文档库 最新最全的文档下载
当前位置:文档库 › 高考数学真题-2019全国二卷文科

高考数学真题-2019全国二卷文科

高考数学真题-2019全国二卷文科
高考数学真题-2019全国二卷文科

绝密★启用前

2019年普通高等学校招生全国统一考试

文科数学

本试卷共5页。考试结束后,将本试卷和答题卡一并交回。

注意事项:

1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一

项是符合题目要求的.

1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)

C .(–1,2)

D .?

2.设z =i(2+i),则z = A .1+2i B .–1+2i

C .1–2i

D .–1–2i

3.已知向量a =(2,3),b =(3,2),则|a –b |=

A B .2

C .

D .50

4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .

23 B .

35 C .25

D .

15

5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为

A .甲、乙、丙

B .乙、甲、丙

C .丙、乙、甲

D .甲、丙、乙

6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=

A .e 1x --

B .e 1x -+

C .e

1x

---

D .e

1x

--+

7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行

C .α,β平行于同一条直线

D .α,β垂直于同一平面 8.若x 1=

4π,x 2=4

3π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2

B .

3

2 C .1 D .

12

9.若抛物线y 2

=2px (p >0)的焦点是椭圆

22

13x y p p

+=的一个焦点,则p = A .2 B .3

C .4

D .8

10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为

A .10x y --π-=

B .2210x y --π-=

C .2210x y +-π+=

D .10x y +-π+=

11.已知a ∈(0,

π

2

),2sin2α=cos2α+1,则sinα=

A .15

B

C D 12.设F 为双曲线C :22

221x y a b

-=(a >0,b >0)的右焦点,O 为坐标原点,以OF

为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为

A

B

C .2

D

二、填空题:本题共4小题,每小题5分,共20分.

13.若变量x,y满足约束条件

2360

30

20

x y

x y

y

?

?

?

?

?

+-≥

+-≤

-≤

则z=3x–y的最大值是___________.

14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.

15.ABC

△的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=_________ __.

16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,

每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

(一)必考题:共60分。

17.(12分)

如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.

(1)证明:BE ⊥平面EB 1C 1;

(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 18.(12分)

已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.

(1)求{}n a 的通项公式;

(2)设2log n n b a =,求数列{}n b 的前n 项和. 19.(12分)

某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.

(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)

8.602≈.

20.(12分)

已知12,F F 是椭圆22

22:1(0)x y C a b a b

+=>>的两个焦点,P 为C 上一点,O 为坐标原

点.

(1)若2POF △为等边三角形,求C 的离心率;

(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 21.(12分)

已知函数()(1)ln 1f x x x x =---.证明:

(1)()f x 存在唯一的极值点;

(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.

(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第

一题计分.

22.[选修4-4:坐标系与参数方程](10分)

在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点

(4,0)A 且与OM 垂直,垂足为P .

(1)当0=

3

θπ

时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)

已知()|||2|().f x x a x x x a =-+--

(1)当1a =时,求不等式()0f x <的解集;

(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.

1.C 2.D 3.A 4.B 5.A 6.D 7.B 8.A

9.D

10.C

11.B

12.A

13.9

14.0.98

15.

3π4

161

17.解:(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1,

故11B C BE ⊥.

又1BE EC ⊥,所以BE ⊥平面11EB C .

(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ?

∠=∠=,

故AE =AB =3,126AA AE ==.

作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.

所以,四棱锥11E BB C C -的体积1

363183

V =

???=.

18.解:(1)设{}n a 的公比为q ,由题设得

22416q q =+,即2280q q --=.

解得2q =-(舍去)或q =4.

因此{}n a 的通项公式为121

242n n n a --=?=.

(2)由(1)得2

(21)l o g 221n b n n =-=-,因此数列{}n b 的前n 项和为1321n n +++-=.

19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的

企业频率为

147

0.21100

+=. 产值负增长的企业频率为

2

0.02100

=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1

(0.1020.10240.30530.50140.707)0.30100

y =

-?+?+?+?+?=, ()52

2

1

1100i i i s n y y ==-∑ 22222

1(0.40)2(0.20)240530.20140.407100

??=

-?+-?+?+?+??? =0.0296,

0.020.17s ==≈,

所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.

20.解:(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=?,

2PF c =

,1PF =,于

是1221)a PF PF c =+=,故C 的离心率

1c

e a

=

=.

(2)由题意可知,满足条件的点(,)P x y 存在当且仅当

1

||2162

y c ?=,1y y

x c x c ?=-+-,22221x y a b +=,即||16c y =,①

222x y c +=,②

22

221x y a b

+=,③ 由②③及2

2

2

a b c =+得42

2b y c =,又由①知22

216y c

=,故4b =.

由②③得()22

222a x c b c

=-,所以22c b ≥,从而2222

232,a b c b =+≥=故a ≥.

当4b =,a ≥时,存在满足条件的点P .

所以4b =,a 的取值范围为)+∞. 21.解:(1)()f x 的定义域为(0,+∞).

11

()ln 1ln x f x x x x x

-'=

+-=-. 因为ln y x =单调递增,1

y x

=

单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022

f -'=-

=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.

因此,()f x 存在唯一的极值点.

(2)由(1)知()0(1)2f x f <=-,又()

22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.

由01x α>>得

01

1x α

<<.

又1111

()1ln 10f f αααααα????=---==

? ?

????

,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.

22.解:(1)因为()00,M ρθ在C 上,当03θπ=

时,04sin 3

ρπ

==由已知得||||cos

23

OP OA π

==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ??

-

== ??

?

, 经检验,点(2,)3

P π在曲线cos 23ρθπ??

-

= ???

上. 所以,l 的极坐标方程为cos 23ρθπ??

-

= ???

. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=..

因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42

ππ??????

.

所以,P 点轨迹的极坐标方程为4cos ,,42

ρθθπ??=∈????

π . 23.解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.

当1x <时,2

()2(1)0f x x =--<;当1x ≥时,()0f x ≥.

所以,不等式()0f x <的解集为(,1)-∞.

(2)因为()=0f a ,所以1a ≥.

当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----.

所以,a 的取值范围是[1,)+∞.

历年高考数学真题(全国卷整理版)43964

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A =,B ={1,m} ,A B =A, 则m= A 0 B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D)

(7)已知α为第二象限角,sinα+sinβ =,则cos2α= (A) (B ) (C) (D) (8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2= (A)1 4(B) 3 5 (C) 3 4 (D) 4 5 (9)已知x=lnπ,y=log52, 1 2 z=e,则 (A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x (10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c= (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1 (11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有 (A)12种(B)18种(C)24种(D)36种 (12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=7 3。动点P从 E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为 (A)16(B)14(C)12(D)10 二。填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上。 (注意:在试题卷上作答无效) (13)若x,y 满足约束条件则z=3x-y的最小值为_________。 (14)当函数取得最大值时,x=___________。 (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________。 (16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=50° 则异面直线AB1与BC1所成角的余弦值为____________。 三.解答题: (17)(本小题满分10分)(注意:在试卷上作答无效) △ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

高考文科数学真题全国卷

2010年普通高等学校招生全国统一考试 文科数学(全国I 卷) 第I 卷 一、选择题 (1)cos300°= (A ) (B )12- (C )12 (D (2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ?(C ,M ) (A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5) (3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤??+≥??--≤? 则z =x-2y 的最大值为 (A )4 (B )3 (C )2 (D )1 (4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= (A ) (B)7 (C)6 (5)(1-x )2(1 )3的展开式中x 2的系数是 (A)-6 (B )-3 (C)0 (D)3 (6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于 (A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是 (A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞) (8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF = (A )2 (B)4 (C)6 (D)8 (9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 3 (B) 3 (C) 23 (D) 3 (10)设a =log 3,2,b =ln2,c =1 25 -,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA u u u r ·PB u u u r 的 最小值为 (A )- (B )- (C )- (D )-

(完整word版)2019年高考数学理科试卷全国一卷Word版和PDF版。

2019年高考理科数学全国一卷 一、单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。 1.已知集合M={x |-4<x <2},N={x | -x -6<0},则M∩U = A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3} 2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则 A B C D 3.已知a =2.0log 2,b =2.02,c =3 .02 .0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是 ??? ? ??≈称之为黄金分割.618.021 -521-5,著名的“断臂维纳斯”便是如此。此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 2 1 -5 。若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是 A.165 cm B.175 cm C.185 cm D.190 cm 5.函数()][ππ,的-cos sin 2 x x x x x f ++= 图像大致为 A B C D 6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A. 165 B.3211 C.3221 D.16 11 7.已知非零向量,满足 ,且 ,则与的夹角为 A. 6π B.3π C.32π D.6 5π

(完整版)2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.已知集合{}|1{|31}x A x x B x =<=<,,则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A . 1 4 B . 8π C .12 D . 4 π 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p

全国高考文科全国卷数学试题及答案

全国高考文科全国卷数学 试题及答案 The document was prepared on January 2, 2021

年普通高等学校招生全国统一考试 文科数学卷3 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出 的四个选项中,只有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.4 2.复平面内表示复数(2) =-+的点位于 z i i A.第一象限B.第二象限C.第三象限D.第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 - B. 2 9 -C. 2 9 D. 7 9 5.设,x y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是 A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 6.函数 1 ()sin()cos() 536 f x x x ππ =++-的最大值为 A.6 5 B.1 C. 3 5 D. 1 5

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

高考试题数学文科-(全国卷)

普通高等学校招生全国统一考试(全国卷) 数学(文史类) 一.选择题:本大题共12小题, 每小题5分, 共60分, 在每小题给出的四个选 项中, 只有一项是符合要求的 1.直线2y x x =关于对称的直线方程为 ( ) A .12 y x =- B .12 y x = C .2y x =- D .2y x = 2.已知,02x π??∈- ??? , 54cos =x , 则2tg x = ( ) A .24 7 B .247- C .7 24 D .7 24- 3.抛物线2 y ax =的准线方程是2,y a =则的值为 ( ) A . 1 8 B .1 8 - C .8 D .8- 4.等差数列{}n a 中, 已知1251 ,4,33,3 n a a a a n =+==则为( ) A .48 B .49 C .50 D .51 5.双曲线虚轴的一个端点为M , 两个焦点为1212,,120F F F MF ∠=?, 则双曲线的离心率为( ) A B C D 6.设函数?????-=-2112)(x x f x 00>≤x x , 若1)(0>x f , 则0x 的取值范围是 ( ) A .(1-, 1) B .(1-, ∞+) C .(∞-, 2-)?(0, ∞+) D .(∞-, 1-) ?(1, ∞+) 7.已知5 ()lg ,(2)f x x f ==则( ) A .lg 2 B .lg32 C .1 lg 32 D .1lg 25

8.函数sin()(0)y x R ??π?=+≤≤=是上的偶函数,则( ) A .0 B . 4 π C . 2 π D .π 9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) A B .2 C 1 D 1 10.已知圆锥的底面半径为R , 高为3R , 它的内接圆柱的底面半径为3 4 R , 该圆柱的全面积为( ) A .2 2R π B .24 9R π C .238 R π D .252R π 11.已知长方形的四个顶点A (0, 0), B (2, 0), C (2, 1)和D (0, 1), 一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后, 依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合, 则tg θ= ( ) A .3 1 B . 5 2 C . 2 1 D .1 12.一个四面体的所有棱长都为2, 四个顶点在同一球面上, 则此球的表面积为( ) A .π3 B .π4 C .π33 D .π6 普通高等学校招生全国统一考试 数 学(文史类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题, 每小题4分, 共16分把答案填在题中横线上 13x <的解集是____________________. 14.92)21(x x -的展开式中9 x 系数是 ________ . 15.在平面几何里, 有勾股定理:“设22,,ABC AB AC AB AC BC +=V 的两边互相垂直则”

2019年数学高考试题(附答案)

2019年数学高考试题(附答案) 一、选择题 1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16 C .8 D .12 2.函数ln || ()x x f x e = 的大致图象是( ) A . B . C . D . 3.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( ) A . 1.2308?.0y x =+ B .0.0813?.2y x =+ C . 1.234?y x =+ D . 1.235?y x =+ 4.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27 B .11 C .109 D .36 5.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ?N 中元素的个数为( ) A .2 B .3 C .5 D .7 6.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A . 19 B . 29 C . 49 D . 718 7.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( ) A .(2,0) B .(0,-2) C .(-2,0) D .(0,2) 8.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )

全国卷年高考数学真题

普通高等学校招生全国统一考试全国课标1 理科数学 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷 一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.3 2(1)(1) i i +-= A .1i +B .1i -C .1i -+D .1i -- 3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4.已知F 是双曲线C :22 3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A . B .3 C D .3m 5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率

A .18 B .38 C .58 D .78 6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = A .203 B .165 C .72 D .158 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ +=,则 A .32π αβ-=B .22π αβ-=C .32π αβ+=D .22π αβ+= 9.不等式组124x y x y +≥??-≤? 的解集记为D .有下面四个命题: 1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤,4p :(,),21x y D x y ?∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P 10.已知抛物线C :2 8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ = ,则||QF = A .72 B .52 C .3 D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围 为

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2019全国II卷理科数学高考真题-精华版

2019年普通高等学校招生全国统一考试 理科数学 本试卷共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 2.设z =–3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知AB u u u r =(2,3),AC u u u r =(3,t ),||BC u u u r =1,则AB BC ?u u u r u u u r = A .–3 B .–2 C .2 D .3 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 121223 ()()M M M R r R r r R +=++.设r R α=,由于α的值很小,因此在近似计算中

历年高考数学真题全国卷版

历年高考数学真题全国 卷版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 普通高等学校招生全国统一考试 一、 选择题 1、复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m },B ={1,m} ,A B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24 y =1 D 212x +2 4y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项 和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

2019年高考真题——理科数学(全国卷II)

2019年普通高等学校招生全国统一考试(全国 II 卷) 理科数学 一、选择题 1. 设集合{} 065|2 >+-=x x x A ,{}01|<-=x x B ,则=?B A ( ) A. )1,(-∞ B. )1,2(- C. )1,3(-- D. ),3(+∞ 答案: A 解答: {2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=?B A . 2. 设i z 23+-=,则在复平面内z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案: C 解析: i 23z --=,对应的点坐标为) ,(2-3-,故选C. 3.已知(2,3)AB =,(3,)AC t = ,||1BC = ,则AB BC ?=( ) A.3- B.2- C.2 D.3 答案: C 解答: ∵(1,3)BC AC AB t =-=-, ∴2||11BC ==,解得3t =,(1,0)BC =,

∴2AB BC ?=. 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。实现月球背面软着路需要解决的一个关键技术问题是地面与探测器的通讯联系。为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地球月拉格朗日点的轨道运行,点是平衡点,位于地月连线的延长线上。设地球的质量为 ,月球质量为 , 地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程 121223()()M M M R r R r r R +=++。设= r R α。由于α的值很小,因此在近似计算中345 32 3+331ααααα+≈+() ,则r 的近似值为( ) A B C D 答案: D 解答: 121121 2232222()(1)()(1)M M M M M M R r R r r R R r R αα+=+?+=+++ 所以有23211222 22 1 33[(1)](1)(1)M M M r R R αααααα++=+-=?++ 化简可得22333 122122 1333(1)3M r M M M R M αααααα++=?=??=+ ,可得r =。 5. 演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始 评分中去掉1个最高分、1个最低分,得到7个有效评分。7个有效评分与9个原始评分相比,不变的数字特征是( ) A . 中位数

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

2019年高考数学试卷(含答案)

2019年高考数学试卷(含答案) 一、选择题 1.如图,点是抛物线的焦点,点,分别在抛物线和圆 的实 线部分上运动,且 总是平行于轴,则 周长的取值范围是( ) A . B . C . D . 2.定义运算()() a a b a b b a b ≤?⊕=? >?,则函数()12x f x =⊕的图象是( ). A . B . C . D . 3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.1 6.12 y 1.5 4.04 7.5 12 18.01 对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2 x y = C .2y log x = D .() 2 112 y x = - 4.设5sin 7a π=,2cos 7b π=,2tan 7 c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c << 5.若满足 sin cos cos A B C a b c ==,则ABC ?为( ) A .等边三角形 B .有一个内角为30的直角三角形

C .等腰直角三角形 D .有一个内角为30的等腰三角形 6.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在 [)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( ) A .14 B .15 C .16 D .17 7.ABC ?的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b = ,则 c =( ) A .23 B .2 C .2 D .1 8.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x + C .可以是该区间内的任一函数值()(i i f ξξ∈1[,]i i x x +) D .以上答案均正确 9.函数y =2x sin2x 的图象可能是 A . B . C . D . 10.若实数满足约束条件,则的最大值是( ) A . B .1 C .10 D .12 11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=, ()()1AQ AC λλ=-∈R ,若3 2 BQ CP ?=-,则λ=( ) A . 12 B . 12 2 ± C . 110 2 ± D . 32 2 ±

高考数学文科全国卷

2015·新课标Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC → =( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 3.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-i D .2+i 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) 5.已知椭圆E 的中心在坐标原点,离心率为1 2 ,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与 E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 6. 《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 7.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) C .10 D .12 8.

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

相关文档
相关文档 最新文档