文档库 最新最全的文档下载
当前位置:文档库 › 2016年全国高考文科数学试题及标准答案

2016年全国高考文科数学试题及标准答案

2016年全国高考文科数学试题及标准答案
2016年全国高考文科数学试题及标准答案

2016年普通高等学校招生全国统一考试

文科数学

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷

一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

(1)已知集合{123}A =,,,2{|9}B x x =<,则A B =

(A){210123}--,,,,,?(B ){21012}--,,,,? (C ){123},,

(D){12},

(2)设复数z满足i 3i z +=-,则z =

(A)12i -+(B )12i -(C )32i +(D )32i -

(3) 函数=sin()y A x ω?+的部分图像如图所示,则

(A )2sin(2)6

y x π=- (B )2sin(2)3

y x π=- (C)2sin(2+)6

y x π= (D)2sin(2+)3

y x π=

(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为

(A)12π(B)32

3

π(C)8π(D)4π

(5)设F为抛物线C:y2=4x的焦点,曲线y=k

x

(k>0)与C交于点P,PF⊥x轴,则k=

(A)1

2

(B)1 (C)

3

2

(D)2

(6) 圆x2+y2?2x?8y+13=0的圆心到直线ax+y?1=0的距离为1,则a=

(A)?4

3

(B)?

3

4

(C)3(D)2

(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为

(A)20π(B)24π(C)28π(D)32π

(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为

(A)

7

10

(B)

5

8

(C)

3

8

(D)

3

10

(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=

(A)7

(B)12

(C)17

(D)34

(10) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是

(A)y=x(B)y=lgx(C)y=2x(D)y

x

=

(11)函数

π

()cos26cos()

2

f x x x

=+-的最大值为

(A)4(B)5??(C)6?(D)7

(12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x

2016年高考全国三卷文科数学试卷

2016年普通高等学校招生全国统一考试(III 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 设集合A = {0,2,4,6,8,10},B = {4,8},则 =B A A. {4,8} B. {0,2,6} C. {0,2,6,10} D. {0,2,4,6,8,10} 2. =+=| |i 34z z z ,则 若 A. 1 B. 1- C. i 5354+ D. i 5 354- 3. 已知向量)2 1 ,23()23, 21(==,,则∠ABC = A. 30° B. 45° C. 60° D. 120° 4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温 和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约15℃,B 点 表示四月的平均最低气温约为5℃。下面叙述不正确的是 A. 各月的平均最低气温都在0℃以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20℃的月份有5个 5. 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M 、I 、N 中 的一个字母,第二位是1、2、3、4、5中的一个数字,则小敏输入一次密码 能够成功开机的概率是 A. 158 B. 81 C. 151 D. 30 1 6. θθcos 3 1tan ,则若-= A. 54- B. 51- C. 51 D. 5 4 7. 已知3 13 23 42532===c b a ,,,则 A. b < a < c B. a < b < c C. b < c < a D. c < a < b 8. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n = A. 3 B. 4 C. 5 D. 6 9. 在△ABC 中,4 π = B ,B C 边上的高等于 3 1 BC ,则sin A = A. 103 B. 1010 C. 55 D. 10 10 3 2016.6

2016年全国统一高考数学试卷(理科)(新课标ⅲ)及答案

2016年全国统一高考数学试卷(理科)(新课标Ⅲ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=() A.1 B.﹣1 C.i D.﹣i 3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120° 4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是() A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个 5.(5分)若tanα=,则cos2α+2sin2α=()

A.B.C.1 D. 6.(5分)已知a=,b=,c=,则() A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=() A.3 B.4 C.5 D.6 8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA=()A.B.C.﹣D.﹣ 9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()

A.18+36B.54+18C.90 D.81 10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是() A.4πB. C.6πD. 11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点, A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为() A.B.C.D. 12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个 二、填空题:本大题共4小题,每小题5分. 13.(5分)若x,y满足约束条件,则z=x+y的最大值为.

2016年高考数学全国二卷(理科)

2016年普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 (A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--, (2)已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =U (A ){}1 (B ){12}, (C ){}0123, ,, (D ){10123}-, ,,, (3)已知向量(1,)(3,2)a m b =-r r , =,且()a b b +⊥r r r ,则m = (A )8- (B )6- (C )6 (D )8 (4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4 - (C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则 小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移π 12 个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ 26k x k =+∈Z (C )()ππ 212 Z k x k = -∈ (D )()ππ212Z k x k = +∈ (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =, 2n =,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34 (9)若π3 cos 45 α??-= ???,则sin 2α= (A ) 725 (B )15 (C )1 5 - (D )725 - (10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…, (),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为

2016年全国高考文科数学试题及答案-全国卷

2016年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题。每小题5分. (1)已知集合,则 (A)(B)(C)(D) (2)设复数z满足,则= (A)(B)(C)(D) (3) 函数的部分图像如图所示,则 (A)(B) (C)(D) (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A)(B)(C)(D) (5) 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=(A)(B)1 (C)(D)2 (6) 圆x2+y2?2x?8y+13=0的圆心到直线ax+y?1=0的距离为1,则a= (A)?(B)?(C)(D)2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为 (A)20π(B)24π (C)28π(D)32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒, 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A)(B)(C)(D) (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若x=2,n=2,输入的a为2,2,5,则输出的s= (A)7 (B)12 (C)17 (D)34 (10) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(A)y=x (B)y=lg x (C)y=2x (D) (11) 函数的最大值为

(A)4 (B)5 (C)6 (D)7 (12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交 点为(x1,y1),(x2,y2),…,(x m,y m),则 (A)0 (B)m (C) 2m (D) 4m 二.填空题:共4小题,每小题5分. (13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________. (14) 若x,y满足约束条件,则z=x-2y的最小值为__________ (15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.(16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 等差数列{}中, (I)求{}的通项公式; (II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[]=0,[]=2 (18)(本小题满分12分) 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: (I)记A为事件:“一续保人本年度的保费不高于基本保费”。求P(A)的估计值; (II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求P(B)的估计值; (III)求续保人本年度的平均保费估计值.

2016年高考全国卷Ⅱ理科数学试题及答案

2016年高考全国卷Ⅱ理科数学试题及答案 (满分150分,时间120分钟) 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 (A )(31) -, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = (A ){1}(B ){1 2},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8 (4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4 - (C ) 3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π

(7)若将函数y =2sin 2x 的图像向左平移π 12个单位长度,则评议后图象的对称轴为 (A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π 6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π 12 (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序 框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5, 则输出的s = (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 3 5,则sin 2α= (A )725 (B )15 (C )–15 (D )–7 25 (10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y , …,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似 值为 (A ) 4n m (B )2n m (C )4m n (D )2m n (11)已知F 1,F 2是双曲线E 22 221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直, sin 211 3 MF F ∠= ,则E 的离心率为 (A )2 (B )3 2 (C )3 (D )2 (12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与() y f x =图像的交点为 1122(,),(,),,(,),m m x y x y x y ??? 则1 ()m i i i x y =+=∑ (A )0 (B )m (C )2m (D )4m

2016江苏高考数学试题及答案解析

WORD 整理版分享 2015 年江苏省高考数学试卷 一、填空题 1. 已知集合 A 1,2,3 , B 2,4,5 ,则集合 A B 中元素的个数为 _______. 2. 已知一组数据 4, 6, 5, 8,7, 6,那么这组数据的平均数为 ________. 3. 设复数 z 满足 z 2 3 4i ( i 是虚数单位),则 z 的模为 _______. 4. 根据如图所示的伪代码,可知输出的结果 S 为 ________. 5. 袋中有形状、 大小都相同的 4 只球,其中 1 只白球, 1 只红球, 2 只黄球, 从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为 ________. 6. 已知向量 a 2,1 , a 1, 2 ,若 , ,则 m-n 的值为 ma nb 9 8 mn R ______. 7. 不等式 2 x 2 x 4 的解集为 ________. 8. 已知 tan 2 , tan 1 ,则 tan 的值为 _______. 7 9. 现有橡皮泥制作的底面半径为 5,高为 4 的圆锥和底面半径为 2、高为 8 的圆柱各一个。 若将它们重新制作成总体积与高均保持不变, 但底面半径相同的新的圆锥与圆柱各一个, 则 新的底面半径为 。 10. 在平面直角坐标系 xOy 中,以点 (1,0) 为圆心且与直线 mx y 2m 1 0(m R) 相切 的所有圆中,半径最大的圆的标准方程为 。 11. 数列 { a n } 满 足 a 1 1 ,且 a n 1 a n n 1 ( n N * ),则数 列 { 1 }的前 10 项和 a n 为 。 12. 在平面直角坐标系 xOy 中, P 为双曲线 x 2 y 2 1 右支上的一个动点。若点 P 到直线 x y 1 0 的距离对 c 恒成立,则是实数 c 的最大值为 。 13. 已知函数 f ( x) | ln x |, g( x) 0,0 x 1 ,则方程 | f (x) g( x) | 1 实根的个 | x 2 4 | 2, x 1 数为 。 (cos k , sin k cos k 12 14. 设 向 量 a k )( k 0,1,2, ,12) , 则 (a k a k 1 ) 的 值 6 6 6 k 0 为 。

2016年高考数学全国二卷理科完美

2016年高考数学全国二卷(理科)完美版

————————————————————————————————作者:————————————————————————————————日期:

2016年普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 (A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--, (2)已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =U (A ){}1 (B ){12}, (C ){}0123, ,, (D ){10123}-, ,,, (3)已知向量(1,)(3,2)a m b =-r r , =,且()a b b +⊥r r r ,则m = (A )8- (B )6- (C )6 (D )8 (4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4 - (C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为

2016年全国统一高考数学试卷文科新课标ⅰ-高考真题

2016年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7} 2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3 B.﹣2 C.2 D.3 3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是() A.B.C.D. 4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=() A.B.C.2 D.3 5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为() A.B.C.D. 6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为() A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣) 7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()

A.17πB.18πC.20πD.28π 8.(5分)若a>b>0,0<c<1,则() A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b 9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为() A.B. C.D. 10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()

2016年全国高考文科数学(全国1卷word最强解析版)

2016年全国高考文科数学(全国1卷word 最强解析版) 1 / 17 2016年全国文科数学试题(全国卷1) 第I 卷(选择题) 1.设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B 【解析】 试题分析:集合A 与集合B 公共元素有3,5,故}5,3{=B A ,选B. 考点:集合运算 2.设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a= (A )-3 (B )-2 (C )2 (D )3 【答案】A 【解析】 试题分析:设i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得 3-=a ,选A. 考点:复数的概念 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A ) 13 (B )12 (C )13 (D )56 【答案】A 【解析】 试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为3 1,选A. 考点:古典概型 4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3 A = ,则b= (A )2 (B )3 (C )2 (D )3 【答案】D 【解析】 试题分析:由余弦定理得3222452 ???-+=b b ,解得3=b (3 1 -=b 舍去),选D. 考点:余弦定理 5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1 4 ,则该椭圆的离心率为

【新课标I卷】2016年高考数学文科试题(Word版,含答案)

绝密★启封并使用完毕前 试题类型: 2016年普通高等学校招生全国统一考试 文科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中, 只有一项是符合 题目要求的. (1)设集合,,则 (A){1,3}(B){3,5}(C){5,7}(D){1,7} (2)设的实部与虚部相等,其中a为实数,则a= (A)-3(B)-2(C)2(D)3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A)(B)(C)(D) (4)△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b= (A)(B)(C)2(D)3 (5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为

(A)(B)(C)(D) (6)若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x–) (D)y=2sin(2x–) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (A)17π(B)18π(C)20π(D)28π (8)若a>b>0,0cb (9)函数y=2x2–e|x|在[–2,2]的图像大致为 (A)(B) (C)(D) (10)执行右面的程序框图,如果输入的n=1,则输出的值满足 (A) (B) (C) (D) (11)平面过正文体ABCD—A1B1C1D1的顶点A,, ,则m,n所成角的正弦值为 (A)(B)(C)(D) (12)若函数在单调递增,则a的取值范围是

2016高考全国2卷数学试题及答案

2016高考全国二卷数学试题及答案 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范 围是 (A )(31) -, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = (A ){1}(B ){1 2},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8 (4)圆 2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4- (C (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D ) 9

(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移π 12个单位长度,则评议后图象的对称轴为 (A )x =k π2–π6 (k ∈Z) (B )x =k π2+π6 (k ∈Z) (C )x =k π2–π12 (k ∈Z) (D )x =k π2+π 12 (k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 3 5,则sin 2α= (A )725 (B )15 (C )–15 (D )–7 25

2016年全国二卷理科数学高考真题与答案解析

2016年全国高考理科数学试题全国卷2 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知z=(m+3)+(m –1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(–3,1) B .(–1,3) C .(1,+∞) D .(–∞,–3) 2、已知集合A={1,2,3},B={x|(x+1)(x –2)<0,x ∈Z},则A ∪B=( ) A .{1} B .{1,2} C .{0,1,2,3} D .{–1,0,1,2,3} 3、已知向量a =(1,m),b =(3,–2),且(a +b )⊥b ,则m=( ) A .–8 B .–6 C .6 D .8 4、圆x 2+y 2–2x –8y+13=0的圆心到直线ax+y –1=0的距离为1,则a=( ) A .–43 B .–3 4 C . 3 D .2 5、如下左1图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活 动,则小明到老年公寓可以选择的最短路 径条数 为( ) A .24 B .18 C .12 D .9 6、上左2图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π 7、若将函数y=2sin2x 的图像向左平移π 个单位长度,则平移后图象的对称轴为( )

A .x=k π2–π6(k ∈Z) B .x=k π2+π6(k ∈Z) C .x=k π2–π12(k ∈Z) D .x=k π2+π 12(k ∈Z) 8、中国古代有计算多项式值的秦九韶算法,上左3图是实现该算法的程序框图。执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=( ) A .7 B .12 C .17 D .34 9、若cos(π 4–α)=35 ,则sin2α= ( ) A .7 25 B .15 C .–15 D .–7 25 10、从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n m B .2n m C .4m n D .2m n 11、已知F 1、F 2是双曲线E :x 2a 2–y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=1 3,则E 的离心率为( ) A . 2 B .3 2 C . 3 D .2 12、已知函数f(x)(x ∈R)满足f(–x)=2–f(x),若函数y=x+1 x 与y=f(x)图像的交点为(x 1,y 1),(x 2,y 2),...(x m ,y m ), 则 1 ()m i i i x y =+=∑( ) A .0 B .m C .2m D .4m 二、填空题:本大题共4小题,每小题5分 13、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosA=45,cosC=5 13,a=1,则b=___________. 14、α、β是两个平面,m ,n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β。 (2)如果m ⊥α,n ∥α,那么m ⊥n 。 (3)如果α∥β,m ?α,那么m ∥β。 (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等。

2016年北京市高考数学试卷文科-高考真题

2016年北京市高考数学试卷(文科) 一、选择题(共8小题,每小题5分,满分40分) 1.(5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5} 2.(5分)复数=() A.i B.1+i C.﹣i D.1﹣i 3.(5分)执行如图所示的程序框图,输出s的值为() A.8 B.9 C.27 D.36 4.(5分)下列函数中,在区间(﹣1,1)上为减函数的是() A.y=B.y=cosx C.y=ln(x+1) D.y=2﹣x 5.(5分)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为() A.1 B.2 C.D.2 6.(5分)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D. 7.(5分)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x﹣y 的最大值为() A.﹣1 B.3 C.7 D.8 8.(5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.

学生序号 1 2 3 4 5 67 89 10 立定跳远 (单位:米)1.961.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳 (单位:次) 63 a 7560 6372 70a﹣1 b65 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则() A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛 二、填空题(共6小题,每小题5分,满分30分) 9.(5分)已知向量=(1,),=(,1),则与 夹角的大小为. 10.(5分)函数f(x)=(x≥2)的最大值为. 11.(5分)某四棱柱的三视图如图所示,则该四棱柱的体积为. 12.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=,b=. 13.(5分)在△ABC中,∠A=,a=c,则=. 14.(5分)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店 ①第一天售出但第二天未售出的商品有种;

2016江苏高考数学真题

2016年江苏数学高考试题 数学Ⅰ试题 参考公式 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高。 圆锥的体积公式:V 圆锥 1 3 Sh ,其中S 是圆锥的底面积,h 为高。 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。 1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I ________▲________. 2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是________▲________. 3.在平面直角坐标系xOy 中,双曲线22 173 x y -=的焦距是________▲________. 4.已知一组数据4.7,4.8, 5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =2 32x x --的定义域是 ▲ . 6.如图是一个算法的流程图,则输出的a 的值是 ▲ . 7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ . 8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ . 10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0的右焦点,直线2 b y =与椭圆交于B , C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .

2016年高考数学全国二卷(理科)完美版

1 1 1 1 2016 年普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. (1)已知 z = (m + 3) + (m - 1)i 在复平面内对应的点在第四象限,则实数 m 的取值范围是 (A ) (-3 , ) (B ) (-1,3) (C ) (1, +∞ ) (D ) ( ∞ ,- 3) (2)已知集合 A = {1, 2 , 3} , B = {x | ( x + 1)(x - 2) < 0 ,x ∈ Z } ,则 A U B = (A ) { } (B ) {1,2} (C ) {0 , ,2 ,3} (D ) {-1,0 , ,2 ,3} r r r r r ( 3)已知向量 a = (1,m ) ,b =(3, -2) ,且 (a + b ) ⊥ b ,则 m= (A ) -8 (B ) -6 (C )6 (D )8 (4)圆 x 2 + y 2 - 2 x - 8 y + 13 = 0 的圆心到直线 ax + y - 1 = 0 的距离为 1,则 a= 4 3 (A ) - (B ) - (C ) 3 (D )2 3 4 (5)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为

2016年上海市高考数学试卷(文科)

2016年上海市高考数学试卷(文科) 一、填空题(本大题共14题,每小题4分,共56分). 1.(4分)设x∈R,则不等式|x﹣3|<1的解集为. 2.(4分)设z=,其中i为虚数单位,则z的虚部等于. 3.(4分)已知平行直线l 1:2x+y﹣1=0,l 2 :2x+y+1=0,则l 1 ,l 2 的距离. 4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米). 5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a= .6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f ﹣1(x)= . 7.(4分)若x,y满足,则x﹣2y的最大值为. 8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为. 9.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于. 10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于. 11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为. 12.(4分)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y= 上一个动点,则?的取值范围是.

13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是. 14.(4分)无穷数列{a n }由k个不同的数组成,S n 为{a n }的前n项和,若对任意 n∈N*,S n ∈{2,3},则k的最大值为. 二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分). 15.(5分)设a∈R,则“a>1”是“a2>1”的() A.充分非必要条件B.必要非充分条件 C.充要条件D.既非充分也非必要条件 16.(5分)如图,在正方体ABCD﹣A 1B 1 C 1 D 1 中,E、F分别为BC、BB 1 的中点,则 下列直线中与直线EF相交的是() A.直线AA 1B.直线A 1 B 1 C.直线A 1 D 1 D.直线B 1 C 1 17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为() A.1 B.2 C.3 D.4 18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是() A.①和②均为真命题B.①和②均为假命题 C.①为真命题,②为假命题D.①为假命题,②为真命题

2016年高考江苏数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 样本数据12,, ,n x x x 的方差() 2 2 1 1n i i s x x n ==-∑,其中1 1n i i x x n ==∑. 棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高. 棱锥的体积1 3 V Sh =,其中S 是棱锥的底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2016年江苏,1,5分】已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B =_______. 【答案】{}1,2- 【解析】由交集的定义可得{}1,2A B =-. 【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题. (2)【2016年江苏,2,5分】复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是_______. 【答案】5 【解析】由复数乘法可得55i z =+,则则z 的实部是5. 【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题. (3)【2016年江苏,3,5分】在平面直角坐标系xOy 中,双曲线22 173 x y -=的焦距是_______. 【答案】 【解析】c = ,因此焦距为2c = 【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础 (4)【2016年江苏,4,5分】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_______. 【答案】0.1 【解析】 5.1x =,()2222221 0.40.300.30.40.15 s =++++=. 【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用. (5)【2016年江苏,5,5 分】函数y =_______. 【答案】[]3,1- 【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-. 【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题. (6)【2016年江苏,6,5分】如图是一个算法的流程图,则输出a 的值是________. 【答案】9 【解析】,a b 的变化如下表: 【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. (7)【2016年江苏,7,5分】将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具) 先后抛掷2次,则出现向上的点数之和小于10的概率是________. 【答案】5 6 【解析】将先后两次点数记为( ),x y ,则共有6636?=个等可能基本事件,其中点数之和大于等于10有 ()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为 305366 =.

相关文档
相关文档 最新文档