文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考必备必考-统计与概率大题汇总 (理科解答含答案)

2018年高考必备必考-统计与概率大题汇总 (理科解答含答案)

2018年高考必备必考-统计与概率大题汇总 (理科解答含答案)
2018年高考必备必考-统计与概率大题汇总 (理科解答含答案)

一对一个性化辅导教学设计

任课老师:关sir

统计与概率解答题好比数学题中的阅读理解,文字多,需要有一定的文字理解能力和结合实际进行数据分析的能力。文档题目分三档,A 组是必须要掌握的题目,因为这道题目在高考大题中是处于基础性的地位,所以要多做,争取拿满分。 参考公式:a bx y +=∑∑∑∑====-?-=

---=

n i i

n

i i

i n

i i

n

i i

i

x x y

x n y

x x x y y

x x b 1

2

1

1

2

1

)

()

()

)((x b y a -=

A组

1、(本小题满分12分)

(F37,2017全国2卷理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35

2、(本小题满分12分)

(B06理)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征. 教育部考试中心确定了2017年普通高考部分更注重传统文化考核. 某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为E D C B A ,,,,五个等级进行数据统计如下:

根据以上抽样调查数据,视频率为概率.

(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B 的人数; (2)若等级E D C B A ,,,,分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?

(3)为更深入了解教学情况,将成绩等级为B A ,的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A 的人数X 的分布列与数学期望.

(1)150(2)59,未达标(3)9/7

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.

4、(本小题满分12分)

(F32,2015全国2卷理科)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,根据用户对产品的满意度评分如下:

A地区:62 73 81 92 95 85 74 64 53 76

78 86 95 66 97 78 88 82 76 89

B地区:73 83 62 51 91 46 53 73 64 82

93 48 65 81 74 56 54 76 65 79

(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可)

(1)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.

(1)A的均值高而且比较集中;(2)0.48

5、(本小题满分12分)

(E30)某校高三(1)班的一次数学测试成绩(满分100分)的茎叶图和频率分布直方图都受到不同程度的污染,但可见部分如下,据此解答如下问题:

(1)求分数在[50,60)的频率及全班人数;

(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;

(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

(1)25(2)4,0.016(3)3/5

6、(本小题满分12分)

(E27文理)据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,3月到7月房价上涨过快,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院研究发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X ,求X 的分布列和数学期望.

∑∑==---=

i i

n

i i

i

x x y y

x x b 1

2

1

)

()

)((y a -=

(1)752.0064.0+=x y ;1.52(2)136/55

7、(本小题满分12分)

(D26理)天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.

(1)天气预报说,在今后的四天中,每一天降雨的概率均为40% ,求四天中至少有两天降雨的概率;

(2)经过数据分析,一天内降雨量的大小 x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:

试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)

附注:回归方程a bx y +=中斜率和截距的最小二乘估计公式分别为:

∑∑==---=

n

i i

n

i i

i

x x y y

x x b 1

2

1

)

()

)((y a -=

(1)81/625;216/625;328/625(2)5.275.27+=x y ;193

8、(本小题满分12分)

(C20理)近年来,我国电子商务行业迎来篷布发展,2017年“双11”期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.

(1)根据已知条件完成下面列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X ,求X 的分布列和数学期望.

(1)11.111,有关系(2)6/5

9、(本小题满分12分)

(C19理)某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.

(1)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);

(2)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.

2018年高考真题全国1卷理科数学Word版含解析

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i -=++,则z =( ) A .0 B . 12 C .1 D 2.已知集合{}2|20A x x x =-->,则A =R e( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{} {}|1|2x x x x <-> D .{} {}|1|2x x x x -≤≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是( ) A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12- B .10- C .10 D .12 5.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .31 44AB AC - B .13 44AB AC - C . 31 44 AB AC + D . 13 44 AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A , 圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A . B . C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?=( ) A .5 B .6 C .7 D .8 9.已知函数()0 ln 0x e x f x x x ?=?>? ,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范 围是( ) A .[)10-, B .[)0+∞, C .[)1-+∞, D .[)1+∞, 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域

2019年全国高考文科数学试题分类汇编之统计与概率

一、选择题: 1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,???,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A .1x ,2x ,???,n x 的平均数 B .1x ,2x ,???,n x 的标准差 C .1x ,2x ,???,n x 的最大值 D .1x ,2x ,???,n x 的中位数 2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7 4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )

A.1 4 B. 8 π C. 1 2 D. 4 π 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为() A. 4 5 B. 3 5 C. 2 5 D. 1 5 6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为() A. 1 10 B. 1 5 C. 3 10 D. 2 5 二、解答题: 7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 经计算得 16 1 1 9.97 16i i x x = == ∑,1616 222 11 11 ()(16)0.212 1616 i i i i s x x x x == =-=-≈ ∑∑, 16 2 1 (8.5)18.439 i i = -≈ ∑,16 1 ()(8.5) 2.78 i i x x i = --=- ∑,其中i x为抽取的第i个零件的尺寸,1,2,,16 i=???. (1)求(,) i x i(1,2,,16) i=???的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25 r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).

2018年高考真题数学浙江Word版含答案

绝密★启用前 2018年普通高等学校招生全国统一考试(浙江卷) 数 学 本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页;非选择题部分3至4页。满分150分。考试用时120分钟。 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。 参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率 ()C (1) (0,1,2,,)k k n k n n P k p p k n -=-=L 台体的体积公式121 ()3V S S h = 其中12,S S 分别表示台体的上、下底面积,表示台体的高 柱体的体积公式V Sh = 其中表示柱体的底面积,表示柱体的高 锥体的体积公式1 3 V Sh = 其中表示锥体的底面积,表示锥体的高 球的表面积公式 24S R =π 球的体积公式 34 3 V R =π 其中R 表示球的半径 选择题部分(共40分) 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题 目要求的。 1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A e A .? B .{1,3} C .{2,4,5} D .{1,2,3,4,5} 2.双曲线2 21 3 =x y -的焦点坐标是

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计 1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷ 100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生 B .200号学生 C .616号学生 D .815号学生 【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得1 5 n = ,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A . 2 3 B . 35 C .25 D . 1 5 【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有 {,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B , 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为 63 105 =,故选B .

2018年高考数学新课标3理科真题及答案

1.(2018 年新课标Ⅲ理)已知集合 A ={x |x -1≥0},B ={0,1,2},则 A ∩B =( ) A .{0} B .{1} C .{1,2} D .{0,1,2} C 【解析】A ={x |x -1≥0}={x |x ≥1},则 A ∩B ={x |x ≥1}∩{0,1,2}={1,2}. 2.(2018 年新课标Ⅲ理)(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-i D .3+i D 【解析】(1+i)(2-i)=2-i +2i -i = 3+i . 3.(2018 年新课标Ⅲ理)中国古建筑借助榫卯将木构件连接起来 .构件的凸出部分叫榫头 ,凹 进部分叫卯眼 ,图中木构件右边的小长方体是榫头 .若如图摆放的木构件与某一带卯眼的木 构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A B C D A 【解析】由题意可知木构件与某一带卯眼的木构件咬合成长方体,小的长方体是榫头,从 图形看出轮廓是长方形,内含一个长方形,且一条边重合,另外 3 边是虚线.故选 A . 1 4.(2018 年新课标Ⅲ理)若 sin α= ,则 cos 2α=( ) 8 7 7 A . B . C .- 9 9 9 1 7 B 【解析】cos 2α=1-2sin α=1-2× = . 2 5.(2018 年新课标Ⅲ理) x + 的展开式中 x 的系数为( ) A .10 B .20 C .40 8 D .- 9 D .80 2 3 2 9 9 2 5 4 x

2 2 C 【解析】 x + 的展开式的通项为 T =C (x ) =2 C x r +1 5 5 .由 10-3r =4,解得 r 2 =2.∴ x + 的展开式中 x 的系数为 2 C =40. 5 6.(2018 年新课标Ⅲ理)直线 x +y +2=0 分别与 x 轴,y 轴交于 A ,B 两点,点 P 在圆(x -2) + y =2 上, △则△ ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[ 2,3 2] D .[2 2,3 2] A 【解析】易得 A (-2,0), B (0,-2),|AB |=2 2.圆的圆心为(2,0),半径 r = 2.圆心(2,0)到 直线 x +y +2=0 的距离 d = |2+0+2| =2 2,∴点 P 到直线 x +y +2=0 的距离 h 的取值范围 1 +1 1 为[2 2-r ,2 2+r ],即[ 2,3 2].又△ ABP 的面积 S = |AB |·h = 2h ,∴S 的取值范围是 [2,6]. 7.(2018 年新课标Ⅲ理)函数 y =-x + x +2 的图象大致为( ) A B C D D 【解析】函数过定点(0,2),排除 A ,B ;函数的导数 y ′=-4x +2x =-2x (2x -1),由 y ′>0 解得 x <- 2 2 或 0<x < ,此时函数单调递增,排除 C .故选 D . 2 2 8.(2018 年新课标Ⅲ理)某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式 相互独立.设 X 为该群体的 10 位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6), 2 5 r 2 5 r r r r 10 3r - - x x 2 5 4 2 2 x 2 2 2 2 2 4 2 3 2

统计与概率高考题2

统计与概率高考题2(2015—2018年文科) 1.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3 m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 使用了节水龙头50天的日用水量频数分布表 (1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图: (2)估计该家庭使用节水龙头后,日用水量小于0.35 3 m的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中 的数据以这组数据所在区间中点的值作代表.)

2.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型 ①:?30.413.5=-+y t ;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:?9917.5=+y t . (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

3.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计 Word版含解析

十年高考真题分类汇编(2010—2019)数学 专题14概率与统计 1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “ ”和阴爻“ ”,右图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是( ) A.516 B.1132 C.2132 D.1116 【答案】A 【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26 种情况.其中6个爻中恰有3个阳爻有C 63 种情 况,所以该重卦恰有3个阳爻的概率为 C 632 6 =5 16,故选A . 2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B.35 C.25 D.15 【答案】B 【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为 6 10 =35 ,故选B . 3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D 【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学

概率与统计高考题经典

2009年高考数学试题分类汇编——概率与统计 一、选择题 1.(2009山东卷理)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是( ). A.90 B.75 C. 60 D.45 【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为n , 则300.036=n ,所以120=n ,净重大于或等于98克并且小于 104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本 中净重大于或等于98克并且小于104克的产品的个数是 120×0.75=90.故选A. 答案:A 【命题立意】:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有 关的数据. 2.(2009山东卷理)在区间[-1,1]上随机取一个数x ,cos 2x π的值介于0到21之间的概率为( ). A.31 B.π 2 C.21 D.32 【解析】:在区间[-1,1]上随机取一个数x,即[1,1]x ∈-时,要使cos 2x π的值介于0到2 1之间,需使223x πππ-≤≤-或322x πππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为3 2,由几何概型知cos 2x π的值介于0到21之间的概率为31232 =.故选A. 答案:A 【命题立意】:本题考查了三角函数的值域和几何概型问题,由自变量x 的取值范围,得到函数96 98 100 102 104 106 0.150 0.125 0.100 0.075 0.050 克 频率/组距 第8题图

2018年高考理科数学全国三卷试题及答案解析

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆上,则 面积的取值范围是( ) A. B. C. D. 7、函数的图像大致为( )

A. B. C. D. 8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D. 13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若 ,则 三.解答题

17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图: 1.根据茎叶图判断哪种生产方式的效率更高?并说明理由; 2.求名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表: 超过不超过 第一种生产方 式 第二种生产方 式 3.根据中的列联表,能否有的把握认为两种生产方式的效率有差异? 附: 19、如图,边长为的正方形所在的平面与半圆弧所在的平面垂直,是上异于的点

统计与概率高考真题试题

统计与概率高考真题练习 1.(2014全国1) (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: (I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表 示这100件产品中质量指标值为于区间(,)的产品件 数,利用(i )的结果,求EX . 2.(2014全国2)(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y (Ⅰ)求y 关于t 的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣. 3.(2015全国1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。 x y w 821()i i x x =-∑ 821()i i w w =-∑ 81()()i i i x x y y =--∑ 81()()i i i w w y y =--∑ 563 1469

2018年高考真题——文科数学(全国卷Ⅲ)Word版含解析

2018年普通高等学校招生全国统一考试 (新课标 III 卷) 文 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{} 012,, 1.答案:C 解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C. 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 2.答案:D 解答:2 (1)(2)23i i i i i +-=+-=+,选D. 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中 木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

3.答案:A 解答:根据题意,A 选项符号题意; 4.若1 sin 3 α=,则cos 2α=( ) A .89 B . 79 C .79 - D .89- 4.答案:B 解答:2 27 cos 212sin 199 αα=-=- =.故选B. 5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A .0.3 B .0.4 C .0.6 D .0.7 5.答案:B 解答:由题意10.450.150.4P =--=.故选B. 6.函数 ()2tan 1tan x f x x = +的最小正周期为( ) A . 4 π B . 2 π C .π D .2π 6.答案:C 解答: 22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos x x x x x f x x x x x x x x x == ===+++ ,∴()f x 的周期22 T π π= =.故选C. 7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .() ln 2y x =+ 7.答案:B 解答:()f x 关于1x =对称,则()(2)ln(2)f x f x x =-=-.故选B. 8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2 222x y -+=上,则ABP ?面积的取值范围是( )

概率与统计 高考专题复习

概率与统计 概率 (1)多以选择题或填空题的形式直接考查互斥事件的概率及运算,而随机事件的有关概念现时频率很少直接考查; (2)互斥事件、对立事件发生的概率问题有时也会出现在解答题中,多为应用问题. 一 互斥事件、对立事件的概率 二 古典概型 三 几何概型 统计 1.统计中所学的内容是数理统计中最基本的问题,通过这些内容主要来介绍相关的统计思想和方法,了解一些有关统计学的基本知识,并能够应用几个基本概念、基本公式来处理实际生活中的一些基本问题. 2.统计案例为新课标中新增内容,主要是通过案例体会运用统计方法解决实际问题的思想和方法.增加了统计和统计案例后,使得高中数学的整个体系更加完善了,有利于开阔数学视野,丰富数学思想和方法. 【重点关注】 1.从对新课标高考试题的分析可以发现,主要考查抽样方法、各种统计图表、样本数字特征等.对这部分的考查主要以选择题和填空题的形式出现. 2.统计案例中的独立性检验和回归分析也会逐步在高考题中出现,难度不会太大,多数情况下是考查两种统计分析方法的简单知识,以选择题和填空题为主.注意体会运用统计方法解决实际问题的思想和方法 《全国新课程标准高考数学考试大纲》中对考生能力要求明确界定为空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识等六个方面,其中数据处理能力是首次提出的一个能力要求,这定义为:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计(高考考试大纲对知识点要求如下表所示)或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题,对统计的要求已提升到能力的高度. 注:利用图形来判断两个变量之间是否有关系,可以结合所求的数值来进行比较.作图应注意单位统一、图形准确,但它不能给出我们两个分类变量有关或无关的精确的可信程度,若要作出精确的判断,可以作独立性检验的有关计算. 基础篇 江西11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别为1p 和1p ,则 A .1p =2p B .1p <2p C .1p >2p D .以上三种情况都有可 能 考点:二项分布的概率 规律方法:通过间接法求概率,不等式判断的方法 解析:考查不放回的抽球、重点考查二项分布的概率.

五年高考真题分类汇编 统计与概率综合及统计案例 (2019高考复习资料)

第二节统计与概率综合及统计案例 题型138 抽样方式 2013年 1.(2013江西文5)总体有编号为01,02, ,19,20的20个个体组成.利用下面的随机数 表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个 数字,则选出来的第5个个体的编号为(). A .08 B .07 C .02 D .01 2.(2013湖南文3)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件, 60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行 调查,其中从丙车间的产品中抽取了3件,则n =(). A. 9 B.10 C.12 D.13 2014年 1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是(). A.总体 B.个体 C.样本的容量 D.从总体中抽取的一个样本 2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n =(). A.100B.150C.200D.250 3.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(). A.50 B.40 C.25 D.20 4.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则(). A.123p p p =< B. 231p p p =< C.132p p p =< D.123p p p == 5.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为件. 6.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年

2018年高考理科数学真题(全国I卷)

1.2.3.4.5.设z=1?i 1+i +2i,则|z|=( )0121 2 已知集合A={x|x -x-2>0},则?A=( ) {x|-1<x<2} {x|-1≤x≤2}{x|x<-1}∪{x|x>2}{x|x≤-1}∪{x|x≥2} 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( ) 新农村建设后,种植收入减少 新农村建设后,其他收入增加了一倍以上 新农村建设后,养殖收入增加了一倍 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 记S 为等差数列{a }的前n项和.若3S =S +S ,a =2,则a =( ) -12-101012 设函数f(x)=x +(a-1)x +ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( ) 2018年高考理科数学真题(全国I卷) A. B. C. D. 2R A. B. C. D. A. B. C. D. n n 32415A. B. C. D. 32

6. 7.8.9. 10.11.y=-2x y=-x y=2x y=x 在△ABC中,AD为BC边上的中线,E为AD的中点,则EB =( )34AB -14AC 14AB -34AC 34AB +14AC 14AB +34 .AC 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上 的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )2172532设抛物线C:y =4x的焦点为F,过点(-2,0)且斜率为23的直线与C交于M,N两点,则FM ?FN =( )5678已知函数f(x)=e x ,x ≤0lnx ,x >0 ,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( ) [-1,0)[0,+∞)[-1,+∞)[1,+∞) 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半 圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB, AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p , p ,p ,则( ) 已知双曲线C:x 23 -y =1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( ) p =p p =p p =p p =p +p A. B. C. D. A. B. C. D. A. B. C. D. 2A. B. C. D. A. B. C. D. 123A. 12 B. 13 C. 23 D. 123 2

高考数学压轴专题新备战高考《计数原理与概率统计》知识点总复习附答案

新数学《计数原理与概率统计》专题解析 一、选择题 1.某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36 B .72 C .108 D .144 【答案】D 【解析】 【分析】 按三步分步进行,先考虑甲单位招聘,利用间接法,因为至少招聘一名男生,将只招女生 的情况去掉,录取方案数为22 63C C -,然后剩余四人依次分配给乙单位和丙单位,分别为 24C 、2 2C ,然后根据分步乘法计数原理将三个数相乘可得出答案。 【详解】 根据题意,分3步进行分析: ①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况, ②单位乙在剩下的4人中任选2人招聘,有246C =种情况, ③单位丙在剩下的2人中任选1人招聘,有1 2 2C =种情况, 则有1262144??=种不同的录取方案; 故选:D . 【点睛】 本题考查排列组合问题,将问题分步骤处理和分类别讨论,是两种最基本的求解排列组合问题的方法,在解题的时候要审清题意,选择合适的方法是解题的关键,着重考查学生分析问题和解决问题的能力,属于中等题。 2.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是( ) A . 1 8 B . 35 C . 58 D . 78 【答案】C 【解析】 【分析】 设1路车到达时间为x 和2路到达时间为y .(x ,y )可以看做平面中的点,利用几何概型即可得到结果. 【详解】 设1路车到达时间为x 和2路到达时间为y .(x ,y )可以看做平面中的点, 试验的全部结果所构成的区域为Ω={(x ,y )|0≤x ≤10且0≤y ≤20},这是一个长方形区域,面积为S =10×20=200

(完整)统计与概率高考真题试题

统计与概率高考真题练习 1.(2014全国1) (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: (I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表 示这100件产品中质量指标值为于区间(187.8,212.2) 的产品件数,利用(i )的结果,求EX . 2.(2014全国2)(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣. 3.(2015全国1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。 x r y u r w u r 821()i i x x =-∑ 821()i i w w =-∑ 81()()i i i x x y y =--∑ 81()()i i i w w y y =--∑ 46.6 563 6.8 289.8 1.6 1469 108.8

相关文档
相关文档 最新文档