文档库 最新最全的文档下载
当前位置:文档库 › 全国高中数学联赛分类汇编 专题 概率统计

全国高中数学联赛分类汇编 专题 概率统计

全国高中数学联赛分类汇编 专题  概率统计
全国高中数学联赛分类汇编 专题  概率统计

1、(2007一试3)将号码分别为1、

2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。则使不等式a ?2b +10>0成立的事件发生的概率等于( )

A.

81

52 B.

81

59 C.

81

60 D.

81

61

2、(2008一试3)甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛 进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为

2

3

,乙在每局 中获胜的概率为1

3

,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。

(A )

24181 (B )26681 (C )274

81

(D ) 670243

方法二: 依题意知,ξ的所有可能值为2、4、6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得

12125

(2)()()9

P P A A P A A ξ==+=

, 1234123412341234(4)()()()()

P P A A A A P A A A A P A A A A P A A A A ξ==+++33211220

2[()()()()]333381

=+=

, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,

因此52016266

2469818181

E ξ=?+?+?=.故选B 。

3、(2006一试12)袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个

白球,则第4

次恰好取完所有红球的概率为 .

4、(2009一试8)某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为

到站时刻

810∶ 910∶ 830∶ 930∶ 850∶

950∶ 概率

16 12 13

一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 【答案】27

【解析】旅客候车的分布列为

候车时间(分) 10 30 50 70 90

概率

12 13 1166? 1126? 1136? 候车时间的数学期望为11111

10305070902723361218

?+?+?+?+?=

5、(2010一试6)两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .

6、(2012一试8)某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)

【答案】

61243

【解析】用k P 表示第k 周用A 种密码的概率,则第k 周末用A 种密码的概率为

1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k

P ?

?-????

是首项为34,公比为13-的等比数列。所以1131()443k k P --=-,即1311()434

k k P -=-+,故

761243

P =

7、(2004一试13)一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n

次抛掷所出现的点数的和大于2n

,则算过关.问:

⑴ 某人在这项游戏中最多能过几关?⑵ 他连过前三关的概率是多少?

8、(2005一试14)将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球.设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法)

由上知,当每个弧段上的球号}9,,,,1{21k x x x Λ确定之后,达到最小值的排序方案便唯一确定.

在1,2,…,9中,除1与9外,剩下7个球号2,3,…,8,将它们分为两个子集,元素较

少的一个子集共有6

372717072=+++C C C C 种情况,每种情况对应着圆周上使S 值达到最

小的唯一排法,即有利事件总数是6

2种,故所求概率.31512

!826==

P

各省高中数学竞赛预赛试题汇编

2012各省数学竞赛汇集

目录 1.2012高中数学联赛江苏赛区初赛试卷------第3页 2. 20XX年高中数学联赛湖北省预赛试卷(高一年级)---第7页 3. 20XX年高中数学联赛湖北省预赛试卷(高二年级)---第10页 4. 20XX年高中数学联赛陕西省预赛试卷------第16页 5. 20XX年高中数学联赛上海市预赛试卷------第21页 6. 20XX年高中数学联赛四川省预赛试卷------第28页 7. 20XX年高中数学联赛福建省预赛试卷(高一年级)---第35页 8. 20XX年高中数学联赛山东省预赛试卷---第45页 9. 20XX年高中数学联赛甘肃省预赛试卷---第50页 10. 20XX年高中数学联赛河北省预赛试卷---第55页 11. 20XX年高中数学联赛浙江省预赛试卷---第62页 12. 20XX年高中数学联赛辽宁省预赛试卷---第72页 13. 20XX年高中数学联赛新疆区预赛试卷(高二年级)---第77页 14. 20XX年高中数学联赛河南省预赛试卷(高二年级)---第81页 15. 20XX年高中数学联赛北京市预赛试卷(高一年级)---第83页

2012高中数学联赛江苏赛区初赛试卷 一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___. 2、在ABC ?中,已知12,4,AC BC AC BA ?=?=-则AC =___4____. 3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____ 3 10 _______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值 为_____5、在平面直角坐标系xOy 中,双曲线:C 221124 x y -=的右焦点为F ,一条过原点O 且倾斜角 为锐角的直线l 与双曲线C 交于 ,A B 两点.若FAB ?的面积为,则直线的斜率为 ___ 1 2 ____. 6、已知a 是正实数,lg a k a =的取值范围是___[1,)+∞_____. 7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为 _____8 、 已 知 等 差 数 列 {} n a 和等比数列 {} n b 满足:1123, 7,a b a b +=+=334415,35,a b a b +=+=则n n a b += ___ 132n n -+___. (* n N ∈) 9、将27,37,47,48,557175, ,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种. 10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___. 二、解答题(本题80分,每题20分) 11、在ABC ?中,角,,A B C 对应的边分别为,,a b c ,证明:

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

高中数学竞赛模拟试题一汇总

高中数学竞赛模拟试题一 一 试 (考试时间:80分钟 满分100分) 一、填空题(共8小题,5678=?分) 1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是 。 2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如 ()22212312314 f =++=。记 1()() f n f n =, 1()(()) k k f n f f n +=, 1,2,3... k =,则 =)2010(2010f 。 3、如图,正方体1 111D C B A ABCD -中,二面角 1 1A BD A --的度数 是 。 4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。 5、若正数c b a ,,满足 b a c c a b c b a +- +=+,则c a b +的最大值是 。 6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。 7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=n i i a 01 的值是 。 8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x x x x x x x x ++++=+++++++在(,)2 x o π∈时的最 小值为 。

二、解答题(共3题,分44151514=++) 9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有:n n n n a a 111+≥+ 10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。 (1)若||||||CD BC AB ==,求证:AOD ?的面积为定值; (2)若BOC ?的面积等于AOD ?面积的3 1,求证:||||||CD BC AB == 11、已知α、β是方程24410()x tx t R --=∈的两个不等实根,函数=)(x f 1 22 +-x t x 的定义域为[,]αβ. (Ⅰ)求);(min )(max )(x f x f t g -= (Ⅱ)证明:对于) 2 ,0(π∈i u )3,2,1(=i ,若1sin sin sin 321=++u u u ,则 64 3 )(tan 1)(tan 1)(tan 1321<++u g u g u g . 二 试 (考试时间:150分钟 总分:200分) 一、(本题50分)如图, 1O 和2 O 与 ABC ?的三边所在的三条直线都相 切,,,,E F G H 为切点,并且EG 、FH 的 延长线交于P 点。 求证:直线PA 与BC 垂直。 二、(本题50分)正实数z y x ,,,满 足 1≥xyz 。证明: E F A B C G H P O 1。 。 O 2

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

2018版高中数学专题02频率分布直方图及其应用分项汇编(含解析).pdf

专题02 频率分布直方图及其应用 一、选择题 1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率 A. 75,0.25 B. 80,0.35 C. 77.5,0.25 D. 77.5,0.35 【答案】D 故选D. 2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是() A. 48 m B. 49 m C. 50 m D. 51 m 【答案】C 【解析】由频率分布直方图知水位为50 m的频率 组距 为0.00520.01,即水文观测点平均至少一百年才遇 到一次的洪水的最低水位是50 m. 本题选择C选项.

3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( ) A. B. C. D. 【答案】C 点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率 =其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数). 4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中, 对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为 A. 10万元 B. 12万元 C. 15万元 D. 30万元 【答案】D

高中数学概率统计专题

高中数学概率统计专题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高三文科数学:概率与统计专题 一、选择题: 1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A.1 3 B. 1 2 C. 2 3 D. 3 4 3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相 等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=1 2x+1上,则这组样本 数据的样本相关系数为 (A)-1 (B)0 (C)1 2(D)1 4.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为 (A)10 3 (B) 1 5 (C) 1 10 (D) 1 20 5.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是 A.1 4B. π 8 C.1 2 D.π4

6.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( ) 二、填空题: 7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______。 8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. 9.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 方程y ^=b ^x +a ^由表中数据得回归直线 中的b ^=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题 10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量 n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量 气温(℃) 18 13 10 -1 用电量(度) 24 34 38 64

2018年全国各省高中数学竞赛预赛试题汇编(含答案) 精品

2018各省数学竞赛汇集 2018高中数学联赛江苏赛区初赛试卷 一、填空题(70分) 1、当[3,3]x ∈-时,函数 3()|3|f x x x =-的最大值为__18___. 2、在ABC ?中,已知12,4,AC BC AC BA ?=?=-则AC =___4____. 3、从集合 {}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为 _____ 3 10 _______. 4、已知a 是实数,方程2 (4)40x i x ai ++++=的一个实根是b (i 是虚部单位) ,则 ||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 22 1124 x y -=的右焦点为F ,一条过原点O 且 倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ?的面积为,则直线的斜 率为___1 2 ____. 6、已知a 是正实数,lg a k a =的取值范围是___[1,)+∞_____. 7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的 体积为_____8 、 已 知 等 差 数 列 {} n a 和等比数列 {} n b 满足: 11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___. (* n N ∈) 9、将27,37,47,48,557175, ,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种. 10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组 (,,)a b c 的个数为__24___.

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

2019-2020高中数学题分类汇编(一)——集合(100题)

1.设集合,,,则()。 A. B. C. D. 2.已知集合,,则_____。 3.设非空集合、满足,则()。 A.任意,都有 B.存在,使得 C.存在,使得 D.任意,都有 4.已知集合,。 (1)求,; (2)已知,若,求实数的取值的集合。 5.已知集合,,,全集为。 (1)求。 (2)若,求的取值范围。 6.已知集合,集合,若,则的取值范围是()。 A. B. C. D. 7.已知全集,集合,,则()。 A. B. C. D. 8.设集合,,分别求满足下列条件的实数的取值范围:(1);(2)。 9.已知集合全集,,,则 10.已知集合,,当时,实数的取值范围是,则_____。

11.已知全集,,,则()。 A. B. C. D. 12.若集合,,则()。 A. B. C. D. 13.若集合,,,则实数的取值范围为 14.设全集,集合,,则_____。 15.已知全集,集合,,则()。 A. B. C. D. 16.已知集合,,,,则()。 A. B., C., D.,, 17.设、是非空集合,定义,已知, ,则_____。 18.设全集为实数集,集合,,则()。 A. B. C. D. 19.已知集合, 。(1)求集合,。 (2)已知集合,若集合,求实数的取值范围。 20.已知全集,集合,集合,则集合()。 A. B. C. D. 21.设全集为,,。 (1)求及; (2),且,求的取值范围。

22.集合,,若,则的值为()。 A. B. C. D. 23.设全集,,, (1)求。 (2)若,求实数的取值范围。 24.已知集合,,则()。 A.或 B. C. D.或 25.定义一个集合的所有子集组成的集合叫做集合的幂集,记为,用表示有限集的元素个数, 给出下列命题:对于任意集合,都有;存在集合,使得;用表示空集, 若,则;若,则;若,则 ,其中正确的命题个数为()。 A. B. C. D. 26.已知集合,,则集合中元素的个数为()。 A. B. C. D. 27.设全集是三角形,是锐角三角形,是钝角三角形,则()。 A.是锐角三角形 B.是直角三角形 C.是斜三角形 D.是钝角三角形 28.已知集合,,。 (1)求;(2)若,求的取值范围。 29.设集合,若,则集合可以是()。 A. B. C. D. 30.集合,集合,则()。 A. B. C. D. 31.集合,,则()。

概率统计-历届全国高中数学联赛真题专题分类汇编

概率统计 1、(2009一试8)某车站每天8 00~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 一旅客820∶【答案】27 【解析】旅客候车的分布列为 候车时间的数学期望为10305070902723361218 ?+?+?+?+?= 2、(2010一试6)两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 . 【答案】 12 17 3、(2012一试8)某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是.(用最简分数表示) 【答案】 61 243 【解析】用k P 表示第k 周用 A 种密码的概率,则第k 周末用A 种密码的概率为 1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k P ? ?-???? 是首项为34,公

比为13-的等比数列.所以1131()443k k P --=-,即1311()434k k P -=-+,故761243 P = 4、(2014一试8)设D C B A ,,,是空间四个不共面的点,以 2 1 的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则B A ,可用(一条边或者若干条边组成的)空间折线连接的概率是__________. 【答案】 3 4 2221219B C D -?-=点相连,且与,中至少一点相连,这样的情况数为()() 22(3)AB AD DB 无边,也无CD 边,此时AC,CB 相连有2种情况,,相连也有2种情况, ,,,,AC CB AD DB A B 但是其中均相连的情况被重复了一次,故可用折线连接的情况数为 222+2-1=7. 483++==.644以上三类情况数的总和为329748,故A,B 可用折线连接的概率为 5、(2015一试5)在正方体中随机取三条棱,它们两两异面的概率为. 【答案】 2 55 【解析】设正方体为ABCD-EFGH ,它共有12条棱,从中任意选出3条棱的方法共有3 12C =220种. 下面考虑使3条棱两两异面的取法数,由于正方体的棱共确定3个互不平行的方向(即AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能,当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH. 由上可知,3条棱两两异面的取法数为4×2=8,故所求的概率为82 22055 =.

高中数学竞赛试题汇编八《圆锥曲线》

【2012四川】设M 是以F 为焦点的抛物线24y x =上的动点,则MO MF 的最大值是 (A) 3 (B) 3 (C) 43 (D) 答案:B 【2013黑龙江】设12,F F 分别是双曲线22 221(0,0)x y a b a b -=>>的左右焦点,若双曲线右 支上存在一点P ,使() 220OP OF F P +?=u u u r u u u u r u u u u r ,O 为原点,且12PF =u u u r u u u r ,则该双曲线的离心率是 (A) (B) 1 (C) (D) 答案:B 【2012江西】椭圆22 22153 x y +=的内接正方形面积是 答案 45017 . 【2011江西】以抛物线2y x =上的一点M (1,1)为直角顶点,作抛物线的两个内接直角三角形△MAB 和△MCD ,则线段AB 与CD 的交点E 坐标是 答案(1,2)-. 【2013全国】点A ,B 在抛物线2 4y x =上满足4OA OB ?=-u u u r u u u r , O 为坐标原点,F 为焦点,则OFA OFB S S ???= 答案2.

【2013辽宁】椭圆22 221(0)x y a b a b +=>>的离心率为2,斜率为1且过点M (b ,0)的直线与椭圆交于A ,B 两点,设O 为坐标原点,若125 OA OB ?=-u u u r u u u r ,则该椭圆的方程是 答案22 1164 x y +=. 【2013吉林】椭圆22 221(0)x y a b a b +=>>的四个顶点A,B,C,D 若菱形ABCD 的内切圆半 径等于椭圆焦距的6 ,则椭圆的离心率是 答案 2 【2011新疆】已知O,F 分别为抛物线的顶点和焦点,PQ 为过焦点F 的弦, |OF|=a,|PQ|=b , 求△OPQ 的面积. 答案略 【2013山东】椭圆22 143 x y +=的内接平行四边形的一组对边分别过椭圆的焦点12,F F ,求该平行四边形面积的最大值. 答案略 【2012辽宁】设不过原点O 的直线l 与椭圆2 214 x y +=交于,P Q 两点,且直线OP 、PQ 、OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围. 答案略

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

考试必备-高中数学专题-程序框图-含答案

高考理科数学试题分类汇编:12程序框图 一、选择题 1 ① (高考北京卷(理))执行如图所示的程序框图,输出的S 值为 ( ) A ① 1 B ① 2 3 C ① 1321 D ① 610 987 【答案】C 2 ① (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))某程序框图如图所示, 若该程序运行后输出的值是59 ,则 ( ) A ① 4=a B ① 5=a C ① 6=a D?7=a (第5题图)

【答案】A 3 ① (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图所示,程序框图(算 法流程图)的输出结果是 ( ) A ① 16 B ① 2524 C ① 34 D ① 1112 【答案】D 4 ① (普通高等学校招生统一考试重庆数学(理)试题(含答案))执行如题(8)图所示的程 序框图,如果输出3s =,那么判断框内应填入的条件是 ( ) A ① 6k ≤ B ① 7k ≤ C ① 8k ≤ D ① 9k ≤ 【答案】B 5 ① (高考江西卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的 语句为 ( ) A ① 2*2S i =- B ① 2*1S i =- C ① 2*S i = D ① 2*4S i =+ 【答案】C 6 ① (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))阅读如图所示的程序

框图,若输入的10k =,则该算法的功能是 ( ) A ① 计算数列{}12n -的前10项和 B ① 计算数列{}12n -的前9项和 C ① 计算数列{ } 21n -的前10项和 D ① 计算数列{ } 21n -的前9项和网Z ① X ① X ① K] 【答案】A 7 ① (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))执行右面的程 序框图,如果输入的10N =,那么输出的S = ( ) A ① 1111+2310+ ++…… B ① 111 1+ 2310+ ++……!!! C ①1111+2311+ ++…… D ① 111 1+ 2311+ ++……!!! 【答案】B

高中数学概率统计教案

专题二 概率统计(文科) (一)统计 【背一背基础知识】 一.抽样方法 抽样方法包含简单随机抽样、系统抽样、分层抽样三种方法,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 二.用样本估计总体 1.频率分布直方图:画一个只有横、纵轴正方向的直角坐标系,把横轴分成若干段,每一段对应一个组的组距,然后以此段为底作一矩形,它的高等于该组的 频率 组距 ,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图.在频率分布直方图中,每个小矩形的面积等于相应数据的频率,各小矩形的面积之和等于 1; 2.茎叶图:茎叶图是一种将样本数据有条理地列出来,从中观察样本分布情况的图.在茎叶图中,“茎”表示数的高位部分,“叶”表示数的低位部分. 3.样本的数字特征: (1)众数:一组数据中,出现次数最多的数据就是这组数据的众数(一组数据中的众数可能只有一个,也可能有多个).在频率分布直方图中,最高的矩形的中点的横坐标即为该组数据的众数; (2)中位数:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.在频率分布直方图中,中位数a 对应的直线x a =的左右两边的矩形面积之和均为0.5,可以根据这个特点求频率分布直方图中的中位数; (3)平均数:设n 个数分别为1x 、2x 、L 、n x ,则()121 n x x x x n = +++L 叫做这n 个数的算数平均数.在频率分布直方图中,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和; (4)方差:设n 个数分别为1x 、2x 、L 、n x ,则 ()()() 2222 121n s x x x x x x n ? ?=-+-++-????L 叫做这n 个数的方差,方差衡量样本的稳定

高中数学竞赛试题汇编七《直线与圆》

高中数学竞赛试题汇编七《直线与圆》 一、知识清单 1. 求轨迹方程的步骤:建(系),设(点),限(制条件),代(入坐标),化(简). 2.直线方程的几种形式:一般/点斜/斜截/截距/两点式. 3.l 1//l 2的充要条件是k 1=k 2;l 1l 2的充要条件是k 1k 2=-1。 4.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|=221221)()(y y x x -+-。 5.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2200| |B A C By Ax d +++=。 6.圆的标准方程为(x-a)2+(y-b)2=r 2;圆的一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0) 圆的参数方程为?? ?+=+=θ θsin cos r b y r a x 【2010黑龙江】与圆()2221x y -+=相切,且在两坐标轴上截距相等的直线有 (A) 2条 (A) 3条 (A) 4条 (A) 6条 答案:选C 【2010浙江】设P 是圆22 36x y +=上的动点,A (20,0)线段PA 的中点M 的轨迹方程为 . 答案:()22109x y -+=. 【2010黑龙江】已知22 1a b +=,且c a b <+恒成立,则c 的取值范围是 (A) (,2)-∞- (B) (,-∞ (C) ( (D) (-∞ 答案:选B 【2012河北】已知点P 是直线40kx y ++=,PA ,PB 是圆C: 2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则k 的值为 .

高中数学必修三 概率与统计

高中数学必修三:概率与统计 1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ). A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,32 2.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克B.360千克C.36千克D.30千克 3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,8 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ). A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t) C.必有直线l1∥l2 D.直线l1和l2必定重合 5..设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确的是( ).A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg

高中数学联赛之历年真题汇编(1981-2020)专题11数列C辑(原卷版)

备战2021年高中数学联赛之历年真题汇编(1981-2020) 专题11数列C辑 历年联赛真题汇编 1.【2020高中数学联赛B卷(第01试)】设数列{a n}的通项公式为a n= √5[(1+√5 2 )n?(1?√5 2 )n], n=1,2,?.证明: 存在无穷多个正整数m,使得a m+4a m?1是完全平方数. 2.【2018高中数学联赛A卷(第01试)】已知实数列a1,a2,a3,?满足:对任意正整数n,有a n(2S n?a n)=1,其中S n表示数列的前n项和证明: (1)对任意正整数n,有a n<2√n; (2)对任意正整数n,有a n a n+1<1. 3.【2018高中数学联赛B卷(第01试)】已知数列{a n}:a1=7,a n+1 a n =a n+2,n=1,2,3,?.求满足a n>42018的最小正整数n. 4.【2017高中数学联赛B卷(第01试)】设数列{a n}是等差数列,数列b n}满足b n=a n+1a n+2?a n2,n=1,2,?. (1)证明:数列{b n}也是等差数列; (2)设数列{a n},{b n}的公差均是d≠0,并且存在正整数s、t,使得a s+b t是整数,求|a1|的最小值. 5.【2015高中数学联赛(第01试)】设a1,a2,a3,a4是4个有理数,使得{a i a j|1?i

相关文档
相关文档 最新文档