文档库 最新最全的文档下载
当前位置:文档库 › 2020广东省高考数学试卷(文科)

2020广东省高考数学试卷(文科)

2020广东省高考数学试卷(文科)
2020广东省高考数学试卷(文科)

2015年广东省高考数学试卷(文科)

一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)

1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}

2.(5分)已知i是虚数单位,则复数(1+i)2=()

A.2i B.﹣2i C.2 D.﹣2

3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()

A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx

4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10

5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()

A.B.2 C.2 D.3

6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()

A.l与l1,l2都不相交B.l与l1,l2都相交

C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交

7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()

A.0.4 B.0.6 C.0.8 D.1

8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9

9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则?=()

A.5 B.4 C.3 D.2

10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50

二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)

11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)

12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.

13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.

坐标系与参数方程选做题

14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.

几何证明选讲选做题

15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)

16.(12分)已知tanα=2.

(1)求tan(α+)的值;

(2)求的值.

17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)

全国成人高考数学试卷及答案(word版本)

绝密★启用前 成人高等学校招生全国统一考试 数学(文史财经类) 第Ⅰ卷(选择题, 共85分) 一、选择题:本大题共17小题, 每小题5分, 共85分, 在每小题给出的4个选项中只有一项是符合题目要求的. 1.设全集=U {1,2,3,4}, 集合M={3,4} , 则=M C U A.{2, 3} B.{2, 4} C.{1, 4} D .{1, 2} 2.函数x y 4cos =的最小正周期为 A. 4π B.2 π C. π D.π2 3.设 甲:0=b 乙:函数b kx y +=的图像经过坐标原点, 则 A 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 4.已知,21tan = α则)4 tan(πα+= A.-3 B.31- C.31 D.3 5.函数21x y -=的定义域是 A.{x x |≥-1} B. {x x |≤1} C. {x x |≤-1} D. {|x -1≤x ≤1} 6.设,10<x 7.不等式|21+x |2 1>的解集为 A. {|x 01<<-x } B. {|x 10-<>x x 或} C. {|x 1->x } D. {|x 0

2019年全国统一高考数学试卷文科Ⅰ

2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题(本大题共12小题,共60.0分) 1.设z=,则|z|=() A. 2 B. C. D. 1 2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩?U A= () A. B. C. D. 6, 3.已知a=log20.2,b=20.2,c=0.20.3,则() A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂 维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚 脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿 长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是( ) A. 165 cm B. 175 cm C. 185 cm D. 190 cm 5.函数f(x)=在[-π,π]的图象大致为() A. B. C. D. 6.某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些 新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生

7.tan255°=() A. B. C. D. 8.已知非零向量满足||=2||,且(-)⊥,则与的夹角为() A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. B. C. D. 10.双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率 为() A. B. C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-, 则=() A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若 ,,则C的方程为() A. B. C. D. 二、填空题(本大题共4小题,共20.0分) 13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________. 14.记S n为等比数列{a n}的前n项和,若a1=1,S3=,则S4=______. 15.函数f(x)=sin(2x+)-3cos x的最小值为______. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离 均为,那么P到平面ABC的距离为______.

2019年全国统一高考数学试卷(文科)(全国一卷)

绝密★启用前 2019年全国统一高考数学试卷(文科)(全国新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I e A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512 -( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos x x x x ++在[—π,π]的图像大致为

A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°= A.-2-3B.-2+3C. 2-3D.2+3 8.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为 A.π 6 B. π 3 C. 2π 3 D. 5π 6 9.如图是求 1 1 2 1 2 2 + + 的程序框图,图中空白框中应填入 A.A= 1 2A + B.A= 1 2 A +C.A= 1 12A + D.A= 1 1 2A + 10.双曲线C: 22 22 1(0,0) x y a b a b -=>>的一条渐近线的倾斜角为130°,则C的离心率为

(完整版)高三文科数学试题及答案

高三1学期期末考试 数学试卷(文) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的.请把答案直接涂在答题..卡.相应位置上..... . 1. 已知集合{1,1},{|124},x A B x R =-=∈≤<则A B =I ( ) A .[0,2) B .{ 1 } C .{1,1}- D .{0,1} 2. 下列命题中错误的是 ( ) A .如果平面⊥α平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面⊥α平面γ,平面⊥β平面γ,1=?βα,那么直线⊥l 平面γ D .如果平面⊥α平面β,那么平面α内所有直线都垂直于平面β 3. 已知}{n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为}{n a 的前n 项和, *N n ∈,则10S 的值为 ( ) A .110- B .90- C .90 D .110 4. 若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补, 记(,)a b a b ?=-, 那么(,)0a b ?=是a 与b 互补的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 5. 若,a b R ∈,且0ab >,则下列不等式中,恒成立的是 ( ) A .222a b ab +> B .a b +≥ C .11a b +> D .2b a a b +≥ 6. 已知在平面直角坐标系xOy 上的区域D 由不等式组02x y x ?≤≤?≤??≤?给定。若(,)M x y 为D

成人高考数学试卷

成人高中数学 一、填空 1.若集合A={x|x≥-4},B={x|x >1},则A∩B= {|1}x x > ,A∪B= {|4}x x ≥- 2.已知函数 ,且f(1)=3,则m= 7 3.计算 a (12a )2= a b ++ 4.若函数y= - 12cosx+b 最大值为34,则b= 14 5.若函数sinx= -35 ,且tgx<0,则cosx= 45 tgx= 34- 6.已知点A(1,2), B(2,-3), C(3,10),其中在曲线2210x xy y +-+=上的点是(1,2)A 7.原点到直线 3x-2y+1=0 的距离是13 8.直线x-y-2=0和 y=2x+b 的交点为 (1,1y ),则1y = -1 b= -3 9.已知2226x y +=,A(-3,2),B(-1,-5),C(0,5.1),D(4, 那么点 (0,5.1)C 在圆外(1,5),(4,B D --在圆上;(3,2),(5,0)A E --在圆内 10.椭圆2214924x y += 长轴的长为 14 ,短轴的长为,焦距长为10,离心率为57 e =。 11.等差数列的首项为10,公差为-1,则它的通项公式为11n a n =-,前5项之和为40 。 12.sin15°= 4log 64=3;23log (log 81)=2;lg2+lg5=1;21log 34-= 49 13.二次函数y=-32x +2x-4 的图像顶点坐标为111(,)33-,对称轴为13x =,在区间1(,]3 -∞上为递增。 14.计算 2263P C -= 27 二、选择题 1.在下列不等式中,解集为空集的是( B ) A |x-1|+1>0 B |1-x|+1<0 C 1-|1-x|<0 D |x-1|-1<0 2.二次函数2241y x x =-++的图像的顶点在( A ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 3.若函数 y=2x+m-3 是奇函数,则m 的值为( C ) A 0 B -3 C 3 D 1 4.若角x 的终边经过点P (a,b )(a<0

2018高考数学全国3卷文科试卷

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试(全国3卷) 文科数学 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012, , 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫 卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

4.若1 sin 3 α=,则cos2α=( ) A .89 B . 79 C .79 - D .89 - 5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A .0.3 B .0.4 C .0.6 D .0.7 6.函数 ()2tan 1tan x f x x = +的最小正周期为( ) A . 4 π B . 2 π C .π D .2π 7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ 8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2 222x y -+=上,则ABP ?面积的取值围是( ) A .[]26, B .[]48, C . D .??

成人高考数学真题及答案

一、选择题:1~10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内. 1. A.2/3 B.1 C.3/2 D.3 答案:C 2.设函数y=2x+sinx,则y/= A.1-cosx B.1+cosx C.2-cosx D.2+cosx 答案:D 3.设函数y=e x-2,则dy= A.e x-3dx B.e x-2dx C.e x-1dx D.e x dx 答案:B 4.设函数y=(2+x)3,则y/= A.(2+x)2 B.3(2+x)2 C.(2+x)4 D.3(2+x)4 答案:B 5.设函数y=3x+1,则y/= A.0 B.1 C.2 D.3 答案:A 6. A.e x B.e x-1 C.e x-1 D.e x+1 答案:A

7. A.2x2+C B.x2+C C.1/2x2+C D.x+C 答案:C 8. A.1/2 B.1 C.2 D.3 答案:C 9.设函数z=3x2y,则αz/αy= A.6y B.6xy C.3x D.3X2 答案:D 10. A.0 B.1 C.2 D.+∞ 答案:B 二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上. 11. 答案:e2 12.设函数y=x3,则y/= 答案:3x2 13.设函数y=(x-3)4,则dy= 答案:4(x-3)3dx 14.设函数y=sin(x-2),则y"=

答案:-sin(x-2) 15. 答案:1/2ln|x|+C 16. 答案:0 17.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为答案:3x+2y-2z=0 18.设函数x=3x+y2,则dz= 答案:3dx+2ydy 19.微分方程y/=3x2的通解为y= 答案:x3+C 20. 答案:2 三、解答题:21-28题,共70分。解答应写出推理、演算步骤。 21.(本题满分8分)

高考数学试卷文科001

高考数学试卷(文科) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩?∪A=() A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5} 2.(5分)已知,则双曲线C1:与C2: 的() A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等 3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A.(¬p)∨(¬q)B.p∨(¬q) C.(¬p)∧(¬q)D.p∨q 4.(5分)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y与x负相关且=2.347x﹣6.423; ②y与x负相关且=﹣3.476x+5.648; ③y与x正相关且=5.437x+8.493; ④y与x正相关且=﹣4.326x﹣4.578. 其中一定不正确的结论的序号是() A.①②B.②③C.③④D.①④ 5.(5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()

A.B. C.D. 6.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是() A.B.C.D. 7.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为() A.B.C.D. 8.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R上为() A.奇函数B.偶函数C.增函数D.周期函数 9.(5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为() A.31200元B.36000元C.36800元D.38400元 10.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是() A.(﹣∞,0)B.(0,)C.(0,1)D.(0,+∞) 二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.

2018年全国高考文科数学试题及答案汇总

2018年全国高考文科数学试题及答案汇总 目录 全国卷一 ----------------------- 2 全国卷二 -----------------------12 全国卷三 -----------------------20 北京卷 -------------------------29 天津卷 -------------------------40 江苏卷 -------------------------49 浙江卷 -------------------------64

2018年高考全国卷一文科数学试题及答案 (试卷满分150分,考试时间120分钟) 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12, C .{}0 D .{}21012--,, ,, 2.设1i 2i 1i z -= ++,则z = A .0 B .1 2 C .1 D .2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为

成人高考数学试题

成考数学试卷(文史类)题型分类 一、集合与简易逻辑 2001年 (1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N I U 是( ) (A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{ (2) 命题甲:A=B ,命题乙:sinA=sinB . 则( ) (A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件; (C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。 2002年 (1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A I 等于( ) (A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5} (2) 设甲:3>x ,乙:5>x ,则( ) (A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年 (1)设集合{ } 22 (,)1M x y x y =+≤,集合{ } 22 (,)2N x y x y =+≤,则集合M 与N 的关系是 (A )M N=M U (B )M N=?I (C )N M ? (D )M N ? (9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。则 (A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。 2004年 (1)设集合{},,,M a b c d =,{},,N a b c =,则集合M N=U (A ){},,a b c (B ){}d (C ){},,,a b c d (D )? (2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方,则 (A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2005年 (1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合P Q=I (A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4 (7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则 (A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。 2006年 (1)设集合{}M=1012-,,,,{}N=123,,,则集合M N=I (A ){}01, (B ){}012,, (C ){}101-,, (D ){}101 23-,,,, (5)设甲:1x =;乙:2 0x x -=. (A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。 2007年 (8)若x y 、为实数,设甲:2 2 0x y +=;乙:0x =,0y =。则 (A )甲是乙的必要条件,但不是乙的充分条件; (B )甲是乙的充分条件,但不是乙的必要条件;

全国统一高考数学试卷(文科)(全国一卷)

2011年全国统一高考数学试卷(文科)(新课标) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有() A.2个B.4个C.6个D.8个 2.(5分)复数=() A.2﹣iB.1﹣2iC.﹣2+iD.﹣1+2i 3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x| 4.(5分)椭圆=1的离心率为() A.B.C.D. 5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是() A.120B.720C.1440D.5040

6.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为() A.B.C.D. 7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=() A.﹣B.﹣C.D. 8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为() A.B.C.D. 9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为() A.18B.24C.36D.48 10.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,) 11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称 B.y=f(x)在(0,)单调递增,其图象关于直线x=对称

2019高考数学卷文科

★启用前 2019年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I e A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos x x x x ++在[—π, π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求1 12122 + +的程序框图,图中空白框中应填入 A .A = 1 2A + B .A =12A + C .A = 1 12A + D .A =112A +

全国卷高考文科数学试卷及答案

2016年普通高等学校招生全统一考试 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合{ }3,2,1=A ,{} 92 <=x x B ,则=B A (A ){}3,2,1,0,1,2-- (B ) {}2,1,0,1- (C ){}3,2,1 (D ){}2,1 (2) 设复数z 满足i i z -=+3,则=z (A )i 21+- (B )i 21- (C )i 23+ (D )i 23- (3) 函数)sin(?ω+=x A y 的部分图像如图所示,则 (A ))62sin(2π - =x y (B ))32sin(2π -=x y (C ))6 2sin(2π + =x y (D ))3 2sin(2π +=x y (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )π12 (B )π3 32 (C )π8 (D )π4 (5) 设F 为抛物线C :x y 42 =的焦点,曲线)0(>= k x k y 与C 交于点P ,x PF ⊥轴,则=k (A )21 (B )1 (C )2 3 (D )2 (6) 圆013822 2=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a (A )3 (B )4 3 - (C )3 (D )2 (7) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表 面积为 (A )20π (B )24π (C )28π (D )32π

(完整版)2019年全国成人高考数学试卷及答案(word版本)

绝密★启用前 2019年成人高等学校招生全国统一考试 数学(文史财经类) 第Ⅰ卷(选择题,共85分) 一、选择题:本大题共17小题,每小题5分,共85分,在每小题给出的4个选项中只有一项是符合题目要求的. 1.设全集=U {1,2,3,4}, 集合M={3,4} ,则=M C U A.{2,3} B.{2,4} C.{1,4} D .{1,2} 2.函数x y 4cos =的最小正周期为 A. 4π B.2 π C. π D.π2 3.设 甲:0=b 乙:函数b kx y +=的图像经过坐标原点, 则 A 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 4.已知,21tan = α则)4 tan(πα+= A.-3 B.31- C.31 D.3 5.函数21x y -=的定义域是 A.{x x |≥-1} B. {x x |≤1} C. {x x |≤-1} D. {|x -1≤x ≤1} 6.设,10<x 7.不等式|21+x |2 1>的解集为 A. {|x 01<<-x } B. {|x 10-<>x x 或} C. {|x 1->x } D. {|x 0

2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 文科数学(必修+选修) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos300?= (A)2- 12 (C)12 (D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1 cos300cos 36060cos 602 ?=?-?=?= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则() U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则() U N M ?=e{}1,3,5{}2,3,5?={}3,5

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高考全国卷1文科数学真题及答案

2019年高考文科数学真题及答案全国卷I 第Ⅰ卷 一、选择题:本大题共12小题, 每小题5分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.(2019课标全国Ⅰ, 文2) 2 12i 1i +(-) =( ). A . 11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 2.(2019课标全国Ⅰ, 文1)已知集合A ={1,2,3,4}, B ={x |x =n 2 , n ∈A }, 则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 3.(2019课标全国Ⅰ, 文3)从1,2,3,4中任取2个不同的数, 则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 4.(2019课标全国Ⅰ, 文4)已知双曲线C :22 22=1x y a b -(a >0, b >0)5 则 C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =1 2x ± D .y =±x 5.(2019课标全国Ⅰ, 文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R , x 3 =1-x 2 , 则下列命题中为真命题的是( ). A .p ∧q B .?p ∧q C .p ∧?q D .?p ∧?q 6.(2019课标全国Ⅰ, 文6)设首项为1, 公比为 2 3 的等比数列{a n }的前n 项和为S n , 则( ). A .Sn =2an -1 B .Sn =3an -2 C .Sn =4-3an D .Sn =3-2an 7.(2019课标全国Ⅰ, 文7)执行下面的程序框图, 如果输入的t ∈[-1,3], 则输出的s 属于( ). A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 8.(2019课标全国Ⅰ, 文8)O 为坐标原点, F 为抛物线C :y 2 =2x 的焦点, P 为C 上一点, 若|PF |=42 则△POF 的面积为( ). A .2 B .22.3.4 9.(2019课标全国Ⅰ, 文9)函数f (x )=(1-cos x )sin x 在[-π, π]的图像大致为( ).

(完整word)2017年高考全国一卷文科数学试卷

2017年普通高等学校招生全国统一考试(I 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 已知集合}023|{}2|{>-=<=x x B x x A ,,则 A. }23 |{<=x x B A I B. ?=B A I C. }2 3 |{<=x x B A Y D. R =B A Y 2. 为评估一种农作物的种植效果,选了n 块地作试验田。这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A. x 1,x 2,…,x n 的平均数 B. x 1,x 2,…,x n 的标准差 C. x 1,x 2,…,x n 的最大值 D. x 1,x 2,…,x n 的中位数 3. 下列各式的运算结果为纯虚数的是 A. i(1 + i)2 B. i 2(1 - i) C. (1 + i)2 D. i(1 + i) 4. 如图,正方形ABCD 内的图形来自中国古代的太极图。正方形内切圆中的黑色部分 和白色部分关于正方形的中心成中心对称。在正方形内随机取一点,则此点取自黑 色部分的概率是 A. 41 B. 8π C. 2 1 D. 4 π 5. 已知F 是双曲线C :13 2 2 =-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 A. 3 1 B. 2 1 C. 3 2 D. 2 3 6. 如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中, 直线AB 与平面MNQ 不平行的是 A. B. C. D. 2017.6

(完整版)高三数学文科模拟试题

数学(文)模拟试卷 1.复数2i i 1 z = -(i 为虚数单位)在复平面内对应的点所在象限为() 第二象限 B.第一象限 C.第四象限 D.第三象限 2.已知命题p :0x ?>,总有(1)1x x e +>,则p ?为( ) A .00x ?≤,使得0 0(1)1x x e +≤ B .0x ?>,总有(1)1x x e +≤ C .00x ?>,使得0 0(1)1x x e +≤ D .0x ?≤,总有(1)1x x e +≤ 3.已知集合{}{} 21,0,1,2,3,20,A B x x x =-=->则A B =I () A .{3}= B.{2,3} C.{-1,3} D.{1,2,3} 4.如下图所示是一个几何体的三视图,则这个几何体外接球的表面积为( ) A .8π B .16π C. 32π D .64π 5.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,4则输出v 的值为( ) A .399 B .100 C .25 D .6 6.要得到函数x x x f cos sin 2)(=的图象,只需将函数x x x g 22sin cos )(-=的图象( ) A .向左平移 2π个单位 B .向右平移2π个单位 C .向左平移4π个单位D .向右平移4 π 个单位

7.若变量x ,y 满足约束条件1021010x y x y x y -+≥?? --≤??++≥? ,则目标函数2z x y =+的最小值为( ) A .4 B .-1 C. -2 D .-3 8.在正方形内任取一点,则该点在此正方形的内切圆外的概率为( ) A . 44 π- B . 4 π C .34π- D .24π- 9.三棱锥P ABC PA -⊥中,面ABC ,1,3AC BC AC BC PA ⊥===,,则该三棱锥外接球的表面 积为 A .5π B .2π C .20π D .7 2 π 10.已知 是等比数列,若,数列的前项和为,则为 ( ) A . B . C . D . 11.已知函数2log ,0,()1(),0,2 x x x f x x >?? =?≤??则((2))f f -等于( ) A .2 B .-2 C . 1 4 D .-1 12.设双曲线22 221(00)x y a b a b -=>>,的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的 右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则2e =( ) A .322+B .522- C .12+D .422-二.填空题 13.已知平面向量a ,b 的夹角为 23 π ,且||1=a ,||2=b ,若()(2)λ+⊥-a b a b ,则λ=_____. 14.曲线y =2ln x 在点(1,0)处的切线方程为__________. 15.已知椭圆22 221(0)x y C a b a b +=>>:的左、右焦点为F 1,F 2,3,过F 2的直线l 交椭圆C 于A , B 两点.若1AF B ?的周长为43 C 的标准方程为 . 16.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ?组成的集合:对于函数 ()x ?,存在一个正数M ,使得函数()x ?的值域包含于区间[,]M M -。例如,当31()x x ?=,2()sin x x ?=时,1()x A ?∈,2()x B ?∈。现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ?∈,x R ?∈,()f a b =”; ②若函数()f x B ∈,则()f x 有最大值和最小值; ③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +?;

相关文档
相关文档 最新文档