文档库 最新最全的文档下载
当前位置:文档库 › 历年全国卷高考数学真题大全解析版

历年全国卷高考数学真题大全解析版

历年全国卷高考数学真题大全解析版
历年全国卷高考数学真题大全解析版

全国卷历年高考真题汇编 三角

1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ?

?=+ ??

?,则下面结论正确的

是()

A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π

6

个单

位长度,得到曲线2C

B .把1

C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12

个单位长度,得到曲线2C

C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π

6

个单位长度,得到曲线2C

D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π

12

个单位长度,得到曲线2C 【答案】D

【解析】1:cos C y x =,22π:sin 23?

?=+ ??

?C y x

首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.

πππcos cos sin 222???

?==+-=+ ? ????

?y x x x .横坐标变换需将1=ω变成2=ω,

即112

πππsin sin 2sin 2224??????=+????????

?→=+=+ ? ? ??????

?C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233???

???→=+=+ ? ????

?y x x .

注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+

x 平移至π

3

+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π

12

2 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC

△的面积为2

3sin a A

(1)求sin sin B C ;

(2)若6cos cos 1B C =,3a =,求ABC △的周长.

【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用.

(1)∵ABC △面积2

3sin a S A

=.且1sin 2S bc A =

21

sin 3sin 2

a bc A A =

∴22

3sin 2

a bc A =

∵由正弦定理得22

3sin sin sin sin 2A B C A =,

由sin 0A ≠得2

sin sin 3B C =.

(2)由(1)得2sin sin 3B C =,1

cos cos 6

B C =

∵πA B C ++=

∴()()1cos cos πcos sin sinC cos cos 2

A B C B C B B C =--=-+=-=

又∵()0πA ∈,

∴60A =?,sin A =

1cos 2A =

由余弦定理得2229a b c bc =+-= ①

由正弦定理得sin sin a b B A =

?,sin sin a c C A

=? ∴2

2sin sin 8sin a bc B C A

=?= ②

由①②得

b c +=

∴3a b c ++=+ABC △周长为3

3. (2017·新课标全国Ⅱ卷理17)17.(12分)

ABC ?的内角,,A B C 的对边分别为,,a b c ,已知2

sin()8sin 2

B A

C +=. (1)求cos B

(2)若6a c += , ABC ?面积为2,求.b

【命题意图】本题考查三角恒等变形,解三角形.

【试题分析】在第(Ⅰ)中,利用三角形内角和定理可知A C B π+=-,将

2

sin 8)sin(2

B C A =+转化为角B 的方程,思维方向有两个:①利用降幂公式化简2sin 2B ,

结合22sin cos 1B B +=求出cos B ;②利用二倍角公式,化简2

sin 8sin 2B B =,两边约去2sin B ,求得2tan B

,进而求得B cos .在第(Ⅱ)中,利用(Ⅰ)中结论,利用勾股定理和

面积公式求出a c ac +、,从而求出b . (Ⅰ) 【基本解法1】

由题设及2

sin

8sin ,2

B

B C B A ==++π,故

sin 4-cosB B =(1)

上式两边平方,整理得 217cos B-32cosB+15=0 解得 15

cosB=cosB 17

1(舍去),= 【基本解法2】

由题设及2sin

8sin ,2

B B

C B A ==++π,所以2sin 82cos 2sin 22B B B =,又02

sin ≠B ,所以4

12tan =B ,17152

tan 12tan 1cos 2

2

=+-=

B B

B (Ⅱ)由158cosB sin B 1717==得,故14

a sin 217

ABC S c B ac ?==

又17

=22

ABC S ac ?=,则

由余弦定理及a 6c +=得

2222

b 2cos a 2(1cosB)

1715362(1)

217

4

a c ac B

ac =+-=-+=-??+=(+c )

所以b=2

【知识拓展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意2

2

,,a c ac a c ++三者的关系,这样的题目小而活,备受老师和学生的欢迎.

4 (2017全国卷3理)17.(12分)

ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,

已知sin 0A A =

,a =,2b =.

(1)求c ;

(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.

【解析】(1)

由sin 0A A =得π2sin 03A ?

?+= ??

?,

即()π

π3A k k +=∈Z ,又()0,πA ∈,

∴ππ3A +=,得2π

3

A =

. 由余弦定理2222cos a b c bc A =+-?.

又∵1

2,cos 2

a b A ===-代入并整理

得()2

125c +=,故4c =.

(2)∵2,4AC BC AB ===,

由余弦定理222cos 2a b c C ab +-==

. ∵AC AD ⊥,即ACD △为直角三角形,

则cos AC CD C =?,得CD =

由勾股定理AD =又2π3A =

,则2πππ

326DAB ∠=

-=, 1π

sin 26

ABD

S AD AB =??=△

5 (2017全国卷文1)14 已知π(0)2

a ∈,,tan α=2,则π

cos ()4α-=__________。

(法一)Θ0,2πα??

∈ ???

,sin tan 22sin 2cos cos ααααα=?

=?=,

又22sin cos 1

αα+=,解得sin 5α=,cos 5

α=,

cos (cos sin )42πααα?

?∴-=+=

??

? (法二))sin cos (2

2

)4cos(ααπ

α+=

-

21cos sin cos 42πααα?

?∴-=+ ??

?.又Θtan 2α=

222

sin cos tan 2sin cos sin cos tan 15αααααααα∴===++,29cos 410πα??∴-= ??

?,

由0,2πα??∈ ???知444πππα-<-<,cos 04πα??∴-> ???,故cos 4πα??-= ???

6.(2017全国卷2 文) 3.函数π

()sin(2)3

f x x =+的最小正周期为 A.4π B.2π C. π D.π2

【答案】C 【解析】由题意22

T π

π=

=,故选C. 【考点】正弦函数周期

【名师点睛】函数sin()(A 0,0)y A x B ω?ω=++>>的性质 (1)max min =+y A B y A B =-,.

(2)周期2.T π

ω

=

(3)由 π

π()2x k k ω?+=+∈Z 求对称轴 (4)由

ππ

2π2π()22

k x k k ω?-+≤+≤+∈Z 求增区间; 由

π3π2π2π()22

k x k k ω?+≤+≤+∈Z 求减区间;

7(2017

全国卷

2

文)13.函数

()2cos sin f x x x =+的最大值

为 . 【答案】5

8(2017全国卷2文)16.ABC ?的内角,,A B C 的对边分别为,,a b c ,若

2cos cos cos bc B a C c A =+,则B =

【答案】

3

π

9(2017全国卷3文) 4.已知4

sin cos 3

αα-=

,则sin 2α=( ) A .79

-

B .29

-

C .

29

D .

79

【答案】A

10 (2017全国卷3文)6.函数f (x )=15

sin(x +3π)+cos(x ?6π

)的最大值为( )

A .65

B .1

C .35

D .15

【答案】A

【解析】由诱导公式可得:cos cos sin 6233x x x ππππ???

?

????-

=-+=+ ? ? ????

??????

? , 则:()16sin sin sin 53353f x x x x πππ???

???=

+++=+ ? ? ????

??? , 函数的最大值为

6

5

. 本题选择A 选项. 7.函数y =1+x +

2

sin x

x 的部分图像大致为( )

A B

D .

C D

【答案】D

1、(2016全国I 卷12题)已知函数ππ

()sin()(0),24

f x x+x ,

ω?ω?=>≤=-为()f x 的零点,π4x =

为()y f x =图像的对称轴,且()f x 在π5π

()1836

,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5 【答案】B

考点:三角函数的性质

2、(2016全国I 卷17题)(本小题满分12分)

ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =

(I )求C ; (II )若7,c ABC △=

的面积为

33

,求ABC △的周长. 【答案】(I )C 3

π

=(II )57+

【解析】

试题解析:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =,

()2cosCsin sinC A+B =.

故2sinCcosC sinC =. 可得1cosC 2=

,所以C 3

π=.

考点:正弦定理、余弦定理及三角形面积公式

3、(2015全国I 卷2题)sin20°cos10°-con160°sin10°=

(A )32- (B )32 (C )12- (D )1

2

【答案】D 【解析】

试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=1

2

,故选D.

考点:诱导公式;两角和与差的正余弦公式

4、(2015全国I 卷8题) 函数()f x =cos()x ω?+的部分图像如图所示,则()f x 的

单调递减区间为

(A)(),k (b)(),k

(C)(),k (D)(),k

【答案】D 【解析】

试题分析:由五点作图知,1

+42

53+42

πω?π

ω??=????=??,解得=ωπ,=4π?,

所以()cos()4f x x ππ=+,令22,4

k x k k Z π

ππππ<+<+∈,解得124k -

<x <3

24

k +,k Z ∈,故单调减区间为(1

24

k -

,324k +),k Z ∈,故选D.

考点:三角函数图像与性质

5、(2015全国I 卷16题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB

的取值范围是 【答案】626+2 【解析】

试题分析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得

sin sin BC BE E C =∠∠,即o o

2sin 30sin 75BE =,解得BE 6+2AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,

sin sin BF BC FCB BFC =∠∠,即o o

2

sin 30sin 75

BF =,解得BF=62-所以AB 626+2.

考点:正余弦定理;数形结合思想 6. (2014全国I 卷8题)设(0,

)2π

α∈,(0,)2

π

β∈,且1sin tan cos βαβ+=

,则 A .32

π

αβ-=

B .22

π

αβ-=

C .32

π

αβ+=

D .22

π

αβ+=

【答案】:B

【解析】:∵sin 1sin tan cos cos αβ

ααβ

+=

=,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα??

-==- ???

,,02222ππππαβα-<-<<-<

∴2

π

αβα-=

-,即22

π

αβ-=

,选B

7、(2014全国I 卷16题)已知,,a b c 分别为ABC ?的三个内角,,A B C 的对边,a =2,且

(2)(sin sin )()sin b A B c b C +-=-,则ABC ?面积的最大值为 .

【答案】3【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,

即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-

∴2

2

2

b c a bc +-=,故2221

cos 22

b c a A bc +-=

=,∴060A ∠=,∴224b c bc +-= 224b c bc bc =+-≥,∴1

sin 32

ABC S bc A ?=≤

8、(2013全国I 卷15题)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______ 【命题意图】本题主要考查逆用两角和与差公式、诱导公式、及简单三角函数的最值问题,是难题.

【解析】∵()f x =sin 2cos x x -5255(

)x x

令cos ?=

55,25sin 5

?=-,则()f x =5(sin cos sin cos )x x ??+=5sin()x ?+, 当x ?+=2,2

k k z π

π+

∈,即x =2,2

k k z π

π?+

-∈时,()f x 取最大值,此时

θ=2,2

k k z π

π?+

-∈,∴cos θ=cos(2)2

k π

π?+

-=sin ?=25

5

-

.

9、(2013全国I 卷17题)(本小题满分12分)

如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°

(1)若PB=1

2,求PA ;

(2)若∠APB =150°,求tan ∠P BA

【命题意图】本题主要考查利用正弦定理、余弦定理解三角形及两角和与差公式,是容易题.

【解析】(Ⅰ)由已知得,∠PBC=o

60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA =o 11323cos3042+

-??=7

4

,∴PA=72; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,

o

3sin sin(30)

α

α=-,化简得,3cos 4sin αα=, ∴tan α=

34

,∴tan PBA ∠=3

4.

10、(2016全国II 卷7题)若将函数y =2sin 2x 的图像向左平移π

12

个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ

26

k x k =+∈Z (C )()ππ212Z k x k =

-∈ (D )()ππ212

Z k x k =+∈ 【解析】B

平移后图像表达式为π2sin 212y x ?

?=+ ??

?,

令ππ2π+122x k ?

?+= ???,得对称轴方程:()ππ26Z k x k =

+∈, 故选B .

11、(2016全国II 卷9题)若π3

cos 45

α??-= ???,则sin 2α=

(A )7

25

(B )15

(C )1

5

-

(D )725

-

【解析】D

∵3cos 45πα??-= ???,2ππ

7sin 2cos 22cos 12425ααα????=-=--= ? ?????

故选D .

12、(2016全国II 卷13题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5

A =,5

cos 13C =

,1a =,则b = . 【解析】

2113

∵4cos 5

A =,5cos 13C =,

3sin 5A =

,12

sin 13

C =, ()63

sin sin sin cos cos sin 65

B A

C A C A C =+=+=

, 由正弦定理得:

sin sin b a B A =解得21

13

b =. 13、(2015全国II 卷17题)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积

的2倍。 (Ⅰ)求

C

B

∠∠sin sin ;

(Ⅱ) 若AD =1,DC =

2

2

求BD 和AC 的长.

14、(2014全国II 卷4题)钝角三角形ABC 的面积是12

,AB=1,2,则AC=( )

A. 5

B.

5 C. 2 D. 1

【答案】B 【KS5U 解析】

.

.5,cos 2-4

∴ΔABC 4π

.43π,4π∴,

22

sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。

为等腰直角三角形,不时,经计算当或=+======???==Θ

15、(2014全国II 卷14题)函数()()()sin 22sin cos f x x x ???=+-+的最大值为_________. 【答案】 1 【KS5U 解析】

.

1∴.1≤sin φsin )φcos(-φcos )φsin()φcos(φsin 2-φsin )φcos(φcos )φsin()

φcos(φsin 2-)φ2sin()(最大值为x x x x x x x x x f =?+?+=+?++?+=++=Θ

16、(2013全国II 卷15题)设θ为第二象限角,若1tan 42

πθ?

?

+

= ??

? ,则sin cos θθ+=_________.

17、(2013全国II 卷17题)(本小题满分12分)

△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB 。 (Ⅰ)求B ;

(Ⅱ)若b=2,求△ABC 面积的最大值。

18、(2013全国III 卷5题)若3

tan 4

α=

,则2cos 2sin 2αα+=

(A)

6425 (B) 4825 (C) 1 (D)1625

【答案】A 【解析】

试题分析:由3

tan 4

α=

,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以

2161264

cos 2sin 24252525

αα+=

+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 19、(2013全国III 卷8题)在ABC △中,π4B =

,BC 边上的高等于1

3

BC ,则cos A =

(A (B (C )- (D )-

【答案】C 【解析】

试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC =

=,

AB =.由余弦定

222222cos

2AB AC BC A AB AC +-===?,故选C . 考点:余弦定理.

20、(2013全国III 卷14题)函数sin y x x =的图像可由函数sin y x x

=的图像至少向右平移_____________个单位长度得到. 【答案】

3

2π 【解析】

试题分析:因为sin 2sin()3

y x x x π=+=+,sin 2sin()3

y x x x π=-=-=

2sin[()]33

x π2π

+-,所以函数sin y x x =的图像可由函数sin y x x =+的

图像至少向右平移

3

个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.

相关文档