文档库 最新最全的文档下载
当前位置:文档库 › 2018北京高考文科数学试卷含答案

2018北京高考文科数学试卷含答案

2018北京高考文科数学试卷含答案
2018北京高考文科数学试卷含答案

2018北京文

一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.

1.已知集合A ={x ||x |<2),B ={?2,0,1,2},则A ∩B =

A . {0,1}

B .{?1,0,1}

C . {?2,0,1,2}

D . {?1,0,1,2} 【解析】因|x |<2,故-2<x <2,因此A ∩B ={–2,0,1,2}∩(-2,2)={0,1},选A . 2.在复平面内,复数1

1-i

的共轭复数对应的点位于

A . 第一象限

B . 第二象限

C . 第三象限

D . 第四象限

【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,对应的点为(12,-1

2),故选D .

3.执行如图所示的程序框图,输出的S 值为

A .12

B .56

C .76

D .7

12

【解析】初始化数值k =1,S =1,循环结果执行如下:第一次:S =1+(-1)1?12=1

2,k =2≥3不成

立;第二次:S =12+(-1)2?13=56,k =3≥3成立,循环结束,输出S =5

6,故选B .

4. 设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的 A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件

【解析】当a =4,b =1,c =1,d =1

4时,a ,b ,c ,d 不成等比数列,故不是充分条件;当a ,b ,c ,

d 成等比数列时,则ad =bc ,故是必要条件.综上所述,“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要不充分条件,故选B .

5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第

二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于12

2.若第一个单音的频率为

f ,则第八个单音的频率为 A .3

2f B .3

22f C .

12

25f D .

12

27f

【解析】从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于12

2,第一个单

音的频率为f .由等比数列的定义知,这十三个单音的频率构成一个首项为f ,公比为12

2的等比数

列,记为{a n }.则第八个单音频率为a 8=f ·

(12

2)8-1=12

27f .

6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为

A . 1

B . 2

C . 3

D . 4

【解析】在正方体中作出该几何体的直观图,记为四棱锥P -ABCD ,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,是△P AD ,△PCD ,△P AB .

7.在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵

是圆x 2+y 2=1上的四段弧(如图),

点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )

A .A

B ︵

B .CD ︵

C .EF ︵

D .GH ︵

【解析】设点P 的坐标为(x ,y ),由三角函数的定义得y

x <x <y ,故-1<x <0,0<y <1.故P 所在

的圆弧是EF ︵

8.设集合A ={(x ,y )| x -y ≥1,ax +y >4,x -ay ≤2},则 A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)?A

C .当且仅当a <0时,(2,1)?A

D .当且仅当a ≤3

2

时,(2,1)?A

【解析】若(2,1)∈A ,则a >32且a ≥0,即若(2,1)∈A ,则a >32,此命题的逆否命题为:若a ≤3

2,

则有(2,1)?A ,故选D .

二、填空题共6小题,每小题5分,共30分.

9.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =_________.

【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,故m =-1.

10.已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为_________.

【解析】由题意知,a >0,对于y 2=4ax ,当x =1时,y =±2a ,由于l 被抛物线y 2=4ax 截得的线段长为4,故4a =4,故a =1,故抛物线的焦点坐标为(1,0).

11.能说明“若a ﹥b ,则1a <1

b

”为假命题的一组a ,b 的值依次为_________.

【解析】使“若a ﹥b ,则1a <1b ”为假命题,则使“若a >b ,则1a ≥1

b ”为真命题即可,只需取a =1,

b =-1即可满足,故满足条件的一组a ,b 的值为1,-1 (答案不唯一) 12.若双曲线x 2a 2-y 24=1(a >0)的离心率为5

2,则a =_________.

【解析】由题意可得,a 2+4a 2=(5

2)2,即a 2=16,又a >0,所以a =4.

13.若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是_________.

【解析】不等式可转化为????? x +1≤y ,y ≤2x ,即???

??

x -y +1≤0,2x -y ≥0,

,故满足条件的x ,y 在平面直角坐标系中的可行域如下图

令2y -x =z ,y =12x +1

2z ,由图象可知,当2y -x =z 过点P (1,2)时,取最小值,此时z =2×2

-1=3,故2y -x 的最小值为3. 14.若ΔABC 的面积为

34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;c

a

的取值范围是_______. 【解析】因S ΔABC =34(a 2+c 2-b 2)=12ca sin B ,故a 2+c 2-b 22ac =33sin B ,即cos B =3

3sin B ,故tan B

=3,因0<B <π,故B =π3,则c a =sin C sin A =32·1tan A +12,故C 为钝角,又B =π3,故0<A <π

6,故

tan A ∈(0,

33),1tan A ∈(3,+∞),故c

a

∈(2,+∞). 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .

【解析】(1)设{a n }的公差为d .因为a 2+a 3=5ln 2,故2a 1+3d =5ln 2.又a 1=ln 2,故d =ln 2.故a n =a 1+(n -1)d =ln 2+(n -1)ln 2=n ln 2.

(2)因为e a 1=e ln 2=2,e a n

e a n -1=e a n -

a n -1=e ln 2=2,故{e a n }是首项为2,公比为2的等比数列.故e a 1+

e

a 2

+…+e a n =2×

1-2n 1-2

=2n +1

-2. 16.已知函数f (x )=sin 2x +3sin x cos x .

⑴.求f (x )的最小正周期;

⑵.若f (x )在区间[-π3,m ]上的最大值为3

2

,求m 的最小值.

【解析】⑴.f (x )=12(1-cos 2x )+32sin 2x =12+32sin 2x -12cos 2x =12+sin(2x -π

6),故f (x )的最小正

周期为T =2π

2

=π.

⑵.由⑴知,f (x )=12+sin(2x -π6).因x ∈[-π3,m ],故2x -π6∈[-5π6,2m -π6].要使得f (x )在[-π

3

m ]上的最大值为32,即sin(2x -π6)在[-π3,m ]上的最大值为1.故2m -π6≥π2,即m ≥π

3.故m 的最小

值为π

3

点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负. 17.电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率 0.4

0.2

0.15

0.25

0.2

0.1

好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.

(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;

(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 【解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×

0.25=50,故所求概率为50

2 000=0.025. (Ⅱ)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×

0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得P (B )=1628/2000=0.814.

(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.

点睛:本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式P (A )=m

n 求出事件A 的概率.

18.(本小题14分)

如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点. (Ⅰ)求证:PE ⊥BC ;

(Ⅱ)求证:平面P AB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .

【解析】(1)因为P A =PD ,E 为AD 的中点,故PE ⊥AD .因为底面ABCD 为矩形,故BC ∥AD .故PE ⊥BC .

(2)因为底面ABCD 为矩形,故AB ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ?平面ABCD ,故AB ⊥平面P AD ,且PD ?平面P AD .故AB ⊥PD .又因为P A ⊥PD ,且P A ∩AB =A ,故PD ⊥平面P AB .又PD ?平面PCD ,故平面P AB ⊥平面PCD .

(3)如图,取PC 中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点,故FG ∥BC ,FG =12BC .因

为ABCD 为矩形,且E 为AD 的中点,故DE ∥BC ,DE =1

2BC .故

DE ∥FG ,DE =FG .故四边形DEFG 为平行四边形.故EF ∥DG .又因为EF ?平面PCD ,DG ?平面PCD ,故EF ∥平面PCD .

点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.

19.设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .

(Ⅰ)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若f (x )在x =1处取得极小值,求a 的取值范围.

【解析】

(Ⅰ)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,故f ′(x )=[ax 2-(a +1)x +1]e x .f ′(2)=(2a -1)e 2,由题设知,f ′(2)=0,即(2a -1)e 2

=0,解得a =1

2.

(Ⅱ)法一:由(Ⅰ)得f ′(x )=(ax -1)(x -1)e x

.若a >1,则当x ∈(1

a ,1)时,f ′(x )<0;当x ∈(1,+∞)

时,f ′(x )>0.故f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0,故f ′(x )>0.故1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).

法二:f ′(x )=(ax -1)(x -1)e x .(1)当a =0时,令f ′(x )=0得x =1.f ′(x ),f (x )随x 的变化情况如下表:

故f (x )在x =1处取得极大值,不合题意.

x (-∞,1) 1 (1,+∞)

f ′(x )

?

f (x )

极大值

(2)当a >0时,令f ′(x )=0得,x 1=1

a ,x 2=1.

①当x 1=x 2,即a =1时,f ′(x )=(x -1)2e x ≥0,故f (x )在R 上单调递增,故f (x )无极值,不合题意. ②当x 1>x 2,即0<a <1时,f ′(x ),f (x )随x 的变化情况如下表:

故f (x )在x =1处取得极大值,不合题意.

③当x 1<x 2,即a >1时,f ′(x ),f (x )随x 的变化情况如下表:

故f (x )在x =1处取得极小值,即a >1满足题意.

(3)当a <0时,令f ′(x )=0得x 1=1

a ,x 2=1.f ′(x ),f (x )随x 的变化情况如下表:

故f (x )在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,+∞).

点睛:导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数单调性或求单调区间问题;③利用导数求函数的极值最值问题;④关于不等式的恒成立问题.

解题时需要注意的有以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值最值问题时常常会涉及到分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.

20.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为6

3,焦距为22.斜率为k 的直线l 与椭圆M 有

两个不同的交点A ,B .

(Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB |的最大值;

(Ⅲ)设P (-2,0),直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点Q (-74,1

2

)共线,求k .

【解析】(Ⅰ)由题意得,2c =22,故c =2,又e =c a =6

3,故a =3,故b 2=a 2-c 2=1,故椭圆

M 的标准方程为x 23

+y 2

=1.

(Ⅱ)设直线AB 的方程为y =x +m ,将y =x +m 代入x 23+y 2

=1并消去y 得,4x 2+6mx +3m 2-3=0,

则Δ=48-12m 2>0,即m 2<4,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-3m 2,x 1x 2=3

4(m 2-1),则|AB |2

=(1+k 2)(x 1-x 2)2=3

2

(4-m 2),易得当m 2=0时,|AB |2max =6,故|AB |的最大值为6.

(Ⅲ)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则x 21+3y 21=3①,x 22+3y 2

2=3②,又P (-2,0),

故可设k 1=k P A =y 1x 1+2

,直线P A 的方程为y =k 1(x +2),将y =k 1(x +2)代入x 23+y 2=1并消去y 得,

(1+3k 21)x 2+12k 21x +12k 21-3=0,则x 1+x 3=-12k 21/(1+3k 21),即x 3=-12k 21/(1+3k 21)-x 1,又k 1=

y 1

x 1+2

,代入①式可得,x 3=-(7x 1+12)/(4x 1+7),故y 3=y 1/(4x 1+7),故C (-(7x 1+12)/(4x 1+7),y 1/(4x 1

+7)),同理可得D (-(7x 2+12)/(4x 2+7),y 2/(4x 2+7)).故QC →

=(x 3+74,y 3-14),QD uuu r =(x 4+74

,y 4

-14),因Q ,C ,D 三点共线,故(x 3+74)(y 4-14)-(x 4+74)(y 3-1

4)=0,将点C ,D 的坐标代入化简可得

y 1-y 2

x 1-x 2

=1,即k =1.

2018年高考理科数学试题及答案-全国卷2

2018年普通高等学校招生全国统一考试(全国卷2) 理科数学 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 12i 12i + = - A. 43 i 55 --B. 43 i 55 -+C. 34 i 55 --D. 34 i 55 -+ 2.已知集合() {} 223 A x y x y x y =+∈∈ Z Z ,≤,,,则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数()2 e e x x f x x - - =的图像大致为 4.已知向量a,b满足||1 = a,1 ?=- a b,则(2) ?-= a a b A.4 B.3 C.2 D.0 5.双曲线 22 22 1(0,0) x y a b a b -=>>3 A.2 y x =B.3 y x =C. 2 y=D. 3 y= 6.在ABC △中, 5 cos 2 C 1 BC=,5 AC=,则AB= A.2B30C29 D.25 7.为计算 11111 1 23499100 S=-+-++- …,设计了右侧的程序框图,则在空白 框中应填入 A.1 i i=+ B.2 i i=+ C.3 i i=+ D.4 i i=+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 开始 0,0 N T == S N T =- S 输出 1 i= 100 i< 1 N N i =+ 1 1 T T i =+ + 结束 是否

2018年高考全国二卷理科数学真题(解析版)

2018年高考全国二卷理科数学真题(解析 版) 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为 A. B. C. D. 【答案】A

2018年北京市高考数学试卷(理科)

2018年北京市高考数学试卷(理科) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限 3.(5分)执行如图所示的程序框图,输出的s值为() A.B.C.D. 4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为() A. f B. f C. f D.f

5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个 数为() A.1 B.2 C.3 D.4 6.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为() A.1 B.2 C.3 D.4 8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)?A C.当且仅当a<0时,(2,1)?A D.当且仅当a≤时,(2,1)?A 二、填空题共6小题,每小题5分,共30分。 9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=. 11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为. 12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是. 13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在

2018年高三数学试卷

2018年高考数学试卷(文科) 一、选择题(共10小题,每小题5分,满分50分) 1.(5分)设全集U={x∈R|x>0},函数f(x)=的定义域为A,则?U A为()A.(0,e] B.(0,e) C.(e,+∞)D.[e,+∞) 2.(5分)设复数z满足(1+i)z=﹣2i,i为虚数单位,则z=() A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i 3.(5分)已知A(1,﹣2),B(4,2),则与反方向的单位向量为()A.(﹣,)B.(,﹣)C.(﹣,﹣)D.(,) 4.(5分)若m=0.52,n=20.5,p=log20.5,则() A.n>m>p B.n>p>m C.m>n>p D.p>n>m 5.(5分)执行如图所示的程序框图,输出n的值为() A.19 B.20 C.21 D.22 6.(5分)已知p:x≥k,q:(x﹣1)(x+2)>0,若p是q的充分不必要条件,则实数k的取值范围是() A.(﹣∞,﹣2)B.[﹣2,+∞) C.(1,+∞)D.[1,+∞) 7.(5分)一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为() A.056,080,104 B.054,078,102 C.054,079,104 D.056,081,106 8.(5分)若直线x=π和x=π是函数y=sin(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为() A.B.C.D.

9.(5分)如果实数x,y满足约束条件,则z=的最大值为()A.B.C.2 D.3 10.(5分)函数f(x)=的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是() A.a>1 B.a≤﹣C.a≥1或a<﹣D.a>1或a≤﹣ 二、填空题(共5小题,每小题5分,满分25分) 11.(5分)已知直线l:x+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B 三点的圆的标准方程为. 12.(5分)某几何体三视图如图所示,则该几何体的体积为. 13.(5分)在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a 的值为. 14.(5分)已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线﹣=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为. 15.(5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是. 三、解答题(共6小题,满分75分) 16.(12分)已知向量=(sinx,﹣1),=(cosx,),函数f(x)=(+)?. (1)求函数f(x)的单调递增区间; (2)将函数f(x)的图象向左平移个单位得到函数g(x)的图象,在△ABC中,角A,B,

2018年全国高考ii卷理科数学试题及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为

2018年北京高考卷数学(理科)试题及答案

2018年普通高等学校招生全国统一考试(北京卷) 数学(理工类) 第一部分(选择题 共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合{} 2A x x =<,{} 2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数 i 1i -的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.执行如图所示的程序框图,输出的s 值为( ). A . 1 2 B .56 C .76 D .712 4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频 率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ). A B C . D . 5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .4 6.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则

2018年高考文科数学北京卷及答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页) 绝密★启用前 北京市2018年普通高等学校招生全国统一考试 文科数学 本试卷满分150分.考试时长120分钟. 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{||}2|x A x =<,2,0,{1,2}B =-,则A B = ( ) A .{}0,1 B .{}1,0,1- C .{}2,0,1,2- D .{}1,0,1,2- 2.在复平面内,复数1 1i -的共轭复数对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的s 值为 ( ) A .12 B .56 C .76 D .712 4.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的 比都等于f ,则第八个单音频率为 ( ) A B C . D . 6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( ) A .1 B .2 C .3 D .4 7.在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是 ( ) A .A B B .CD C .EF D .GH 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________ -------------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ----------------

(完整)2018年上海高考数学试卷

2018年普通高等学校招生全国统一考试 上海 数学试卷 时间120分钟,满分150分 一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.行列式41 25的值为_________. 2.双曲线2 214 x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。若()f x 的反函数的图像经过点(3,1),则 a =_________. 5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________. 6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________. 7.已知12,1,,1,2,32α? ?∈---???? 。若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________. 8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r ,则AE BF ?u u u r u u u r 的最小值为_________. 9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)

10.设等比数列{}n a 的通项公式为1n n a q -=(*n ∈N ),前n 项和为n S 。若1 1lim 2n n n S a →+∞+=,则q =_________. 11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ?? ???、1,5Q q ??- ?? ?。若236p q pq +=,则a =_________. 12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y += ,则的最大值为_________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A ) (B ) (C ) (D )14.已知a ∈R ,则“1a >”是“11a <”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。设1AA 是正六棱柱的一条侧棱,如图。若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( ) (A )4 (B )8 (C )12 (D )16 16.设D 是含数1的有限实数集,()f x 是定义在D 上的函数。若()f x 的图像绕原点逆时针旋转6 π后与原图像重合,则在以下各项中,(1)f 的可能取值只能是( ) A 1

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后 农村的经济收入构成比例。得到如下 饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视图 上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上, 从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

2009至2018年北京高考真题分类汇编之向量

2009至2018年北京高考真题分类汇编之向量精心校对版题号一二总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、填空题(本大题共6小题,共0分)1.(2013年北京高考真题数学(文))向量(1,1)A ,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC (12,01)的点P 组成,则D 的面积为。2.(2012年北京高考真题数学(文))已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB uuu r uu r 的值为;DE DC uuu r uuu r 的最大值为.3.(2011年北京高考真题数学(文))已知向量a=(3,1),b=(0,-1),c=(k ,3).若a-2b 与c 共线,则k=________________. 4.(2016年北京高考真题数学(文))已知向量=(1,3),(3,1)a b ,则a 与b 夹角的大小为_________. 5.(2017年北京高考真题数学(文))已知点P 在圆22=1x y 上,点A 的坐标为(-2,0),O 为原点,则AO AP 的最大值为_________.6.(2018年北京高考真题数学(文))设向量a =(1,0),b =(-1,m ),若()m a a b ,则m =_________. 二、选择题(本大题共6小题,每小题0分,共0分。在每小题给出的四个选项中,只有一个选项是符合题目要求的) 7.(2009年北京高考真题数学(文))已知向量(1,0),(0,1),(),a b c ka b k R d a b ,姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

2018高考理科数学模拟试题

2018学年高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

2018北京高考数学(理科)word版

绝密★本科目考试启用前 2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合{} {}2,2,0,1,2A x x B ==-<,则A B ?= (A){}0,1(B){}1,0,1-(C){}2,0,1,2?-(D){}1,0,1,2- (2)在复平面内,复数的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限 (3)执行如图所示的程序框图,输出的s 值为 (A) 12(B)56(C)7 6 (D)71225-67-

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单 音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为∫,则第八个单音的频率为 (C)(D) (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A)1 (B)2 (C)3 (D)4 (6)设a,b 均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点(),P cos sin θθ到直线20x my --=的距离.当θ,m 变化时,d 的最大值为 (A)1 (B)2 (C)3 (D)4 (8)设集合(){},1,4,2A x y x y ax y x ay = -≥+>-≤,则 (A)对任意实数(),2,1a A ∈(B)对任意实数(),2,1a A ? (C)当且仅当0a <时,()2,1A ?(D)当且仅当3 2 a ≤时,()2,1A ?

2018年高考全国三卷理科数学试卷

2018年普通高等学校招生全国统一考试(III卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 A.B.C.D. 2. A.B.C.D. 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 4.若,则 A.B.C.D. 5.的展开式中的系数为 A.10 B.20 C.40 D.80 6.直线分别与轴,轴交于、两点,点在圆上,则面积的取值范围是 A.B.C.D.

7.函数的图像大致为 8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A.B.C.D. 9.的内角的对边分别为,,,若的面积为,则 A.B.C.D. 10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D. 11.设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A.B.2 C.D. 12.设,,则 A.B.C.D. 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,,.若,则________. 14.曲线在点处的切线的斜率为,则________. 15.函数在的零点个数为________. 16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若 ,则________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须 作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分) 等比数列中,.

2018年高考理科数学试题及答案-全国卷3

2018 年普通高等学校招生全国统一考试 ( 全国卷 3) 理科数学 2. 1 i 2 i B . 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右 可以是 1 4 .若 sin ,则 cos 2 3 、选择题本: 题共 12 小题, 每小题 5 分,共 60 分。 在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合 A x | x 1≥ 0 , B 0 ,1,2 ,则 A B B . C . 1,2 D . 0 ,1 ,2 方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯 视 图 D . 边的小长

A. 7 B. 9 7 C. 9 8 D. 9 5. 的展开式中 4 x 的系数 A.10 B.20 C.40 D.80 6.直线x y 2 0 分别与x 轴,y轴交于A , B 两点, 点 P 在圆 上,则△ABP 面积的取值范围

A . B . 4,8 C . 2 ,3 2 D . 2 2 , 3 2 7.函数 4 2 2 y x x 的图像大致为 8.某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为该群体的 10 位成员 中使用移动支付的人数, DX 2.4 , P X 4 P X 6 ,则 p A . 0.7 B . 0.6 C . 0.4 D . 0.3 9. △ ABC 的内角 A ,B ,C 的对边分别为 a , b , c ,若 △ABC 2 2 2 的面积为 a b c ,则 C π π π 4 π A . B . C . D . 2 3 4 6 10.设 A ,B ,C , D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC 体积的最大值为 A . 12 3 B . 18 3 C . 24 3 2 2 11.设 F 1 ,F 2 是双曲线 x y D . 54 3 O 是坐标原点.过 F 2 作 C 的一条渐近线 垂线,垂足为 a b P .若 PF 1 6 OP ,则 C 的离心 率为 A . 5 B .2 C . 3 C : 2 2 1( a 0,b 0 )的左,右焦点, 的 log 2 0.3 ,则 A . a b ab 0 C . a b 0 ab 12 .设 a log 0.2 0.3 , b B . ab a b 0 D ab 0 a b 、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2018北京理科数学高考真题

2018年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。 (1)已知集合A{x||x|<2},B{-2,0,1,2},则A B (A){0,1} (B){-1,0,1} (C){-2,0,1,2} (D){-1,0,1,2} (2)在复平面内,复数的共轭复数对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (3)执行如图所示的程序框图,输出的S值为 (A) (B) (C) (D)

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第一个单音的频率为,则第八个单音的频率为 (A) (B) (C) (D) (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A) 1 (B) 2 (C) 3 (D) 4 (6)设a,b均为单位向量,则“”是“a”的 (A)充分而不必要条件

(B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (7)在平面直角坐标系中,记d为点到直线x的距 离,当m变化时,d的最大值为 (A)1 (B)2 (C)3 (D)4 (8)设集合A,则 (A)对任意实数a, (B)对任意实数a, (C)当且仅当a时, (D)当且仅当a时, 第二部分(非选择题共110分) 二、填空题共6小题,每小题5分,共30分。 (9)设是等差数列,且3, 36,则的通项公式为______ (10)在极坐标系中,直线a与圆2相切,则a=_____ (11)设函数f(x)= ,若f对任意的实数x都成立,则的最小值为______

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

2018年北京高考理科数学真题及答案

2018年北京高考理科数学真题及答案本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目 要求的一项。 (1)已知集合A={x||x|<2},B={–2,0,1,2},则A I B= (A){0,1} (B){–1,0,1} (C){–2,0,1,2} (D){–1,0,1,2} (2)在复平面内,复数 1 1i 的共轭复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为 (A)1 2 (B) 5 6 (C)7 6 (D) 7 12 (4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都

等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A )32f (B )322f (C )1252f (D )1272f (5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 (6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当 θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3 (D )4 (8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ? (C )当且仅当a <0时,(2,1)A ? (D )当且仅当3 2 a ≤ 时,(2,1)A ? 第二部分(非选择题共110分) 二、填空题共6小题,每小题5分,共30分。 (9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. (10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.

2018年高考数学真题

2018年普通高等学校招生全国统一考试(卷) 数学Ⅰ 1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A I 2. 若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为_____ 3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位 裁判打出的分数的平均数为_____ 4. 一个算式的伪代码如图所示,执行此算法,最后输出的S 的值为______ 5. 函数1log )(2-=x x f 的定义域为______ 6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加, 则恰好有2名女生的概率为_______ 7. 已知函数)22)(2sin(π?π?<<-+=x y 的图象关于直线3 π =x 对称,则?的值是______ 8. 在平面直角坐标系xOy 中.若双曲线0)b 0(122 22>>=-,a b y a x 的右焦点F(c ,0)到一 条渐近线的距离为 c 2 3 ,则其离心率的值是_____ 9. 函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间]2,2(-上,??? ??? ?≤<-+≤<=,02,21 ,20,2cos )(x x x x x f π则))15((f f 的值为______ 10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面 体的体积为_______ 11. 若函数)(12)(2 3 R a ax x x f ∈+-=在),0(+∞有且只有一个 零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______ 12. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限的点,B (5,0),以 8 99 9 011 (第3题) I ←1 S ←1 While I<6 I ←I+2 S ←2S End While Pnint S (第4题)

(完整版)2018年北京市高考理科数学试题及答案.docx

绝密★本科目考试启用前 2018 年普通高等学校招生全国统一考试 数学(理)(北京卷)本试卷共 5 页, 150 分。考试时长120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题共40分) 一、选择题共8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。( 1)已知集合A={ x||x|<2} ,B={ –2, 0, 1,2} ,则 A I B= ( A ) {0 ,1}(B){–1,0,1} ( C) { –2, 0, 1, 2}(D){–1,0,1,2} ( 2)在复平面内,复数 1 的共轭复数对应的点位于1i ( A )第一象限(B)第二象限( C)第三象限(D)第四象限( 3)执行如图所示的程序框图,输出的s 值为 ( A )1 ( B)5 26 ( C)7 ( D)7 612

(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为 ( A)3 2 f( B)322f ( C)12 25 f( D)12 27 f ( 5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( A ) 1(B)2 ( C) 3(D)4 ( 6)设 a, b 均为单位向量,则“ a 3b3a b ”是“ a⊥ b”的 ( A )充分而不必要条件(B)必要而不充分条件 ( C)充分必要条件(D)既不充分也不必要条件 ( 7)在平面直角坐标系中,记 d 为点 P( cosθ, sinθ)到直线 x my 2 0 的距离,当θ,m变化时,d的最大值为 ( A ) 1(B)2 ( C) 3(D)4 ( 8)设集合 A {( x, y) | x y 1, ax y4, x ay2}, 则 ( A )对任意实数 a, (2,1) A( B)对任意实数a,(2, 1)A ( C)当且仅当 a<0 时,( 2, 1)A( D)当且仅当 a 3 A 时,( 2,1) 2

相关文档
相关文档 最新文档