文档库 最新最全的文档下载
当前位置:文档库 › 2019年高考数学理科全国1卷19题-解析几何说题

2019年高考数学理科全国1卷19题-解析几何说题

2019年高考数学理科全国1卷19题-解析几何说题
2019年高考数学理科全国1卷19题-解析几何说题

2019年高考数学理科全国1卷19题说题

已知抛物线2:3C y x =的焦点为F ,斜率为3

2

的直线l 与C 的交点分别为,A B ,与x 轴

的交点为P 。

(1)若||||4AF BF +=,求l 的方程. (2)若3AP PB =u u u r u u u r

,求||AB

【背景】本题是2019年高考数学理科全国1卷19题。对比往年的圆锥曲线大题,可见今年理科的圆锥曲线大题有降低难度、减少运算量的趋势。

【分析】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用。解题的第一个关键是能通过直线与抛物线方程的联立,通过韦达定理构造等量关系;第二个关键是要善用转化与化归思想:用抛物线的定义转

化||||4AF BF +=,用相似三角形或线性运算破译3AP PB =uuu r uu u r

。本题的第一问来自于教材,

稍高于教材,是2018年全国二卷圆锥曲线大题的改编题,第二问是个常规题型,在椭圆、双曲线及抛物线都出过很多类型题:

题源1:【2018年全国I 理8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且

斜率为2

3的直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = ( )

A 。5

B 。6

C 。7

D 。8

题源2:【2018年全国Ⅱ卷理】设抛物线24C y x =:的焦点为F ,过F 且斜率为

(0)k k >的直线l 与C 交于A ,B 两点,||8AB =。

(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程。 【解法分析】 (1)设直线l :3,2y x t =

+1122(,),(,),A x y B x y 由抛物线定义得1252

x x +=; 联立直线方程与抛物线方程,利用韦达定理可构造关于t 的方程,解方程求得结果; (2)设直线l :2

,3

x y m =

+联立直线方程与抛物线方程,利用3AP PB =u u u r u u u r 可得123,y y =-结合韦达定理求出123,1y y ==-;根据弦长公式可求得结果. 【参考解法】

解法1:(1)设直线l 与x 轴交于(,0)P m ,方程为2

由2233x y m y x ?=+???=?

得2230y y m --=,设112(,),(,A x y B x y 121223y y y y m +==-,, =4120m ?+> 12323||||=4232AF BF x x y y m +=++=12(+)+2+ 得7=12m , 因此直线l 的方程为27,31228x y y =+=即

(2)由3AP PB =u u u r u u u r

,得123,y y =- 又122y y +=,

从而2232,y y -+=故123,1y y ==-,

代入C 的方程得1213,3x x ==,故得A(3,3),1

(,1)3

B -,

故||3

AB =

解法2:设直线l 的方程为3

,2

y x t =

+1122(,),(,),A x y B x y 由题设得3(,0)4F ,故123||||2AF BF x x +=++,由题设得125

2x x +=

由2323y x t y x ?

=+???=?

,得22912(1)40x t x t +-+=, 则22=144(-1)494144(12)0t t t ?-??=->,124

(1)3

x x t +=--

从而45(1)32t --=,得78

t =-

因此直线l 的方程即37

28

y x =-

(2)由(1)22

912(1)40x t x t +-+=,得124(1)3x x t +=--

1122222

,0),(,),(,)

333P t AP t x y PB t x y -=---=+u u u r u u u r 又( 由3AP PB =u u u r u u u r ,得212

23=3t x t x y y +--12

,=-3

可得2122

=1+)=233x t x t

--(,

故128|||=

33AB x x =-=.

解法3:设直线l 的方程为3,2y x t =

+1122(,),(,),A x y B x y 由题设得3

(,0)4

F ,故

||||AF BF +=

1212333

()()4442

x x x x ==+++=++=

从而得125

2x x +=

, 以下略。

解法4:设直线l 的方程为3

(),2

y x m =-1122(,),(,),A x y B x y 以下略。

解法5(点差法):(1)设直线l 的方程为3

,2

y x t =+1122(,),(,),A x y B x y

由题设得3(,0)4F ,故123||||2AF BF x x +=++, 由题设得125

2

x x +=

221212*********

33,()

()2

y y y y x x y y y y x x --=-+=+-由得3= 125

2,(,1)4y y AB M ∴+=弦的中点为,而且M 在抛物线内部,

因此直线l 的方程为3537

1(),2428y x y x -=-=-即,以下略。

解法6:(1) 由题设得3

(,0)4

F ,设A(3a 2,3a),B(3b 2,3b),

由l 的斜率为32,得22a b ≠, 22

3332

3323

a b a b a b -=?+=-, 由抛物线的定义,得2222335

||||(3)(3)4446

AF BF a b a b +=+++=?+=

2233335

(,)(,1)224a b a b AB M ++∴=弦的中点为,而且M 在抛物线内部,

因此直线l 的方程为3537

1(),2428

y x y x -=-=-即

(2)由3AP PB =u u u r u u u r

,可得033(30),a b -=-故-3a b =

又由 (1)的23a b +=,从而得1

1,3

a b ==-

故A(3,3),1

(,1)3

B -,

故||3AB =。

解法7:(1) 直线l 与x 轴的交点为P (m,0),设A(3a 2,3a),B(3b 2

,3b),

由题设得3(,0)4F , l 的斜率为32,

得22a b ≠, 223332

3323

a b a b a b -=?+=

-, 由抛物线的定义,得2222335

||||(3)(3)4446

AF BF a b a b +=+++=?+=

又2

2(3,3),(3,3)AP m a a BP m b b =-=-u u u r u u u r ,

由,AP BP u u u r u u u r 共线,得223(3)3(3)b m a a m b -=-

故2222233()()7

33212

ab a b a b a b m ab a b -+-+=

=-=-=- 因此直线l 的方程为37()212y x =-,即37

28

y x =-。

(2)设(,0)P m ,由l 的斜率为32 ,可设l

的参数方程为x m y ?

=+????=??

(t 为参数)

代入23y x =

,整理得29390t m --= 设点A,B 对应的参数分别为12,t t

则12t t +

由3AP PB =u u u r u u u r

,得12=3t t -

得12=t t -

故12|||AB t t =- 。

上述解法采用标准形式的参数方程,运算量稍大,如用一般形式求解,更加简捷:

设(,0)P m ,由l 的斜率为3

2,设l 的参数方程为23x m t y t =+??=?(t 为参数)

代入23y x =,整理得29630t t m --=

设点A,B 对应的参数分别为12,t t 则122

=3t t +

由3AP PB =u u u r u u u r ,得12=3t t - 得121=1=3t t - ,

故12|||==3AB t t =-。

2019年高考数学模拟试题含答案

2019年高考数学模拟试题含答案 一、选择题 1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16 C .8 D .12 2.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A . 12 B . 13 C . 16 D . 112 3.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14 - B . 14 C .23 - D . 23 4.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+ D .0.3 4.4y x =-+ 5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张 卡片上的数学之和为偶数的概率是( ) A . 12 B . 13 C . 23 D . 34 6.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ?N 中元素的个数为( ) A .2 B .3 C .5 D .7 7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A . 54 钱 B . 43 钱 C . 32 钱 D . 53 钱 8.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( ) A .(2,0) B .(0,-2) C .(-2,0) D .(0,2) 9.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 10.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α,m n ⊥,则n α⊥;

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2019年常德市数学高考模拟试卷及答案

2019年常德市数学高考模拟试卷及答案 一、选择题 1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16 C .8 D .12 2.如图,点是抛物线 的焦点,点,分别在抛物线和圆 的实 线部分上运动,且 总是平行于轴,则 周长的取值范围是( ) A . B . C . D . 3.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .100 4.函数()1 ln 1y x x = -+的图象大致为( ) A . B . C . D . 5.已知a 与b 均为单位向量,它们的夹角为60?,那么3a b -等于( ) A 7B 10 C 13 D .4 6.若θ是ABC ?的一个内角,且1 sin θcos θ8 ,则sin cos θθ-的值为( ) A .3 B 3C .5- D 5 7.下列函数中,最小正周期为π,且图象关于直线3 x π = 对称的函数是( )

A .2sin 23y x π?? =+ ?? ? B .2sin 26y x π?? =- ?? ? C .2sin 23x y π?? =+ ??? D .2sin 23y x π? ?=- ?? ? 8.已知函数()3sin 2cos 2[0,]2 f x x x m π =+-在上有两个零点,则m 的取值范围是 A .(1,2) B .[1,2) C .(1,2] D .[l,2] 9.5 22x x ??+ ?? ?的展开式中4x 的系数为 A .10 B .20 C .40 D .80 10.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4 π α+的值等于( ) A . 1318 B . 3 22 C . 1322 D . 318 11.若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 12.设双曲线22221x y a b -=(0a >,0b >)的渐近线与抛物线2 1y x =+相切,则该双曲 线的离心率等于( ) A .3 B .2 C .6 D .5 二、填空题 13.已知曲线ln y x x =+在点()1,1处的切线与曲线()2 21y ax a x =+++相切,则 a= . 14.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120?,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____. 15.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

2019年高考理科全国1卷数学(含答案解析)

2019年普通高等学校招生全国统一考试 理科数学 本试卷共4页,23小题,满分150分,考试用时120分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 2 2 +11()x y += B. 22 (1)1x y -+= C. 22 (1)1x y +-= D. 2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则( ) A. a b c << B. a c b << C. c a b << D. b c a << 4. ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体 .若某人满足上述两个黄金分割

2019年高考文科数学模拟试题精编(文)

高考文科数学模拟试题精编(一) (考试用时:120分钟 试卷满分:150分) 注意事项: 1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 3.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集Q ={x |2x 2-5x ?0,x ∈N},且P ?Q ,则满足条件的集合P 的个数是( ) A .3 B .4 C .7 D .8 2.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1 z =( ) A .i B .-i C .2i D .-2i 3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( ) A .80 B .85 C .90 D .95 4.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )

A.34 B.23 C.12 D.1 3 5.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( ) 6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )=-2x ,则f (1)+f (4)等于( ) A.3 2 B .-3 2 C .-1 D .1 8.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为781,则由此可估计π的近似值为( ) A .3.119 B .3.124

2019年高考数学模拟试题(含答案)

2019年高考数学模拟试题(含答案) 一、选择题 1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A . 12 B . 13 C . 23 D . 34 2.若圆与圆22 2:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-11 3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( ) A .0 B .2 C .4 D .14 4.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A .2 B .1 C .-2 D .-1 5. ()()3 1i 2i i --+=( ) A .3i + B .3i -- C .3i -+ D .3i - 6.数列2,5,11,20,x ,47...中的x 等于( ) A .28 B .32 C .33 D .27 7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220 B .2755 C . 2125 D . 27 220 8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他

十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32 B .0.2 C .40 D .0.25 9.设双曲线22221x y a b -=(0a >,0b >)的渐近线与抛物线2 1y x =+相切,则该双曲 线的离心率等于( ) A .3 B .2 C .6 D .5 10.在[0,2]π内,不等式3 sin 2 x <-的解集是( ) A .(0)π, B .4,33 ππ?? ??? C .45,33ππ?? ??? D .5,23ππ?? ??? 11.将函数()sin 2y x ?=+的图象沿轴向左平移8 π 个单位后,得到一个偶函数的图象,则?的一个可能取值为( ) A . B . C .0 D .4 π- 12. sin 47sin17cos30 cos17- A .3 B .12 - C . 12 D 3二、填空题 13.若双曲线22 221x y a b -=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程 是___________. 14.曲线2 1 y x x =+ 在点(1,2)处的切线方程为______________. 15.在ABC 中,60A =?,1b =3sin sin sin a b c A B C ________. 16.在区间[1,1]-上随机取一个数x ,cos 2 x π的值介于1[0,]2 的概率为 . 17.已知函数()sin ([0,])f x x x π=∈和函数1 ()tan 2 g x x = 的图象交于,,A B C 三点,则ABC ?的面积为__________. 18.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45?,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则 ACB =∠______________. 19.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2019年高考模拟试卷文科数学(一) 学生版

2019年高考考前冲刺模拟试卷 绝密 ★ 启用前 2019年普通高等学校招生全国统一考试 文 科 数 学(一) 注意事项: 1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、考生号填写在答题卡上。 2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。 3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。 4、考试结束,将本试卷和答题卡一并交回。 第Ⅰ卷 一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1 {|24}4 x A x =≤≤ ,{|B x y ==,则A B =( ) A .}2{ B .}0{ C .[2,2]- D .[0,2] 2.若复数z 满足(1)12z i i +=+,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知圆2 2 :1O x y +=,直线:0l x y m ++=,若圆O 上总存在到直线l 的距离为1的点,则实数m 的取值范围为( ) A .(,[22,)-∞-+∞ B .[- C .(,1][1,)-∞-+∞ D .[1,1]- 4.《张丘建算经》是早于《九章算术》的我国另一部数学著作,在《算经》中有一题:某女子善于织布,一天比一天织的快,而且每天增加的数量相同,已知第一天织布5尺,30天共织布390尺, 则该女子织布每天增加( ) A . 7 4 尺 B . 29 16尺 C . 15 8尺 D . 31 16尺 5.已知直线x y =与双曲线)0,0(122 22>>=-b a b y a x 无公共点,则双曲线离心率的取值范围 为( ) A .)+∞ B .(1 C .(-∞ D .]3,2[ 6.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的 半径为3,则制作该手工表面积为( ) A .π5 B .π01 C .π512+ D .2412π+ 7.在ABC ?中,2=?ABC S ,5AB =,1AC =,则BC =( ) A .52 B .32 C .32或34 D .52或24 8.从某中学抽取100名学生进行阅读调查,发现每年读短篇文章量都在50篇至350篇之间,频率 分布直方图如图所示,则对这100名学生的阅读量判断正确的为( ) A .a 的值为0.004 B .平均数约为200 C .中位数大约为183.3 D .众数约为350 9.已知椭圆)0(122 22>>=+b a b y a x 左、右焦点分别为1F 、2F ,P 为椭圆上一点,且12||||PF PF λ=, 若λ的最小值为 2 1 ,则椭圆的离心率为( ) A . 21 B . 2 2 C . 3 1 D . 3 5 10.已知) ,(2 0π α∈,则21tan tan 2tan α αα-+取得最小值时α的值为( ) 此 卷只 装 订不 密封 班级 姓名 准考证号 考场号 座位号

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

2019年高考数学模拟试题及答案

2019年高考数学模拟试题及答案 一、选择题 1.若圆与圆22 2:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-11 2.若满足 sin cos cos A B C a b c ==,则ABC ?为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形 D .有一个内角为30的等腰三角形 3.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x + C .可以是该区间内的任一函数值()(i i f ξξ∈1[,]i i x x +) D .以上答案均正确 4.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是 ,若 0cAC aPA bPB ++=,则△ABC 的形状为( ) A .直角三角形 B .钝角三角形 C .等边三角形 D .等腰三角形但不是等边三角形. 5.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2 π )的部分图象如图所示,则ω、φ的值分别是( )

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

相关文档
相关文档 最新文档