市高考文科数学试卷逐题解析 数学(文)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷的答题卡一并交回。 第一部分(选择题共40分) 一、选择题 1.已知全集U R =,集合{|2A x x =<-或2}x >,则U C A = A.()2,2- B.()(),22,-∞-+∞U C.[]2,2- D.(][),22,-∞-+∞U 【答案】C 【解析】{|2A x x =<- 或}()()2=,22,x >-∞+∞ , []2,2U C A ∴=-,故选C . 2.若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是 A.(),1-∞ B.(),1-∞- C.()1,+∞ D.()1,+-∞ 【答案】B 【解析】(1)()1(1)i a i a a i -+=++- 在第二象限. 10 10 a a +?得1a <-.故选B .

3.执行如图所示的程序框图,输出的s 值为 A.2 B.32 C.53 D .85 【答案】C 【解析】0,1k S ==.3k <成立,1k =,2 S =21 =. 3k <成立,2k =,2+13S =22 =.3k <成立,3k =,3 +152S =32 =. 3k <不成立,输出5S 3 =.故选C . 4.若,x y 满足32x x y y x ≤?? +≥??≤? ,则2x y +的最大值为 A.1 B.3 C.5 D.9 【答案】D 【解析】设2z x y =+,则122 z y x =-+,当该直线过()3,3时,z 最 大.∴当3,3x y ==时,z 取得最大值9,故选D .

高考文科数学重要考点大全

高考文科数学重要考点大全 一 考点一:集合与简易逻辑 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的 试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这 些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查 有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用 逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数一次和二次函数、指数、对数、幂函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的 运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最 值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和 函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数 的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面向量 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一 道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道 和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向 量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概 念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、 共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基 本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解 析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、 性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合 运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目. 考点五:立体几何与空间向量

高考文科数学重点题型(含解析)

高考最有可能考的50题 (数学文课标版) (30道选择题+20道非选择题) 一.选择题(30道) 1.集合}032|{2 <--=x x x M ,{|220}N x x =->,则N M 等于 A .(1,1)- B .(1,3) C .(0,1) D .(1,0)- 2.知全集U=R ,集合 }{ |A x y ==,集合{|0B x =<x <2},则()U C A B ?= A .[1,)+∞ B .()1+∞, C .[0)∞,+ D .()0∞,+ 3.设a 是实数,且 112 a i i +++是实数,则a = A.1 B.12 C.3 2 D.2 4. i 是虚数单位,复数1i z =-,则2 2z z + = A .1i -- B .1i -+ C .1i + D .1i - 5. “a=-1”是“直线2a x y 60-+=与直线4x (a 3)y 90--+=互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 C.既不充分也不必要条件 6.已知命题p :“βαs i n s i n =,且βαcos cos =”,命题q :“βα=”。则命题p 是命 题q 的 A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分与不必要条件 7.已知a R ∈,则“2a >”是“2 2a a >”的

A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 8.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是 (A )(42,56] (B )(56,72] (C )(72,90] (D )(42,90) 9.如图所示的程序框图,若输出的S 是30,则①可以为 A .?2≤n B .?3≤n C .?4≤n D .?5≤n 10.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2 cos sin 2θθ+的值等于( ) A .12- B .12 C. 710 D .7 10 - 11.已知点M ,N 是曲线x y πsin =与曲线x y πcos =的两个不同的交点,则|MN|的最小值为( ) A .1 B .2 C .3 D .2 12.如图所示为函数()()2sin f x x ω?=+(0,0ω?π>≤≤)的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )

高考试题文科数学分类汇编导数

2012年高考试题分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为

(A)(-1,1] (B)(0,1] (C.)[1,+∞)(D)(0,+∞) 【答案】B 5.【2102高考福建文12】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 【答案】C. 6.【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q 的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8【答案】C 7.【2012高考新课标文13】曲线y=x(3ln x+1)在点)1,1(处的切线方程为________ 【答案】3 4- =x y 8.【2012高考上海文13】已知函数() y f x =的图像是折线段ABC,其 中(0,0) A、 1 (,1) 2 B、(1,0) C,函数() y xf x =(01 x ≤≤)的图像及x轴围成 的图形的面积为【答案】 4 1。

2020年北京市高考数学文科试题(Word版)

绝密★启用前 2020年普通高等学校招生全国考试 数学(文)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本市卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =I (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或 (2)复数12i =2i +- (A )i (B )1+i (C )i -(D )1i - (3)执行如图所示的程序框图,输出的s 值为 (A )8 (B )9 (C )27 (D )36 (4)下列函数中,在区间(1,1)-上为减函数的是

(A )11y x =-(B )cos y x =(C )ln(1)y x =+(D )2x y -= (5)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 (A )1 (B )2 (C )2(D )22 (6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为 (A )15(B )25(C )825(D )925 (7)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ?y 的最大值为 (A )?1 (B )3 (C )7 (D )8 (8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛 成绩,其中有三个数据模糊. 学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次) 63 a 75 60 63 72 70 a ?1 b 65 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则 (A )2号学生进入30秒跳绳决赛(B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛(D )9号学生进入30秒跳绳决赛 第二部分(非选择题共110分) 二、填空题(共6小题,每小题5分,共30分) (9)已知向量=(1,3),(3,1)=a b ,则a 与b 夹角的大小为_________. (10)函数()(2)1 x f x x x =≥-的最大值为_________. (11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.

相关文档
相关文档 最新文档