文档库 最新最全的文档下载
当前位置:文档库 › 全国高考文科数学试题及其解析

全国高考文科数学试题及其解析

全国高考文科数学试题及其解析
全国高考文科数学试题及其解析

2000年普通高等学校招生全国统一考试

数 学(文史类)

本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。第I 卷1至2页。第II 卷3至9页。共150分。考试时间120分钟。

第I 卷(选择题 60分)

注意事项:

1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。 参考公式:

三角函数的积化和差公式

()()[]βαβαβα-++=sin sin 21

cos sin

()()[]βαβαβα--+=sin sin 21

sin cos

()()[]βαβαβα-++=cos cos 21

cos cos

()()[]βαβαβα--+-=cos cos 2

1

sin sin

正棱台、圆台的侧面积公式

()l c c S +'=2

1

台侧

其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式

()

h S S S S V +'+'=3

1

台体

其中S '、S 分别表示上、下底面积,h 表示高

一、选择题:本大题共12小题;第每小题5分,共60分。在每小题给出的 四个选项中,只有一项是符合题目要求的.

(1)设集合A ={x |x ∈Z 且-10≤x ≤-1},B ={x |x ∈Z 且|x |≤5},则A ∪B 中的元素个数是

( )

(A )11

(B ) 10

(C )16

(D )15

(2)在复平面内,把复数3-3i 对应的向量按顺时针方向旋转3

π

,所得向量对应的复数是

( ) (A )23

(B )-23i

(C )3-3i

(D)3+3i

(3)一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是

( ) (A)23

(B) 32

(C)6

(D)6

(4)已知sin α>sin β,那么下列命题成立的是 ( )

(A)若α、β是第一象限角,则cos α>cos β (B)若α、β是第二象限角,则tg α>tg β (C)若α、β是第三象限角,则cos α>cos β (D)若α、β是第四象限角,则tg α>tg β (5)函数y =-x cos x 的部分图像是 ( )

(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:

全月应纳税所得额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10% 超过2000元至5000元的部分

15% …

某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( ) (A )800~900元 (B )900~1200元 (C )1200~1500元 (D)1500~2800元 (7)若a >b >1,P =b a lg lg ?,Q =

21(lg a +lg b ),R =lg ??

? ??+2b a ,则 ( ) (A)R

(B) P

(C)Q

(D)P

(8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,

12

π

)内变动时,a 的取值范围是 ( )

(A)(0,1)

(B) (

33,3) (C)(3

3,1) ∪(1,3)(D)(1,3) (9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )

(A)π

π

221+ (B)

π

π

441+ (C)

π

π

21+ (D)

π

π

241+

(10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )

(A)y =3x

(B) y =-3x

(C)y =

3

3

x (D)y =-

3

3x (11)过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则

q

p 1

1+等于 ( ) (A)2a

(B)

a

21 (C)4a (D)

a

4 (12)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为 ( )

(A)

3

2

1

(B)

21

(C)2

1 (D)

4

2

1

第II 卷(非选择题 90分)

注意事项:

1.第II 卷共7页,用钢笔或圆珠笔直接答在试题卷中。 2.答卷前将密封线内的项目填写清楚。

二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.

(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有___________种(用数字作答)

(14)椭圆14

92

2=+y x 的焦点为F 1、F 2,点P 为其上的动点.当∠F 1PF 2为钝角时,点P 横坐标的取值范围是________________

(15)设{a n }是首项为1的正项数列,且(n +1)21+n a —2

n na + a n +1a n =0(n =1,2,3…),则它的通项公式是a n =_______________

(16)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是________________

(要求:把可能的图的序号都.

填上)

三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或 演算步骤。

(17)(本小题满分12分)

已知函数y =3sin x +cos x ,x ∈R .

(Ⅰ)当函数y 取得最大值时,求自变量x 的集合;

(Ⅱ)该函数的图像可由y = sin x (x ∈R )的图像经过怎样的平移和伸缩变换得到?

(18)(本小题满分12分)

设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列?

??

???n S n 的前n 项和,求T n .

(19)(本小题满分12分)

如图,已知平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD . (Ⅰ)证明:C 1C ⊥BD ; (Ⅱ)当1

CC CD

的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.

(20)(本小题满分12分)

设函数f (x )=12+x -ax ,其中a >0. (Ⅰ)解不等式f (x )≤1;

(Ⅱ)证明:当a ≥1时,函数f (x )在区间[)∞+,0上是单调函数.

(21)(本小题满分12分)

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(Ⅰ)写出图一表示的市场售价与时间的函数关系式p =f (t ); 写出图二表示的种植成本与时间的函数关系式Q =g (t );

(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:市场售价和种植成本的单位:元/102kg ,时间单位:天)

(22)(本小题满分14分)

如图,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为

11

8

,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线的离心率.

参考解答及评分标准

说明:

一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.

一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.

(1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D

二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.

(13)252 (14)5

35

3<

<-x (15)

n

1

(16)②③ 三、解答题

(17)本小题主要考查三角函数的图像和性质,利用三角公式进行恒等变形的技能以及运算能力.满分12分.

解:(Ⅰ) y =3sin x +cos x =2(sin x cos 6π+cos x sin 6

π) =2sin(x +

6

π),x ∈R ——3分 y 取得最大值必须且只需

x +

6π=ππ

k 22+,k ∈Z , 即x =ππ

k 23

+,k ∈Z .

所以,当函数y 取得最大值时,自变量x 的集合为

{x |x =

3

π

+2kπ,k ∈Z }. ——6分 (Ⅱ)变换的步骤是:

(1)把函数y =sin x 的图像向左平移

6π,得到函数y =sin(x +6

π

)的图像; ——9分 (2)令所得到的图像上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y =2sin(x +

6

π

)的图像; 经过这样的变换就得到函数y =3sin x +cos x 的图像. ——12分 (18)本小题主要考查等差数列的基础知识和基本技能,运算能力,满分12分. 解:设等差数列{a n }的公差为d ,则 S n =na 1+

2

1

n (n -1)d . ∵ S 7=7,S 15=75,

∴ ???=+=+.7510515,72171

1d a d a ——6分

即??

?=+=+.

57,

1311d a d a ——8分

解得a 1=-2,d =1. ∴

()()121

21211-+-=-+=n d n a n S n , ∵

2

1

11=-++n S n S n n , ∴数列{

n S n }是等差数列,其首项为-2,公差为2

1

, ∴ n n T n 4

9

412-=

. ——12分 (19)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A 1C 1、AC ,AC 和BD 交于O ,连结C 1O . ∵ 四边形ABCD 是菱形, ∴ AC ⊥BD ,BC =CD .

又∵ ∠BCC 1=∠DCC 1,C 1C =C 1C ,

∴ △C 1BC ≌△C 1DC , ∴ C 1B =C 1D , ∵ DO =OB ,

∴ C 1O ⊥BD , ——3分 但AC ⊥BD ,AC ∩C 1O = O , ∴ BD ⊥平面AC 1. 又 C 1C ?平面AC 1,

∴ C 1C ⊥BD . ——6分 (Ⅱ)当

1

CC CD

=1时,能使A 1C ⊥平面C 1BD . 证明一: ∵

1

CC CD

=1, ∴ BC =CD =C 1C ,

又∠BCD =∠C 1CB =∠C 1CD , 由此可推得BD =C 1B =C 1D .

∴ 三棱锥C -C 1BD 是正三棱锥. ——9分 设A 1C 与C 1O 相交于G .

∵ A 1C 1∥AC ,且A 1C 1:OC =2:1, ∴ C 1G ︰GO =2︰1.

又C 1O 是正三角形C 1BD 的BD 边上的高和中线, ∴ 点G 是正三角形C 1BD 的中心, ∴ CG ⊥平面C 1BD .

即A 1C ⊥平面C 1BD . ——12分 证明二:

由(Ⅰ)知,BD ⊥平面AC 1, ∵ A 1C ?平面AC 1,

∴ BD ⊥A 1C . ——9分 当

11

=CC CD

时,平行六面体的六个面是全等的菱形,

同BD ⊥A 1C 的证法可得BC 1⊥A 1C . BD I BC 1=B ,

∴ A 1C ⊥平面C 1BD . ——12分 (20)本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分.

(Ⅰ) 解:不等式f (x )≤1即

12+x ≤1+ax ,

由此得1≤1+ax ,即ax ≥0,其中常数a >0. 所以,原不等式等价于

()??

?≥+≤+.

0,

1122x ax x 即()???≥+-≥.

021,02a x a x ——3分 所以,当0

2

12a a

-}; 当a ≥1时,所给不等式的解集为{x |x ≥0}. ——6分 (Ⅱ)证明:在区间[)∞+,0上任取x 1、x 2,使得x 1

1+-

+x x -a (x 1-x 2)

=

1

122

2122

21+++-x x x x -a (x 1-x 2)

=(x 1-x 2)(

1

122

21

21++++x x x x -a ). ——9分

1

122

2

1

21++++x x x x <1,且a ≥1,

1

122

21

21++++x x x x -a <0,

又x 1-x 2<0, ∴f (x 1)-f (x 2)>0, 即f (x 1)> f (x 2).

所以,当a ≥1时,函数f (x )在区间[)∞+,0上是单调递减函数. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.

解:(Ⅰ)由图一可得市场售价与时间的函数关系为

()??

?≤<-≤≤-=.

3002003002,

2000300t t t t t f ,, ——2分

由图二可得种植成本与时间的函数关系为 g (t )=

200

1

(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t ),

即()???????≤<-+-≤≤++-=.3002002102527200

1,20002

175********t t t t t t t h ,, ——6分

当0≤t ≤200时,配方整理得 h (t )=-

200

1

(t -50)2+100, 所以,当t =50时,h(t)取得区间[0,200]上的最大值100; 当200

200

1

(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5. ——10分

综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大 ——12分

(22)本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合应用数学知识解决问题的能力,满分14分.

解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴.

因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称. ——2分

依题意,记A (-c ,0),C (2c ,h ),B (c ,0),其中c 为双曲线的半焦距,c =2

1

|AB |,h 是梯形的高.

由定比分点坐标公式,得点E 的坐标为

c c

c x E 19711812118-=+?

+

-=

, h h

y E 19811

811180=+?+=.

——5分 设双曲线的方程为12222=-b y a x ,则离心率a

c

e =.

由点C 、E 在双曲线上,得

???????=?-?=-?.136********,14122

222

2

22b h a

c b h a c ——10分 由①式得1412222-?=a c b h 代入②式得922

=a

c

所以,离心率32

2

==a

c e ——14分 ① ②

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

试论近三年高考数学试卷分析

HR Planning System Integration and Upgrading Research of A Suzhou Institution 近三年高考数学试卷分析 陈夏明 近三年的数学试卷强调了对基础知识的掌握、突出运用所学知识解决实际问题的能力.整套试卷遵照高考考试大纲的要求,从题型设置、考察知识的范围和运算量,书写量等方面保持相对稳定,体现了考查基础知识、基本运算方法和基本数学思想方法的特点.好多题都能在课本上找到影子,是课本题的变形和创新.这充分体现了高考数学试题“来源于课本”的命题原则,同时,也注重了知识之间内在的联系与综合,在知识的交汇点设计试题的原则。 2009年高考数学考试大纲与往年对比,总体保持平稳,个别做了修改,修改后更加适合中学实际和现代中学生的实际水平,从大纲来看,高考主干知识八大块:1.函数;2.数列;3.平面向量;4.不等式(解与证);5.解析几何;6.立体几何;7.概率与统计。仍为考查的重点,其中函数是最核心的主干知识. 考试要求有变化: 今年数学大纲总体保持平稳,并在平稳过渡中求试题创新,试题难度更加适合中学教学实际和现代中学生的实际水平;适当加大文理卷的差异,力求文理学生成绩平衡,文科试题“适当拉大试题难度的分布区间,试题难度的起点应降低,而试题难度终点应与理科相同”。 试题难度没有太大变化,但思维量进一步加大,更加注重基础知识、基本技能的考查.注重通性通法,淡化特殊技巧,重视数学思想方法的考查.不回避重点知识的考查。函数、数列、概率(包括排列、组合)、立体几何、解析几何等知

识仍是考查的重点内容.保持高考改革的连续性、稳定性,严格遵循《考试大纲》命题. 针对高考变化教师应引导学生: 1.注重专题训练,找准薄弱环节 2.关注热点问题进行有针对性的训练 3.重视高考模拟试题的训练 4.回归课本,查缺补漏。 5.重视易错问题和常用结论的归纳总结 6.心理状态的调整与优化 (1)审题与解题的关系: 我建以审题与解题的关系要一慢一快:审题要慢,做题要快。 (2)“会做”与“得分”的关系: 解题要规范,俗话说:“不怕难题不得分,就怕每题都扣分”所以务必将解题过程写得层次分明,结构完整.这非常重要,在平时训练时要严格训练. (3)快与准的关系: 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果. (4)难题与容易题的关系: 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此不要在某个卡住的题上打“持久战”,特别不要“小题大做”那样既耗费时间又未心能拿分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,而且解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难。 因此,我建议答题应遵循: 三先三后: 1.先易后难 2.先高(分)后低(分) 3.先同后异。

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

高考数学试卷分析及命题走向

2019年高考数学试卷分析及2019年命题走 向 一、2019年高考试卷分析 2019年普通高等学校招生全国统一考试数学试题(全国卷i)继承2019年的改革方向。既保持了一定的稳定性,又有创新和发展;既重视考查中学数学知识掌握程度,又注重考查进入高校继续学习的潜能。 1考试内容体现了《考试大纲》的要求。 2试题结构与2019年大体相同。全卷共22小题,选择题12道,每题5分;填空题4道,每题4 分;解答题6道,前5道每题12分,最后1道14分。 3考试要求与考点分布。第1小题,(理)掌握复数代数形式的运算法则;(文)理解集合、子集、补集、交集、并集的概念、符号,能够正确表示简单的集合。第2小题,掌握对数的运算性质。第3小题,掌握实数与向量的积,平面向量的几何意义及平移公式。第4小题,会求一些简单函数的反函数。第5小题,掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。第6小题,(理)了解空集和全集,属于、包含和相等关系的意义,掌握充要条件的意义;(文)掌握两角和与差的正弦、余弦、正切公式。第7小题,掌握椭圆的标准方程和简单几何性质,理解椭圆的参数方程。第8小题,掌握直线方程的点斜式,了解线性规划的意义,并会简单的应用。第9小题,掌握同角三角函数的基本关系式,了解正弦函数、余弦函数的图像和性质。第10小题,能够画出空间两条直线、直线和平面各

种位置关系的图形,根据图形想像它们的位置关系,了解三垂线定理及其逆定理。第11小题,会用排列组合的基本公式计算一些等可能性事件的概率。第12小题,掌握简单方程的解法。第13 小题,掌握简单不等式的解法。第14小题,(理)掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;(文)掌握等比数列的通项公式。第15小题,(理)了解递推公式是给出数列的一种方法;(文)直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。第16小题,掌握斜线在平面上的射影。第17小题,(理)掌握两角和与两角差、二倍角的正弦、余弦、正切公式,了解周期函数与最小正周期的意义;(文)掌握等差数列的通项公式与前n 项和公式。第18小题,(理)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列,并能根据其分布列求出期望值。(文)掌握两角和与两角差、二倍角的正弦、余弦、正切公式,了解周期函数与最小正周期的意义。第19小题,( 理)掌握指数函数的概念、图像和性质;(文)会求多项式函数的导数,并会用导数求多项式函数的单调区间。第20小题,(理)掌握直线和平面所成的角、直线和平面的距离的概念,掌握二面角、二面角的平面角的概念;(文)会用排列组合的基本公式计算一些等可能性事件的概率,用相互独立事件的概率乘法公式计算一些事件的概率。第21小题,(理)掌握双曲线的定义、标准方程和简单几何性质,理解平面向量的坐标的概念,掌握平面向量的坐标运算;(文)掌握直线和平面的距离的概念,掌握二面角、二面角的平面角的概念。第22小题,(理)了解数列通项公式

高考真题理科数学解析版

理科数学解析 一、选择题: 1.C【解析】本题考查集合的概念及元素的个数. 容易看出只能取-1,1,3等3个数值.故共有3个元素. 【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等. 2.D【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 函数的定义域为,而答案中只有的定 义域为.故选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 3.B【解析】本题考查分段函数的求值. 因为,所以.所以. 【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用

哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式. 4.D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以.. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的.体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. (验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B. 【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、“且”、“非”的含义等. 6.C【解析】本题考查归纳推理的思想方法. 观察各等式的右边,它们分别为1,3,4,7,11,…, 发现从第3项开始,每一项就是它的前两项之和,故等式的右

教育部考试中心权威评析:2020年高考数学全国卷试题评析

教育部考试中心权威评析:2020年高考数学全国卷试题评析 2020年高考数学全国卷试题评析(考试中心权威解析) 2020年高考数学试题落实立德树人根本任务,贯彻德智体美劳全面发展教育方针,坚持素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向作用。试题重视数学本质,突出理性思维、数学应用、数学探究、数学文化的引领作用,突出对关键能力的考查。试题展现了我国社会主义建设成就与科学防疫的成果,紧密联系社会实际,设计真实的问题情境,具有鲜明的时代特色。试卷体现了基础性、综合性、应用性和创新性的考查要求,难度设计科学合理,很好把握了稳定与创新、稳定与改革的关系,对协同推进高考综合改革、引导中学数学教学都将起到积极的作用。 1 发挥学科特色,“战疫”科学入题 一是揭示病毒传播规律,体现科学防控。用数学模型揭示病毒传播规律,如新高考Ⅰ卷(供山东省使用)第6题,基于新冠肺炎疫情初始阶段累计感染病例数的数学模型的研究成果,考查相关的数学知识和从资料中提取信息的能力,突出数学和数学模型的应用;全国Ⅲ卷文、理科第4题以新冠肺炎疫情传播的动态研究为背景,选择适合学生知识水平的Logistic模型作为试题命制的基础,考查学生对指数函数基本知识的理解和掌握,以及使用数学模型解决实际问题的能力。 二是展现中国抗疫成果。全国疫情防控进入常态化后,各地有序推进复工复产复学。新高考Ⅱ卷(供海南省使用)第9题以各地有序推动复工复产为背景,取材于某地的复工复产指数数据,考查学生解读统计图以及提取信息的能力。 三是体现志愿精神。如全国Ⅱ卷理科第3题(文科第4题)是以志愿者参加某超市配货工作为背景设计的数学问题,考查学生对基本知识的掌握程度及运用所学知识解决实际问题的能力。

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

全国百套高考数学模拟试题分类汇编001

组距 分数 0.0350.0250.0150005 100 9080 70605040全国百套高考数学模拟试题分类汇编 10概率与统计 二、填空题 1、(启东中学高三综合测试一)6位身高不同的同学拍照,要求分成两排,每排3人,则后排每人均比其前排的同学身材要高的概率是_________。 答案:18 2、(皖南八校高三第一次联考)假设要考查某企业生产的袋装牛奶质量是否达标,现以500袋牛奶中抽取60袋进行检验,利用随机数表抽样本时,先将500袋牛奶按000,001,┉,499进行编号,如果从随机数表第8行第4列的数开始按三位数连续向右读取,请你依次写出最先检测的5袋牛奶的编号____________________________________________;答案:163,199,175,128,395; 3、(蚌埠二中高三8月月考)设随机变量ξ的概率分布规律为*,)1()(N k k k c k p ∈+==ξ,则 ) 2 5 21(<<ξp 的值为___________答案:2 3 4、(巢湖市高三第二次教学质量检测)从分别写有0,1,2,3,4的五张卡片中第一次取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字和恰好等于4的概率是. 答案:15 5、(北京市东城区高三综合练习二)从某区一次期末考试中随机抽取了100 个学生的数学成绩,用这100个数据来估计该区的总体数学成绩,各分数段的人数统计如图所示. 从该区随机抽取一名学生,则这名学生的数学成绩及格(60≥的概率为;若同一组数据用该组区间的中点 (例如,区间[60,80)的中点值为70)表示,则该区学生的数学成绩 的期望值为. 答案:0.65,67 6、(北京市宣武区高三综合练习二)某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:4, 现用分层抽样的方法抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本容量n= 答案:72 7、(东北三校高三第一次联考)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1—— 160编号。按编号顺序平均分成20组(1—8号,9—16号,……153—160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________。 答案:6 8、(揭阳市高中毕业班高考调研测试)统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不 低于80分为优秀,则及格人数是;优秀率为。 答案:由率分布直方图知,及格率=10(0.0250.03520.01)0.8?++?==80%, 及格人数=80%×1000=800,优秀率=100.020.220?==%.

天津市高考数学试卷分析.doc

天津市高考十年数学试卷分折 目录 第一部分:选择题与填空题基本知识点分析 知识点:复数的基本概念与运算(历年都考)。重点:复数的乘除 运算。 试题类型:选择题;位置:第一题;难度:容易试题规律:复数的基本运算为必考试题,一般是放在选择的第一题, 作为全卷的第一题非常容易,起到稳定军心的作用,但此题绝对不能出错。 2?知识点:四种命题及充要条件(历年都考)。重点:充要条件判断、命 题的否定与否命题,考真假命题。 试题类型:选择题;难度:容易或中等 试题规律:都是与其它知识点结合,重点考查充要条件的判断。新课 标有转向全称与特称命题的趋势。充要条件的判断根本的一点是“小范围可以推大范围,大范围不可以推小范围”,而范围经常是用图形来表示的,所以要用数形结合的思想来求解。 3?知识点:分式与绝对值不等式及集合。重点:解二次和分式不等 式、解绝对值不等式、集合间的子、交、并、补运算、用重耍不等式求最值。 试题类型:选择题;位置:前7题;难度:容易试题规律:经常与集合结合,含绝对值不等式。 4?知识点:三角函数图象性质,止余弦定理解三角形(考图象性质, 考解三角形)重点:化一公式、图象变换、函数y = Asin(血+ 0)的性质、止余弦定理解题。 试题类型:选择题;难度:容易或中等试题规律:常考查三角函数的单调

性、周期性及对称性;三角函数的图象变换。重点为y = Asin(祇+ 0)型的函数。 5?知识点:函数性质综合题(奇偶、单调、周期、对称等)、特别是 结合分段函数是新课标的考查重点(每年都考)试题类型:选择题;位置:选择后3题;难度:较难试题规律:是必考题。重点考查函数的奇偶、单调、周期、对称等性质的综合。结合分段函数是新课标的考查重点 6?知识点:圆锥曲线定义及几何性质有关问题(椭圆双曲线准线不 考)(抛物线定义、双曲线渐近线与抛物线相交)试题类型:选择题;位置:前五题;难度:容易试题规律:考三种圆锥曲线各自的独特性,椭圆的定义、双曲线的渐近线、抛物线的定义,直线与圆锥曲线 7?知识点:抽样统计小题是趋势 试题类型:填空题;难度:中等或容易 试题规律:抽样方法,概率与统计,重要不等式的应用,分层抽样应用题 &知识点:直线与圆(常与参数方程极坐标等结合,主要是直线与圆相切或相割) 试题类型:选择题或填空题;位置:前六题;难度:容易试题规律:重点考查直线与圆的基本题型,直线和圆相切、直线被圆截得弦长问题、圆与圆内外切及相交问题等。每年必考。 9?知识点:平面向量基本运算(加法、减法、数乘和数量积,以数 量积为主,近年常以三角形和平行四边形为载体)(每年必考)试题类型:选择题或填空题;位置:较靠前;难度:中档试题规律:注重向量的代数与几何特征的结合,基底的思想加强了考査,向量的几何特征进行考査,题目小巧而灵活。 10?知识点:排列与组合 试题类型:选择题或填空;容易或中等试题规律:有两个限制条件的排数问题,球入盒问题,涂色问题,排列卡片问题,排数问题。总的看是以考查排列问题为主,考查的是基本的分类与分步思想。有成为选择或填空压轴题的趋势。

2017年高考数学试题分项版解析几何解析版

2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2 -y 2 3 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .32 1.【答案】D 【解析】因为F 是双曲线 C :x 2- y 2 3 =1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3. 又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2 m =1长轴的两个端点.若C 上存在点M 满 足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0). 故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |· 3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2 =3-3y 2 m , 则23|y |3-3y 2m +y 2-3=23|y |(1-3m )y 2=- 3.

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

2018年高考数学试题评析

2018年高考数学试题评析 教育部考试中心 考查关键能力 强调数学应用助推素质教育 2018年高考数学命题严格依据考试大纲,聚焦学科主干内容,突出关键能力的考查,强调逻辑推理等理性思维能力,重视数学应用,关注创新意识,渗透数学文化。试题体现考主干、考能力、考素养,重思维、重应用、重创新的指导思想。试卷稳中求新,在保持结构总体稳定的基础上,科学灵活地确定试题的内容和顺序;合理调控整体难度,并根据文理科考生数学素养的综合要求,调整文理科同题比例,为新一轮高考数学不分文理科的改革进行了积极的探索;贯彻高考内容改革的要求,将高考内容和素质教育要求有机结合,把促进学生健康成长成才和综合素质提高作为命题的出发点和落脚点,强化素养导向,助推素质教育发展。 1、聚焦主干内容,突出关键能力 2018年高考数学试题,立足于培育学生支撑终身发展和适应时代要求的能力,重点考查学生独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力;重视学科主干知识,将其作为考查重点,围绕主干内容加强对基本概念、基本思想方法和关键能力的考查,多考一点想的,少考一点算的,杜绝偏题、怪题和繁难试题。以此引导中学教学遵循教育规律、回归课堂,用好教材,避免超纲学、超量学。 2、理论联系实际,强调数学应用 2018年高考数学试题,与国家经济社会发展、科学技术进步、生产生活实际紧密联系起来,通过设置真实的问题情境,考查考生灵活运用所学知识分析解决实际问题的能力。在应用题中,将数据准备阶段的步骤减少,给考生呈现比较规范的数据格式或数据的回归模型;采取“重心后移”的策略,把考查的重点后移到对数据的分析、理解、找规律,减少繁杂的运算,突出对数学思想方法的理解和运用能力的考查;引导学生从“解题”到“解决问题”能力的培养。如全国II卷第18题,以环境基础设施投资为背景,体现了概率统计知识与社会生活的密切联系;全国III卷第18题减少了繁琐的数据整理步骤,将考查重点放在运用概率统计思想方法分析和解释数据之上,突出了考查重点。

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

相关文档
相关文档 最新文档