文档库 最新最全的文档下载
当前位置:文档库 › 专题二 统计概率 文科数学

专题二 统计概率 文科数学

专题二 统计概率 文科数学
专题二 统计概率 文科数学

专题二 概率与统计(文科数学)

1.江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______ 答案:

3

1

2.安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于

(A )1

10

(B ) 18

(C ) 16

(D ) 15

D

3.安徽文(20)(本小题满分10分)

(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y bx a =+; (Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。

温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.

(20)(本小题满分10分)本题考查回归分析的基本思想及其初步应用,回归直线的意义和求法,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力. 解:(I )由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:

.

2.3,5.640

2604

22429

4192)11()2()21()4(,

2.3,02

2

2

2

=-===

+++?+?+-?-+-?-=

==x b y a b y x

由上述计算结果,知所求回归直线方程为

,2.3)2006(5.6)2006(257+-=+-=-∧

x a x b y

即.2.260)2006(5.6+-=∧

x y ①

(II )利用直线方程①,可预测2012年的粮食需求量为

2.2992.26065.62.260)20062012(5.6=+?=+-(万吨)≈300(万吨).

4.(本小题共13分)

以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.

(1)如果X=8,求乙组同学植树棵树的平均数和方差;

(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数

为19的概率.

(注:方差],)()()[(12

2

22

12x x x x x x n

s n -+-+-= 其中x 为n x x x ,,,21 的平均

数)

解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为

;435410

988=+++=

x

方差为

.16

11])4

3510()4

359()4

358[(4

12

2

2

2

=

-

+-

+-=s

(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是: (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),

(A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),

用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.4116

4)(==

C P

5.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为

A .6

B .8

C .10

D .12

B

6.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于

A .14

B . 13

C .

12

D .

23

C

7.(本小题满分12分)

某日用品按行业质量标准分成五个等级,等级系数X 依次为1.2.3.4.5.现从

求a 、b 、c 的值; (11)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2

件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品

被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。

7.本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,

考查函数与方程思想、分类与整合思想、必然与或然思想,满分12分。 解:(I )由频率分布表得0.20.451,a b c ++++=即a+b+c=0.35,

因为抽取的20件日用品中,等级系数为4的恰有3件, 所以30.15,20

b =

=

等级系数为5的恰有2件,所以20.120

c ==,

从而0.350.1a b c =--= 所以0.1,0.15,0.1.a b c ===

(II )从日用品1212,,,x x y y 中任取两件, 所有可能的结果为:

12131112232122313212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}x x x x x y x y x x x y x y x y x y y y ,

设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”,则A 包含的基本事件为:

12132312{,},{,},{,},{,}x x x x x x y y 共4个,

又基本事件的总数为10, 故所求的概率4()0.4.10

P A =

=

8.广东文13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小

打篮球6小时的投篮命中率为________. 0.5, 0.53 9.广东文17.(本小题满分13分)

在某次测验中,有6位同学的平均成绩为75分。用x n 表示编号为n (n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

6(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。

10.(本小题满分13分)

解:(1)6

1

1756

n

n x x

==

=∑

5

61

6675707672707290,n

n x x x

=∴=-

=?-----=∑

6

2

2

222222

1

1

1()(5135315)496

6

n n s x x ==

-=

+++++=∑,

7.s ∴= (2)从5位同学中随机选取2位同学,共有如下10种不同的取法: {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}, 选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法:

{1,2},{2,3},{2,4},{2,5},

故所求概率为2

.5

11.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估

计,样本数据落在区间)10,12??内的频数为 A .18 B .36

C .54

D .72

B

12.湖北文11.某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类

超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市

__________家。

20

13.湖北文13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少

取到1

瓶已过保质期饮料的概率为__________。(结果用最简分数表示)

28145

14.湖南文5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联

表:

2

2

()

()()()()

n ad bc

K

a d c d a c

b d

-

=

++++

算得,

2

2

110(40302020)

7.8

60506050

K

??-?

=≈

???

附表:

A.有99%以上的把握认为“爱好该项运动与性别有关”

B.有99%以上的把握认为“爱好该项运动与性别无关”

C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”A

15.湖南文15.已知圆22

:12,

C x y

+=直线:4325.

l x y

+=

(1)圆C的圆心到直线l的距离为.

(2)圆C上任意一点A到直线l的距离小于2的概率

为.

(1)5(2)1 6

16.湖南文18.(本小题满分12分)

某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160.

(Ⅰ)完成如下的频率分布表

近20年六月份降雨量频率分布表

(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万

千瓦时)的概率.

16.(本题满分12分)

解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为

(II)P(“发电量低于490万千瓦时或超过530万千瓦时”)

(490530)(130210)

(70)(110)(220)132

3

.20

20

2010

P Y Y P X X P X P X P X =<>=<>==+=+=

=++

=或或

故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为

310

17.江西文7.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识

测试,得分(十分制)如图所示,假设得分值的中位数为E m ,众数为a m ,平均值为x ,则 A .e a m m x == B .e a m m x =< C .e a m m x <<

D .a e m m x << D

A .1y x =-

B .1y x =+

C .1882

y x =+

D .176y =

C

19.江西文16.(本小题满分12分)

某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共

5杯,其颜色完全相同,并且其中的3杯为A 饮料,另外的2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料。若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格。假设此人对A 和B 两种饮料没有鉴别能力

(1)求此人被评为优秀的概率 (2)求此人被评为良好及以上的概率 20.(本小题满分12分)

解:将5不饮料编号为:1,

2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B

饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(1,2,5),(134),(135),(145),(234),(235),(245),(345)可见共有10种

令D 表示此人被评为优秀的事件,E 表示此人被评人良好的事件,F 表示此人被评为良

好及以上的事件。则

(1)1P (D )10=

(2)37P (E ),P (F)P (D )P (E )5

10

=

=+=

21.辽宁文(14)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:

万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0?+=x y .由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 0.254

22.辽宁文(19)(本小题满分12分)

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.

(I )假设n =2,求第一大块地都种植品种甲的概率;

(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2

)如下表:

种植哪一品种?

附:样本数据n x x x ,,,21???的的样本方差])()()[(12

2

22

12x x x x x x n

s n -+???+-+-=

其中x 为

样本平均数. 19.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,

令事件A=“第一大块地都种品种甲”.

从4小块地中任选2小块地种植品种甲的基本事件共6个;

(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6

P A =

………………6分

(II )品种甲的每公顷产量的样本平均数和样本方差分别为:

2

2

2

2

2

2

2

2

1(403397390404388400412406)400,

81(3(3)(10)4(12)0126)57.25.

8

x S =+++++++==

+-+-++-+++=甲甲

………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:

2

2

2

2

2

2

2

2

2

1(419403412418408423400413)412,

81(7(9)06(4)11(12)1)56.

8

x S =+++++++==

+-+++-++-+=乙乙

………………10分

由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 23.全国文19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。

(I )求该地1位车主至少购买甲、乙两种保险中的1种概率;

(II )求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。 19.解:记A 表示事件:该地的1位车主购买甲种保险;

B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;

C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;

D 表示事件:该地的1位车主甲、乙两种保险都不购买;

E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。 (I )()0.5,()0.3,,P A P B C A B ===+ …………3分 ()()()()

0P C P A B P A P B =+

=

+

=

…………6分 (II ),()1()10.80.2,D C P D P C ==-=-=

…………9分 12

3()0.20.80.384.P E C =??=

…………12分

24.全国课标文(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参

加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )

(A ) (13

) (B )

12

(C )

23

(D )

34

A

25.全国课标文(19)(本小题满分12分)

某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:

(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为

2,942,941024,102t y t t -

=≤

估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.

(19)解

(Ⅰ)由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100

+,所以用A 配

方生产的产品的优质品率的估计值为0.3.

由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100

+=,所以用B 配方生产的产品的优质品率的估计值为0.42

(Ⅱ)由条件知用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.

用B 配方生产的产品平均一件的利润为

68.2)442254)2(4(100

1=?+?+-??(元)

26.

根据上表可得回归方程???y

bx a =+中的?b 为9.4,据此模型预报广告费用为6万元时销售额为

A .63.6万元

B .65.5万元

C .67.7万元

D .72.0万元

B

27.山东文13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了

解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,

应在丙专业抽取的学生人数为 . 16

28.山东文18.(本小题满分12分)

甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.

(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;

(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.

18.解:(I )甲校两男教师分别用A 、B 表示,女教师用C 表示;

乙校男教师用D 表示,两女教师分别用E 、F 表示

从甲校和乙校报名的教师中各任选1名的所有可能的结果为: (A ,D )(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种。

从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种, 选出的两名教师性别相同的概率为4.9P =

(II )从甲校和乙校报名的教师中任选2名的所有可能的结果为: (A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),

(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种, 从中选出两名教师来自同一学校的结果有: (A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种, 选出的两名教师来自同一学校的概率为62.15

5P =

=

29.陕西文9.设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是

由这些样本点通过最小二乘法得到的线性回归直线(如

图),以下结论正确的是 A .直线l 过点(,)x y

B .x 和y 的相关系数为直线l 的斜率

C .x 和y 的相关系数在0到1之间

D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 A

30.陕西文20.(本小题满分13分)

如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到火车站的人进行调查,调查结果如下:

..

(Ⅱ)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;

(Ⅲ)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在

允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径。

20.解(Ⅰ)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44

人,

∴用频率估计相应的概率为0.44.

(Ⅱ )选择L 1的有60人,选择L 2的有40人, 故由调查结果得频率为:

1212B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站。 由(Ⅱ)知P (A1) =0.1+0.2+0.3=0.6 P (A 2)=0.1+0.4=0.5, P (A 1)>P (A 2)

∴甲应选择L1

P (B 1) =0.1+0.2+0.3+0.2=0.8

P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), ∴ 乙应选择L 2.

31.上海文10.课题组进行城市农空气质量调查,按地域把24个城市分成甲.乙.丙三组,

对应城市数分别为4.12.8。若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。 2

32.上海文13.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。

0.985

33.四川文2.有一个容量为66的样本,数据的分组及各组的频数如下:

[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占

(A )

211

(B )

13

(C )

12

(D )

23

答案:B

34.四川文12.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量

(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,

记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则m n

=

(A )

215

(B )1

5

(C )

415

(D )1

3

答案:B 35.四川文17.(本小题共l2分)

本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一

次).设甲、乙不超过两小时还车的概率分别为14

12

;两小时以上且不超过三小时还

车的概率分别为

12

14

;两人租车时间都不会超过四小时.

(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率. 本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力. 解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则

111()1424

P A =-

-=,111()12

4

4

P A =-

-

=

答:甲、乙在三小时以上且不超过四小时还车的概率分别为

14

14

(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则

1111111111113()(

)(

)(

)4

2

4

4

2

2

2

4

4

2

4

4

4P C =?

+?

+

?

+?

+

?

+

?

=

. 答:甲、乙两人所付的租车费用之和小于6元的概率为34

36.天津文15.(本小题满分13分)

编号为1216,,,A A A ???的16名篮球运动员在某次训练比赛中的得分记录如下:

得(Ⅰ)将得分在对应区间内的人数

(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率.

(15)本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公

式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,满分

13分。

(Ⅰ)解:4,6,6

(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机

抽取2人,所有可能的抽取结果有:

343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,

411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共

15种。

(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”

(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。

所以51().15

3P B =

=

37.浙江文(8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1

个白球的概率是 A .

110

B .310

C .35

D .910

D

38.重庆文4.从一堆苹果中任取10只,称得它们的质量如下(单位:克)

125 120 122 105 130 114 116 95 120 134

则样本数据落在[114.5,124.5)内的频率为 C A .0.2

B .0.3

C .0.4

D .0.5

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

高三文科数学统计概率的总结课件.doc

实用标准文案 统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社 区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96 人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为() A 、101 B、808 C、1212 D、2012 02、某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体学生中抽取一个容量为280 的 样本,则此样本中男生人数为____________. 03、一支田径运动队有男运动员56 人,女运动员42 人。现用分层抽样的方法抽取若干人,若抽取的男运 动员有8 人,则抽取的女运动员有______人。 04、某单位有840 名职工, 现采用系统抽样方法, 抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机 编号, 则抽取的42 人中, 编号落入区间[481, 720] 的人数为() A .11 B.12 C.13 D.14 05、将参加夏令营的600 名学生编号为:001,002,,, 600,采用系统抽样方法抽取一个容量为50 的样 本,且随机抽得的号码为003.这600 名学生分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26, 16, 8 B.25,17,8 C.25,16,9 D.24,17, 9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100 户居民进行月用电量调查, 发现其用电 量都在50 到350 度之间, 频率分布直方图所示. (I) 直方图中x的值为________; (II) 在这些用户中, 用电量落在区间100,250 内的户数为_____. 02、下图是样本容量为200 的频率分布直方图。根据样本的频率分布直 方图估计,样本数据落在[6,10]内的频数为,数据落在(2, 10)内的概率约为 精彩文档

历年高考全国1卷文科数学真题分类汇编-概率与统计含答案

历年高考新课标Ⅰ卷试题分类汇编—概率与统计 1、(2012年第19题)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。 2、(2013年第3题) 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( B ) (A )错误!未找到引用源。 (B )错误!未找到引用源。 (C )1 4 错误!未找到引用源。(D ) 16 3、(2013年第19题) 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

文科统计与概率1-回归分析

文科统计与概率1-回归分析 一、回归分析 1、函数关系 函数关系是一种确定性的关系,如一次函数,二次函数 2、相关关系 变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系带有随机性 3、散点图 把两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图,通过散点图可以初步判断两个变量之间是否具有相关关系。 (1)正相关 散点图中,点分布在左下角到右上角的区域 (2)负相关 散点图中,点分布在坐上角到右下角的区域 4、回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 5、求回归直线方程的一般步骤: ①作出散点图→②由样本点是否呈条状分布来判断两个量是否具有线性相关关系(粗略)或者计算相关系数r (||r 越接近于1,两个变量的线性相关性越强),若存在线性相关关系→③求回归系数 →④写出回归直线方程 ,并利用回归直线方程进行预测说明. 6、线性回归方程:a x b y ???+= 其中,?? ????? ?? -=--=---=∑∑∑∑====x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ??)())((?21 21 121 注意:①线性回归直线经过定点),(y x ,点),(y x 称为样本点的中心。②最小二乘法是使得样 本数据的点到回归直线的距离的平方和最小的方法,以上公式是a ?和b ?的值的最好估计③b ?是斜率的估计值,若b ?>0,x 每增加一个单位,y 的值就增加b ?;若b ?<0,x 每增加一个单位,y 的值就减少|b ?| 7、相关系数(判定两个变量线性相关性):∑∑∑===----= n i n i i i n i i i y y x x y y x x r 1 1 2 21 )()() )(( 注:⑴r >0时,变量y x ,正相关;此时0?>b 相当于回归直线方程中的斜率为正 r <0时,变量y x ,负相关;此时0?r 时,认为两个变量有很强的线性相关关系。如果两个变量不具有 线性相关关系,即使求出回归方程也毫无意义,用其进行预测也是不可信的。 8、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。 9、回归方程拟合效果分析 评价回归效果的三个统计量:总偏差平方和(总的效应);残差平方和(随机误差的效应);

中考数学统计和概率专题训练

中考数学统计和概率专题训练 1. (2012福建)“六?一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图; 类别 儿童玩具 童车 童装 抽查件数 90 请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图; (2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少? 【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135; 儿童玩具占得百分比是(90÷300)×100%=30%。童装占得百分比1-30%-25%=45%。 补全统计表和统计图如下: 类别 儿童玩具 童车 童装 抽查件数 90 75 135 (2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中 合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是 8163.75108 84.25% 300++=。

2.(2012湖北)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答: (1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D粽的人数; (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率. 【答案】解:(1)60÷10%=600(人). 答:本次参加抽样调查的居民有600人。 (2)喜爱C粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A粽的频率:180÷600=30%。 据此补充两幅统计图如图: (3)8000×40%=3200(人). 答:该居民区有8000人,估计爱吃D粽的人有3200人。 (4)画树状图如下:

高三文科数学统计概率总结

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规得知晓情况,对甲、乙、丙、丁四个社区 做分层抽样调查。假设四个社区驾驶员得总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员得人数分别为12,21,25,43,则这四个社区驾驶员得总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 02、某个年级有男生560人,女生420人,用分层抽样得方法从该年级全体学生中抽取一个容量为280得样 本,则此样本中男生人数为____________、 03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样得方法抽取若干人,若抽取得男运动 员有8人,则抽取得女运动员有______人。 04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机 编号, 则抽取得42人中, 编号落入区间[481, 720]得人数为( ) A.11 B.12 C.13 D.14 05、将参加夏令营得600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50得样本, 且随机抽得得号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中得人数依次为( ) A.26, 16, 8 B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电 量都在50到350度之间,频率分布直方图所示、 (I)直方图中x 得值为________; (II)在这些用户中,用电量落在区间[)100,250内得户数为_____、 02、下图就是样本容量为200得频率分布直方图。 根据样本得频率分布直方图估计,样本数据落在[6,10] 内得频数为 ,数据落在(2,10)内得概率约为 03、有一个容量为200得样本,其频率分布直方图如图所示,根据样本得频率分布直方图估计,样本数据落 在区间)10,12??内得频数为 A.18 B.36 C.54 D.72 04、如上题得频率分布直方图,估计该组试验数据得众数为_______,

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

概率与统计高考解答题(文科)专题

概率与统计高考解答题(文科)专题 1、(2018全国新课标Ⅱ文、理)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型 ①:?30.413.5 y t =-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:?9917.5 y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 2、(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 超过m不超过m 第一种生产方式 第二种生产方式 (3 附: 2 2 () ()()()() n ad bc K a b c d a c b d - = ++++ , 2 ()0.0500.0100.001 3.8416.63510.828 P K k k ≥ .

3、(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位: m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 日 用 水 量 [) 00.1 ,[) 0.10.2 ,[) 0.20.3 ,[) 0.30.4 ,[) 0.40.5 ,[) 0.50.6 ,[) 0.60.7 , 频 数 1 3 2 4 9 26 5 日用 水量 [) 00.1 ,[) 0.10.2 ,[) 0.20.3 ,[) 0.30.4 ,[) 0.40.5 ,[) 0.50.6 ,频数 1 5 13 10 16 5 ( (2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

初中数学统计与概率知识点精炼

统计与概率 一、统计的基础知识 1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查; 抽样调查:对调查对象的部分进行调查; 总体:所要考察对象的全体; 个体:总体中每一个考察的对象; 样本:从总体中所抽取的一部分个体; 样本容量:样本中个体的数目(不带单位); 平均数:对于n 个数12,,,n x x x ,我们把121()n x x x n +++ 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ??=-+-++-?? ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比; 会填写频数分布表,会补全频数分布直方图、频数折线图; 频数 样本容量 各 基 础 统 计 量 频 数 的 分 布 与 应 用 2、 3、

二、概率的基础知识 必然事件:一定条件下必然会发生的事件; 不可能事件:一定条件下必然不会发生的事件; 2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件; 3、概率:某件事情A 发生的可能性称为这件事情的概率,记为P(A); P (必然事件)=1,P(不可能事件)=0,0<P(不确定事件)<1; ★概率计算方法: P(A) = ———————————————— 例如 注:对于两种情况时,需注意第二种情况可能发生的结果总数 例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率;P = 1 10 ②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回 ..,再取出一个球,求两个球都是白球的概率;P = 4 25 1、确定事件 事件A发生的可能结果总数 所有事件可能发生的结果总数 运用列举法(常用树状图)计算简单事件发生的概率 …………

高中数学概率统计知识万能公式(文科)

第六部分 概率与统计万能知识点及经典题型Ⅰ 【考题分析】 1、考试题型:选择填空1个,解答题:18(必考) 2、考题分值:17分; 3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率 4、难度系数:0.7-0.8左右,(120分必须全对,100以上者全对) 【知识总结】 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。 分析:?i e 越小越好; 2、残差平方和:21 ?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):2 21 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑, 分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; ()() n n i i i i x x y y x y nx y ---?∑∑

高考文科数学试题分类汇编11:概率与统计

高考文科数学试题分类汇编11:概率与统计 一、选择题 1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的 机会均等,则甲或乙被录用的概率为 ( ) A . 23 B . 25 C . 35 D . 910 【答案】D 2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某 产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( ) A .0.2 B .0.4 C .0.5 D .0.6 【答案】B 3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发 生的概率为.2 1 ,则 AD AB =____ ( ) A . 12 B . 14 C D 【答案】D 4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的 概率是 ( ) A . 2 3 B . 1 3 C . 12 D . 16 【答案】C 5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件. 为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均 分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为 ( ) A . 116 9 B . 367 C .36 D 【答案】B 7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎 叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是 8 7 7 9 4 0 1 0 9 1 x

高中文科数学(统计与概率)综合练习

《概率与统计》练习 求:(Ⅰ)年降雨量在) 200 , 100 [范围内的概率; (Ⅱ)年降雨量在) 150 , 100 [或) 300 , 250 [范围内的概率; (Ⅲ)年降雨量不在) 300 , 150 [范围内的概率; (Ⅳ)年降雨量在) 300 , 100 [范围内的概率. > · 2.高三某班40名学生的会考成绩全部在40分至100分 之间,现将成绩分成6段:) 50 , 40 [、) 60 , 50 [ 、) 70 , 60 [、 ) 80 , 70 [、) 90 , 80 [、] 100 , 90 [.据此绘制了如图所示的频率分布直方图。在这40名学生中, (Ⅰ)求成绩在区间) 90 , 80 [内的学生人数; (Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间] 100 , 90 [内的概率. " @

3.已知集合}1,1(},2,0,2{-=-=B A . ; (Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ; (Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区 域D :?? ? ??-≥≤-+≥+-10202y y x y x 内的概率. . 4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组 C 组 ? 疫苗有效 673 x y 疫苗无效 77 90 z > 已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0. (Ⅰ)求x 的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.

高三文科数学概率与统计

达濠侨中高三数学(文科)第二轮复习题 概率与统计 一 选择题 1.(2015·新课标全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显着 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 2.为了解某社区居民的家庭收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 3.一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( ) A .15 B .16 C .17 D .19 4. 【2015高考新课标文】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π - 6.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是( ) A .23 B .33 C .43 D .53 7.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等

2020高考文科数学主观题专项练习:概率

主观题专项练习:概率 1.[2019·吉林长春市实验中学开学考试]针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”“保留”和“不支持”态度的人数如下表所示: (1)支持”态度的人中抽取了30人,求n 的值; (2)在参与调查的人中,有10人给这项活动打分,打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,8.3,9.7,把这10个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率. 解析:(1)参与调查的总人数为8 000+4 000+2 000+1 000+2 000+3 000=20 000. 因为持“不支持”态度的有2 000+3 000=5 000(人),且从其中抽取了30人,所以n =20 000×305 000 =120. (2)总体的平均数x -=1 10×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2+8.3+9.7)= 9, 与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7, 所以任取一个数,该数与总体平均数之差的绝对值超过0.6的概率P =3 10 . 2.[2019·安徽示范高中联考]某市为了鼓励居民节约用水,拟确定一个合理的月用水量阶梯收费标准,规定一位居民月用水量不超过a 吨的部分按平价收费,超出a 吨的部分按议价收费.为了解居民的月均用水量(单位:吨),现随机调查1 000位居民,并对收集到的数据进行分组,具体情况见下表:

(2)若该市希望使80%的居民月均用水量不超过a吨,试估计a的值,并说明理由; (3)根据频率分布直方图估计该市居民月用水量的平均值. 解析:(1)由已知得6x=1 000-(50+80+220+250+80+60+20),解得x=40. 则月均用水量的频率分布表为 月均 用水 量/吨 [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 3) [3, 3.5) [3.5, 4) [4, 4.5) 频率0.050.080.200.220.250.080.060.040.02 (2)由(1)知前5组的频率之和为0.05+0.08+0.20+0.22+0.25=0.80,故a=2.5. (3)由样本估计总体,该市居民月用水量的平均值为0.25×0.05+0.75×0.08+1.25×0.20+1.75×0.22+2.25×0.25+2.75×0.08+3.25×0.06+3.75×0.04+4.25×0.02=1.92. 3.[2019·河北唐山摸底]某厂分别用甲、乙两种工艺生产同一种零件,尺寸(单位:mm)在[223,228]内的零件为一等品,其余为二等品,在使用两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示. (1)分别计算抽取的用两种工艺生产的零件尺寸的平均数; (2)已知用甲工艺每天可生产300个零件,用乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个,视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高. 解析:(1)使用甲工艺生产的零件尺寸的平均数x - 甲= 1 10 ×(217+218+222+225+226

2018年高考文科数学分类之统计与概率

统计与概率 一、选择题: 1.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3B.0.4C.0.6D.0.7 3.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为() A.0.6B.0.5C.0.4D.0.3 二、填空题: 4.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽样,则最适合的抽样方法是______. 5.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为___________. 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为___________. 7.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是___________(结果用最简分数表示).三、解答题: 8.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表

高中数学统计与概率测试题

高中数学统计与概率测试 题 Revised by Liu Jing on January 12, 2021

高中数学统计与概率测试题一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A. 1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为元 D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26

4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A. 13 B. 12 C. 10 D. 9 5 ,,, A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是 A.1 3 B. 1 2 C. 5 9 D. 2 3 6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图 根据频率分布直方图,下列说法正确的是 ①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值 ②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值 ③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值 ④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A.①②③ B.②③④ C.①③④ D.①④ 7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为() A. 5 B. 4 C. 3 D. 2

高考文科数学常考题型训练统计概率

常考题型大通关:第19题统计概率 1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示. (1)下表是年龄的频数分布表,求正整数a,b的值; (2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数; (3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率. 2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示. (1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表: 年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60] 频数 5 10 10 5 10 赞成人数 4 6 8 4 9 1.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?

15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[) 本亊件,并求选取2人中恰有1人持不赞成态度的概率. 4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者 . 组号分组频数频率 160,165 5 0.05 第1组[) 第2组[165,170)0.35 第3组[170,175) 第4组[175,180)20 0.20 第5组[180,185)10 合计100 1.00 1.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;

高三文科数学统计概率总结

高三文科数学统计概率 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对 甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() 02、A、101 B、808 C、1212 D、2012 03、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽 取一个容量为280的样本,则此样本中男生人数为____________. 04、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若 干人,若抽取的男运动员有8人,则抽取的女运动员有______人。 05、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() 06、A.11 B.12 C.13 D.14 07、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取 一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营 区,三个营区被抽中的人数依次为() 08、A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间, 频率分布直方图所示. 02、(I)直方图中x的值为________; 100,250内的户数为_____. 03、(II)在这些用户中,用电量落在区间[) 04、下图是样本容量为200的频率分布直方图。根据样本的 频率分布直方图估计,样本数据落在[6,10]内的频数 为,数据落在(2,10)内的概率约为

相关文档
相关文档 最新文档