文档库 最新最全的文档下载
当前位置:文档库 › 2018全国Ⅱ卷理科数学高考真题

2018全国Ⅱ卷理科数学高考真题

2018全国Ⅱ卷理科数学高考真题
2018全国Ⅱ卷理科数学高考真题

2018年普通高等学校招生全国统一考试

理科数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一

项是符合题目要求的. 1.

A .

B .

C .

D .

2.已知集合,则中元素的个数为

A .9

B .8

C .5

D .4

3.函数的图像大致为

4.已知向量,满足,,则 A .4

B .3

C .2

D .0

5.双曲线

A .

B .

C .

D . 6.在中,

,,则 A .

B

C

D .12i

12i

+=-43i 55--43i 55

-+34i 55

--34i 55

-+(){}

2

23A x y x

y x y =+∈∈Z Z ,≤,,A ()2

e e x x

f x x --=a b ||1=a 1?=-a b (2)?-=a a b 22

221(0,0)x y a b a b

-=>>y =y =y x =y =ABC △cos

2C =1BC =5AC =AB =

7.为计算,设计了右侧的程序框图,

则在空白框中应填入 A . B . C . D .

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .

B .

C .

D .

9.在长方体中,,

与所成角

的余弦值为

A .

B

C

D

10.若在是减函数,则的最大值是

A .

B .

C .

D .

11.已知是定义域为的奇函数,满足.若,则

A .

B .0

C .2

D .50

12.已知,是椭圆的左、右焦点,是的左顶点,点在

的直线上,为等腰三角形,,则的离心率为 A .

B .

C .

D .

二、填空题:本题共4小题,每小题5分,共20分. 13.曲线在点处的切线方程为__________.

11111

123499100S =-+-++-…1i i =+2i i =+3i i =+4i i =+30723=+1

12

114

1

15

118

11

11ABCD A B C D -1AB BC ==1AA 1AD 1DB 15

()cos sin f x x x =-[,]a a -a π4

π2

3π4

π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-1F 2F 22

221(0)x y C a b a b

+=>>:A C P A 12PF F △12120F F P ∠=?C 23

12

13

14

2ln(1)y x =+(0,0)

14.若满足约束条件 则的最大值为__________.

15.已知,,则__________. 16.已知圆锥的顶点为,母线,所成角的余弦值为

,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,

每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:共60分。 17.(12分)

记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值. 18.(12分)

下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

,x y 25023050x y x y x +-≥??

-+≥??-≤?

,,,z x y =+sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=S SA SB 7

8

SA SAB

△n S {}n a n 17a =-315S =-{}n a n S n S

y y t t 1217,

,…,?30.413.5y t =-+t 127,,…,?9917.5y

t =+

19.(12分)

设抛物线的焦点为,过且斜率为的直线与交于,两点,.

(1)求的方程

(2)求过点,且与的准线相切的圆的方程. 20.(12分)

如图,在三棱锥中,

,为的中点.

(1)证明:平面;

(2)若点在棱上,且二面角为,求与平面所成角的正弦值.

21.(12分)

已知函数.

(1)若,证明:当时,; (2)若在只有一个零点,求.

(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第

一题计分.

22.[选修4-4:坐标系与参数方程](10分)

在直角坐标系中,曲线的参数方程为(为参数),直线的参数

方程为

(为参数). (1)求和的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率. 23.[选修4-5:不等式选讲](10分)

24C y x =:F F (0)k k >l C A B ||8AB =l A B C P ABC

-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC M PA C --30?PC PAM 2()e x f x ax =-1a =0x ≥()1f x ≥()f x (0,)+∞a xOy C 2cos 4sin x θy θ=??=?

θl 1cos 2sin x t αy t α=+??

=+?

t C l C l (1,2)l

设函数.

(1)当时,求不等式的解集; (2)若,求的取值范围.

()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a

绝密★启用前

2018年普通高等学校招生全国统一考试

理科数学试题参考答案

一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B

8.C

9.C

10.A

11.C

12.D

二、填空题 13. 14.9

15.

16.

三、解答题 17.解:

(1)设的公差为d ,由题意得. 由得d =2.

所以的通项公式为. (2)由(1)得. 所以当n =4时,取得最小值,最小值为?16. 18.解:

(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为

(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为

(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:

(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线

上下.这说明利用2000年至2016年的数据建立的线性模型①不能

很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010

2y x =12

-

{}n a 13315a d +=-17a =-{}n a 29n a n =-2

2

8(4)16n S n n n =-=--n S ?30.413.519226.1y

=-+?=?9917.59256.5y

=+?=30.413.5y t =-+

年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数

据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.

(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.

以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:

(1)由题意得,l 的方程为. 设,

由得. ,故. 所以.

由题设知,解得(舍去),. 因此l 的方程为.

(2)由(1)得AB 的中点坐标为,所以AB 的垂直平分线方程为,即.

设所求圆的圆心坐标为,则

解得或 因此所求圆的方程为或. 20.解:

?9917.5y

t =+(1,0)F (1)(0)y k x k =->1221(,),(,)A y x y x B 2(1),4y k x y x

=-??=?2222

(24)0k x k x k -++=2

16160k ?=+>1222

24

k x k x ++=

122244

||||||(1)(1)x k AB AF BF k x +=+=+++=22

44

8k k

+=1k =-1k =1y x =-(3,2)2(3)y x -=--5y x =-+00(,)x y 00220005,

(1)(1)16.2

y x y x x =-+???-++=

+??003,2x y =??=?0011,6.x y =??=-?2

2

(3)(2)16x y -+-=2

2

(11)(6)144x y -++=

(1)因为,为的中点,所以,且

连结.因为,所以为等腰直角三角形, 且,.

由知. 由知平面.

(2)如图,以为坐标原点,的方向为轴正方向,

建立空间直角坐标系.

由已知得取平面的法向量.

设,则.

设平面的法向量为.

由得,可取,

所以.

由已知可得.

.解得(舍去),

. 4AP CP AC ===O AC OP AC ⊥OP =OB 2

AB BC AC ==ABC △OB AC ⊥1

22

OB AC =

=222OP OB PB +=PO OB ⊥,OP OB OP AC ⊥⊥PO ⊥ABC O OB uu u r

x O xyz -(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u r

PAC (2,0,0)OB =u u u r

(,2,0)(02)M a a a -<≤(,4,0)AM a a =-u u u r

PAM (,,)x y z =n 0,0AP AM ?=?=u u u r u u u r n n 20(4)0

y ax a y ?+=??+-=??,)a a =--n cos ,OB =

uu u r

n |cos ,|OB =uu u r n 24a =-43

a =

所以.

又,所以

所以与平面所成角的正弦值为. 21.解:

(1)当时,等价于. 设函数

,则.

当时,,所以

在单调递减. 而,故当时,,即.

(2)设函数. 在只有一个零点当且仅当在只有一个零点.

(i )当时,,没有零点; (ii )当时,. 当时,;当时,.

所以在单调递减,在单调递增.

故是在的最小值.

①若,即,在没有零点;

②若,即,在只有一个零点;

③若,即,由于,所以在有一个零点, 由(

1

时,

434

(

,)

3

=-n (

02,2

3PC =-u u u r

c o s ,PC =uu u r n PC PAM 4

1a =()f x ≥2(1)e 10

x

x -+-≤2

(

)

(1)e 1x

g x x -=+-22()(21)e (1)e x x g'x x x x --=--+=--1x ≠()g 'x <()g x (0,+∞(

0)g =0x ≥()g x ≤()f x ≥2()1e

x

h x a x -=-

()f x (0,+∞()h x (0,+∞0a ≤()h x >()h x 0a >()(x

h 'x a x

x

-=-(

0x ∈()h 'x <(2,x ∈+∞()h 'x >()h x (0(2,+∞24(2)1e

a

h =-()h x [0,+∞(

2)h >2

e 4a <()h x (0,+∞(

2)h =2

e 4a =()h x (0,+∞(2)h <2

e 4

a >(

0)h =()h x (00

x >2

e x x >

故在有一个零点,因此在有两个零点.

综上,在只有一个零点时,.

22.解:

(1)曲线的直角坐标方程为.

当时,的直角坐标方程为, 当时,的直角坐标方程为.

(2)将的参数方程代入的直角坐标方程,整理得关于的方程

.①

因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则

又由①得,故,于是直线的斜率

23.解:

(1)当时,

可得的解集为. (2)等价于.

而,且当时等号成立.故等价于. 由可得或,所以的取值范围是

33342241616161

(4)11110e (e )(2)a a a a a h a a a

=-=->-=->()h x (2,4)a ()h x (0,)+∞()f x (0,)+∞2

e 4

a =C 22

1416

x y +=cos 0α≠l tan 2tan y x αα=?+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=1224(2cos sin )

13cos t t ααα

++=-

+2cos sin 0αα+=l tan 2k α==-1a =24,1,()2,12,26, 2.x x f x x x x +≤-??

=-<≤??-+>?

()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞

2018年高考全国二卷理科数学真题(解析版)

2018年高考全国二卷理科数学真题(解析 版) 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为 A. B. C. D. 【答案】A

2018年全国高考ii卷理科数学试题及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后 农村的经济收入构成比例。得到如下 饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视图 上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上, 从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

2018高考理科数学模拟试题

2018学年高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

2018年高考理科数学试题及答案-全国卷3

2018 年普通高等学校招生全国统一考试 ( 全国卷 3) 理科数学 2. 1 i 2 i B . 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右 可以是 1 4 .若 sin ,则 cos 2 3 、选择题本: 题共 12 小题, 每小题 5 分,共 60 分。 在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合 A x | x 1≥ 0 , B 0 ,1,2 ,则 A B B . C . 1,2 D . 0 ,1 ,2 方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯 视 图 D . 边的小长

A. 7 B. 9 7 C. 9 8 D. 9 5. 的展开式中 4 x 的系数 A.10 B.20 C.40 D.80 6.直线x y 2 0 分别与x 轴,y轴交于A , B 两点, 点 P 在圆 上,则△ABP 面积的取值范围

A . B . 4,8 C . 2 ,3 2 D . 2 2 , 3 2 7.函数 4 2 2 y x x 的图像大致为 8.某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为该群体的 10 位成员 中使用移动支付的人数, DX 2.4 , P X 4 P X 6 ,则 p A . 0.7 B . 0.6 C . 0.4 D . 0.3 9. △ ABC 的内角 A ,B ,C 的对边分别为 a , b , c ,若 △ABC 2 2 2 的面积为 a b c ,则 C π π π 4 π A . B . C . D . 2 3 4 6 10.设 A ,B ,C , D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC 体积的最大值为 A . 12 3 B . 18 3 C . 24 3 2 2 11.设 F 1 ,F 2 是双曲线 x y D . 54 3 O 是坐标原点.过 F 2 作 C 的一条渐近线 垂线,垂足为 a b P .若 PF 1 6 OP ,则 C 的离心 率为 A . 5 B .2 C . 3 C : 2 2 1( a 0,b 0 )的左,右焦点, 的 log 2 0.3 ,则 A . a b ab 0 C . a b 0 ab 12 .设 a log 0.2 0.3 , b B . ab a b 0 D ab 0 a b 、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018年全国高考理科数学试题及答案-全国1

2018年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题:(本题有12小题,每小题5分,共60分。) 1、设z= ,则∣z ∣=( ) A.0 B. C.1 D. 2、已知集合A={x|x 2-x-2>0},则 A =( ) A 、{x|-12} D 、{x|x ≤-1}∪{x|x ≥2} 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( ) A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、12 5、设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( ) A.y= -2x B.y= -x C.y=2x D.y=x 6、在?ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( ) A. - B. - C. + D. + 建设前经济收入构成比例 建设后经济收入构成比例

7、某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长 度为() A. 2 B. 2 C. 3 D. 2 8.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( ) A.5 B.6 C.7 D.8 9.已知函数f(x)= g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是 ( ) A. [-1,0) B. [0,+∞) C. [-1,+∞) D. [1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分 别为直角三角形ABC的斜边BC,直角边AB,AC. △ABC的三边所围成的区域记为Ⅰ,黑色部分记为 Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2 ,p 3 , 则( ) A. p 1=p 2 B. p 1=p 3 C. p 2=p 3 D. p 1=p 2 +p 3 11.已知双曲线C: - y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N. 若△OMN为直角三角形,则∣MN∣=( ) A. B.3 C. D.4 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为() A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.若x,y满足约束条件则z=3x+2y的最大值为 .

2018年福建高考理科数学试题含答案(Word版)

2018年福建高考数学试题(理) 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(32)z i i =-的共轭复数z 等于( ) .23A i -- .23B i -+ .23C i - .23D i + 2.某空间几何体的正视图是三角形,则该几何体不可能是( ) .A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱 3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ) .8A .10 B .12 C .14 D 4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( ) 5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ) .18A .20 B .21 C .40D 6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ?的面积为12 ”的( ) .A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分又不必要条件 7.已知函数()???≤>+=0 ,cos 0,12x x x x x f 则下列结论正确的是( ) A.()x f 是偶函数 B. ()x f 是增函数 C.()x f 是周期函数 D.()x f 的值域为[)+∞-,1 8.在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e 9.设Q P ,分别为()262 2=-+y x 和椭圆11022 =+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮

(完整版)2018年高考全国三卷理科数学试卷

2018年普通高等学校招生全国统一考试(III 卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则 A . B . C . D . 2. A . B . C . D . 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 4.若,则 A . B . C . D . 5.的展开式中的系数为 A .10 B .20 C .40 D .80 6.直线分别与轴,轴交于、两点,点在圆上,则面积的取值范围是 A . B . C . D . 7.函数的图像大致为 {}|10A x x =-≥{}012B =, ,A B =I {}0{}1{}12,{}012, ,()()1i 2i +-=3i --3i -+3i -3i +1 sin 3 α= cos2α=8 9 79 79 - 89 - 5 22x x ? ?+ ?? ?4x 20x y ++=x y A B P ()2 222x y -+=ABP △[]26,[]48 , ??42 2y x x =-++

2018年高考理科数学试卷及答案(清晰word版)

理科数学试题 第1页(共9页) 绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 12 C .1 D 2.已知集合2{|20}A x x x =-->,则A =R e A .{|12}x x -<< B .{|12}x x -≤≤ C .{|1}{|2}x x x x <->U D .{|1}{|2}x x x x -≤≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

理科数学试题 第2页(共9页) 4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的 切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu r A .3144A B A C -uu u r uuu r B .1344AB AC -uu u r uuu r C .3144AB AC +uu u r uuu r D .1344 AB AC +uu u r uuu r 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A . B .C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?uuu r uuu r A .5 B .6 C .7 D .8 9.已知函数e ,0, ()ln ,0,x x f x x x ?=?>? ≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的 取值范围是 A .[1,0)- B .[0,)+∞ C .[1,)-+∞ D .[1,)+∞ 10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个 半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则 A .12p p = B .13p p = C .23p p = D .123p p p =+

2018年高考全国卷1理科数学试题及答案

2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 12 C .1 D .2 2.已知集合{} 2 20A x x x =-->,则A =R e A .{} 12x x -<< B .{} 12x x -≤≤ C .} {}{|1|2x x x x <-> D .} {}{|1|2x x x x ≤-≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A . 31 44 AB AC - B . 13 44 AB AC - C . 31 44 AB AC + D . 13 44 AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?= A .5 B .6 C .7 D .8 9.已知函数e 0()ln 0x x f x x x ?≤=? >?,, ,, ()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为 直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2 B .p 1=p 3 C .p 2=p 3 D .p 1=p 2+p 3

2018年全国高考理科数学试题及答案.doc

2018 年全国高考理科数学试题及答案 2018 年全国普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题:(本题有12 小题,每小题 5 分,共 60 分。) 1、设 z=,则∣ z∣=() A.0B.C.1D. 2、已知集合 A={x|x2-x-2>0},则A =() A、{x|-12}D 、{x|x ≤ - 1} ∪{x|x≥2} 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地 了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上

C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记 Sn 为等差数列 {an} 的前 n 项和,若 3S3 = S2+ S4 ,a1 =2 ,则 a5 = () A、-12 B、-10 C、10 D、12 5、设函数 f (x)=x3+(a-1 )x2+ax . 若 f (x)为奇函数,则曲线y= f (x)在点(0,0)处的切线方程为() A.y= -2x B.y= -x C.y=2x D.y=x 6、在 ?ABCxx,AD为 BC边上的 xx 线, E 为 AD的 xx 点,则 =() A. - B. - C. + D.+ 7、某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为 A,圆柱表面上的点 N在左视图上的对应点为 B,则在此圆柱侧面上, 从M到 N 的路径中,最短路径的 xx 为() A.2 B.2 C.3 D.2 8.设抛物线 C:y2=4x 的焦点为 F,过点(-2 ,0)且斜率为的直线与 C交于 M,N两 点,则· =( ) A.5 B.6 C.7 D.8

高考理科数学试题及答案2018

高考理科数学试题及答案 (考试时间:120分钟试卷满分:150分) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题 目 要 求 的 。 1. 31i i +=+() A .12i + B .12i - C .2i + D .2i - 2. 设集合{}1,2,4A =,{} 2 40x x x m B =-+=.若{}1A B =,则B =() A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百 八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏 4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某 几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π 5. 设x ,y 满足约束条件2330233030x y x y y +-≤?? -+≥??+≥? ,则2z x y =+的 最小 值是() A .15- B .9- C .1 D .9 6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共 有() A .12种 B .18种 C .24种 D .36种 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀, 2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()

(完整版)2018高考全国1卷理科数学试卷及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设i i i z 211++-=,则=z A.0 B. 2 1 C.1 D.2 2. 已知集合{ } 02|2 >--=x x x A ,则=A C R A. {}21|<<-x x B.{}21|≤≤-x x C.{}{}2|1|>-

线方程为 A.x y 2-= B.x y -= C.x y 2= D.x y = 6.在ABC ?中,AD 为BC 边上的中线,E 为AD 的中点,则=EB A.AC AB 4143- B.AC AB 43 41- C.AC AB 4143+ D.AC AB 4 341+ 7.某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A.172 B.52 C.3 D.2 8.设抛物线x y C 4:2 =的焦点为F ,过点()0,2-且斜率为 3 2 的直线与C 交于N M ,两点,则=?FN FM A.5 B.6 C.7 D.8 9.已知函数()()()a x x f x g x x x e x f x ++=?? ?>≤=,0 ,ln 0 ,,若()x g 存在2个零点,则a 的取值范围是 A.[)0,1- B.[)+∞,0 C.[)+∞-,1 D.[)+∞,1 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,,ABC ?的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自的概率分别记为321,,p p p ,则 A B

2018年高考全国二卷理科数学试卷

2018年普通高等学校招生全国统一考试(II卷) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.12i 12i + = - A. 43 i 55 --B . 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数() 2 e e x x f x x - - =的图像大致为 A B C D 4.已知向量a、b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>的离心率为3,则其渐近线方程为 A.2 y x =±B.3 y x =±C. 2 y x =± D. 3 y x =± 6.在ABC △中, 5 cos 2 C =,1 BC=,5 AC=,则AB= A.42B.30C.29 D.25 开始 0,0 N T == 1 i= 100 i< 是否

7.为计算11111123499100 S =- +-++-…,设计了右侧的程序框图,则在 空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .1 12 B .1 14 C .1 15 D . 118 9.在长方体1111ABCD A B C D -中,1AB BC == ,1AA =1AD 与1DB 所成角的余弦值为 A .15 B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是 A .π 4 B .π 2 C .3π4 D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=… A .50- B .0 C .2 D .50 12.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 的直线 上,12PF F △为等腰三角形,12120F F P ∠=?,则C 的离心率为 A . 2 3 B .1 2 C .13 D . 14 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥?? -+≥??-≤? ,,, 则z x y =+的最大值为__________.

2018年高考理科数学全国三卷试题及答案解析

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) 6、直线分别与轴,轴交于两点,点在圆上,则 面积的取值范围是( ) A. B. C. D. 7、函数的图像大致为( ) A. B. C. D. 8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( )

、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. C. D. 12、设则( ) A. B. C. D. 13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若 ,则 三.解答题 17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:

2018高考理科数学全国三卷试题及答案

2018高考理科数学全国三卷试题及答案

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆 上,则面积的取值范围是( ) A. B. C. D.

7、函数的图像大致为( ) A. B. C. D. 8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为 则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若 ,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D.

13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若,则 三.解答题 17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图: 1.根据茎叶图判断哪种生产方式的效率更高?并说明理由;

最新2018年高考1卷理科数学试题及答案解析版

1 范文范例 参考指导 2018年普通高等学校招生全国统一考试 1 理科数学 2 注意事项: 3 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 4 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如 5 需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上, 6 写在本试卷上无效. 7 3.考试结束后,将本试卷和答题卡一并交回. 8 9 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,10 只有一项是符合题目要求的.) 11 1.设121i z i i -= ++,则z =( ) 12 A .0 B .12 C .1 D 13 2.已知集合{}2|20A x x x =-->,则A =R ( ) 14 A .{}|12x x -<< B .{}|12x x -≤≤ 15 C .{}{}|1|2x x x x <-> D .{}{}|1|2x x x x -≤≥ 16 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更17 好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济18 收入构成比例.得到如下饼图: 19

2 范文范例 参考指导 20 则下面结论中不正确的是( ) 21 A .新农村建设后,种植收入减少 22 B .新农村建设后,其他收入增加了一倍以上 23 C .新农村建设后,养殖收入增加了一倍 24 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 25 26 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) 27 A .12- B .10- C .10 D .12 28 5.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处29 的切线方程为( ) 30 A .2y x =- B .y x =- C .2y x = D .y x = 31 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) 32 A .314 4 AB AC - B .1344 AB AC - 33

2018高考理科数学模拟试题

2018学年高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {} =21B x x a a A =-∈,,则=( ) A B ? A. {}12, B. {}13, C. {}01, D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 2 1e e -- C. 11e - D. 11e - 5.在 5 2)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是 ( ) A. 11<<

相关文档
相关文档 最新文档