文档库 最新最全的文档下载
当前位置:文档库 › (完整)2019高考数学专题十四外接球

(完整)2019高考数学专题十四外接球

(完整)2019高考数学专题十四外接球
(完整)2019高考数学专题十四外接球

培优点十四 外接球

1.正棱柱,长方体的外接球球心是其中心

例1:已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .16π B .20π

C .24π

D .32π

【答案】C

【解析】162==h a V ,2=a ,24164442222=++=++=h a a R ,24πS =,故选C .

2.补形法(补成长方体)

图2

图3

例2:若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .

【答案】9π

【解析】933342=++=R ,24π9πS R ==.

3.依据垂直关系找球心

例3:已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC △满足

BA BC ==π

2

ABC ∠

=

,若该三棱锥体积的最大值为3,

则其外接球的体积为( ) A .8π B .16π C .16π3 D .32

π3

【答案】D

【解析】因为

ABC △是等腰直角三角形,所以外接球的半径是1

2r ==的半径是R ,球心O 到该底面的距离d ,如图,则1

632ABC S =?=△,BD =11

6336

ABC V S h h ==?=△,

最大体积对应的高为3SD h ==,故223R d =+,即()2

233R R =-+,解之得2R =,

所以外接球的体积是

3432π

π33

R =,故答案为D .

一、单选题

1.棱长分别为235的长方体的外接球的表面积为( ) A .4π B .12π C .24π D .48π

【答案】B

【解析】设长方体的外接球半径为R ,由题意可知:()(22

2

2223

5

R =+

+

,则:23R =,

该长方体的外接球的表面积为24π4π312πS R ==?=.本题选择B 选项.

2.设三棱柱的侧棱垂直于底面,所有棱的长都为23面积为( ) A .12π B .28π C .44π D .60π

【答案】B

【解析】设底面三角形的外接圆半径为r ,由正弦定理可得:23

2r =2r =, 设外接球半径为R ,结合三棱柱的特征可知外接球半径2

2

2327R =

+=,

对点增分集训

外接球的表面积24π28πS R ==.本题选择B 选项.

3.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC ,则三棱锥

D ABC -的外接

球的表面积为( ) A .32π B .27π

C .18π

D .9π

【答案】C

【解析】把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC , 则三棱锥D ABC -的外接球直径为32AC =,外接球的表面积为24π18πR =,故选C . 4.某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为( )

A .2πa

B .22πa

C .23πa

D .24πa

【答案】C

【解析】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为2a 的正三角形,一个是三条侧棱两两垂直,且侧棱长为a 的正三棱锥,另一个是棱长为2a 的正四面体,如图所示:

该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对

角线,所以2223

23R a a a a R a =++=?=,所以该几何体外接球面积2

22

34π4π3πS R a a ??==?= ? ???

,故选C .

5.三棱锥A BCD -的所有顶点都在球O 的表面上,AB ⊥平面BCD ,2BC BD ==,243AB CD ==,则球O 的表面积为( )

A .16π

B .32π

C .60π

D .64π

【答案】D

【解析】因为2BC BD ==,23CD =,所以()

2

222223

1cos 222

2

CBD +-∠==-??,

2π3

CBD ∴∠=

, 因此三角形BCD 外接圆半径为

122sin CD

CBD

=∠,

设外接球半径为R ,则2

2

2

=2+412162AB R ??=+= ???

,2

=4π64πS R ∴=,故选D .

6.如图1111ABCD A B C D -是边长为1的正方体,S ABCD -是高为1的正四棱锥,若点S ,1A ,1B ,1C ,1D 在同一个球面上,则该球的表面积为( )

A .

9π16

B .

25π16

C .

49π16

D .

81π16

【答案】D

【解析】如图所示,连结11A C ,11B D ,交点为M ,连结SM ,

易知球心O 在直线SM 上,设球的半径R OS x ==,在1Rt OMB △中,由勾股定理有:22211OM B M B O +=,即:()

2

2

2

222x x ??-+= ? ???

,解得:98x =,则该球的表面积2

2

9814π4ππ816

S R ??

==?= ???.本题选择D 选项.

7.已知球O 的半径为R ,A ,B ,

C 三点在球O 的球面上,球心O 到平面ABC 的距离为1

2

R ,2AB AC ==,120BAC ∠=?,则球O 的表面积为( ) A .

16π9

B .

16π3

C .

64π9

D .

64π3

【答案】D

【解析】由余弦定理得:44222cos12023BC =+-???=,

设三角ABC 外接圆半径为r ,由正弦定理可得:

23

2r =,则2r =,

又22144R R =+,解得:2163R =,则球的表面积264

4ππ3

S R ==.本题选择D 选项.

8.已知正四棱锥P ABCD -(底面四边形ABCD 是正方形,顶点在底面的射影是底面的中心)的各顶点都在同一球面上,10若该正四棱锥的体积为50

3

,则此球的体积为( ) A .18π B .86C .36π

D .323π

【答案】C 【解析】

如图,设正方形ABCD 的中点为E ,正四棱锥P ABCD -的外接球心为O , Q 底面正方形的边长为10,5EA ∴=, Q 正四棱锥的体积为

503

,()

2

150

10

33

P ABCD V PE -∴=?

?=

, 则5PE =,5OE R ∴=-,

在AOE △中由勾股定理可得:()2

255R R -+=,解得3R =,34π36π3

V R ∴==球,故选C .

9.如图,在ABC △中,6AB BC ==,90ABC ∠=?,点D 为AC 的中点,将ABD △沿BD 折起到PBD △的位置,使PC PD =,连接PC ,得到三棱锥P BCD -.若该三棱锥的所有顶点都在同一球面上,

则该球的表面积是( )

A .7π

B .5π

C .3π

D .π

【答案】A

【解析】由题意得该三棱锥的面PCD 3BD ⊥平面PCD , 设三棱锥P BDC -外接球的球心为O ,

PCD △外接圆的圆心为1O ,则1OO ⊥面PCD ,∴四边形1OO DB 为直角梯形, 由3BD 11O D =,及OB OD =,得7OB =7R =

∴该球的表面积27

4π4π7π4

S R ==?

=.故选A . 10.四面体A BCD -中,60ABC ABD CBD ∠=∠=∠=?,3AB =,2CB DB ==,则此四面

体外接球的表面积为( ) A .

19π2

B .

1938π

C .17π

D .

1717π

【答案】A 【解析】

由题意,BCD △中,2CB DB ==,60CBD ∠=?,可知BCD △是等边三角形,3BF =, ∴BCD △的外接圆半径23r BE =

=,3

FE ∵60ABC ABD ∠=∠=?,可得7AD AC ==可得6AF =∴AF FB ⊥,∴AF BCD ⊥, ∴四面体A BCD -高为6AF =

设外接球R ,O 为球心,OE m =,可得:222r m R +=……①,

)

2

226π

EF R +=……②

由①②解得:19R =

219

4ππ2

S R ==.故选A . 11.将边长为2的正ABC △沿着高AD 折起,使120BDC ∠=?,若折起后A B C D 、、、四点都在球O 的表面上,则球O 的表面积为( ) A .7

π2

B .7π

C .

13π2

D .

13π3

【答案】B

【解析】BCD △中,1BD =,1CD =,120BDC ∠=?,

底面三角形的底面外接圆圆心为M ,半径为r ,由余弦定理得到3BC =3

21r r =?=,

见图示:

AD 是球的弦,3DA =,将底面的圆心M 平行于AD 竖直向上提起,提起到AD 的高度的

一半,即为球心的位置O ,∴3

OM =

,在直角三角形OMD 中,应用勾股定理得到OD ,OD 即为球的半径. ∴球的半径37

14OD =+

=

.该球的表面积为24π7πOD ?=;故选B . 12.在三棱锥A BCD -中,6AB CD ==,5AC BD AD BC ====,则该三棱锥的外接球的表面积为( ) A .

4343π

B .

4343π

C .

43π

2

D .43π

【答案】D

【解析】分别取AB ,CD 的中点E ,F ,连接相应的线段CE ,ED ,EF ,

由条件,4AB CD ==,5BC AC AD BD ====,可知,ABC △与ADB △,都是等腰三角形,

AB ⊥平面ECD ,∴AB EF ⊥,同理CD EF ⊥,∴EF 是AB 与CD 的公垂线,

球心G 在EF 上,推导出AGB CGD △≌△,可以证明G 为EF 中点, 2594DE =-=,3DF =,1697EF =-=,

∴7GF =

,球半径74394DG =+=

,∴外接球的表面积为24π43πS DG =?=. 故选D .

二、填空题

13.棱长均为6的直三棱柱的外接球的表面积是_________.【答案】84π

【解析】由正弦定理可知底面三角形的外接圆半径为161

23 2sin6023

r=?=?=

?

则外接球的半径()2

2

32391221

R=+=+=,

则外接球的表面积为2

4π4π2184π

S R

==?=.

14.已知棱长都相等正四棱锥的侧面积为163,则该正四棱锥内切球的表面积为________.【答案】()

32163π

-

【解析】设正四棱锥的棱长为a,则2

3

4163

a

??

=

?

?

??

,解得4

a=.

于是该正四棱锥内切球的大圆是如图PMN

△的内切圆,

其中4

MN=,23

PM PN

==22

PE=.

设内切圆的半径为r,由PFO PEN

?

△△,得

FO PO

EN PN

=,即

22

223

r r

-

=,

解得

22

62

31

r==

+

∴内切球的表面积为(2

2

4π4π6232163π

S r

===-.

15.已知三棱柱

111

ABC A B C

-的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积32

AB=,1

AC=,60

BAC

∠=?,则此球的表面积等于______.

【答案】8π

【解析】∵三棱柱

111

ABC A B C

-32

AB=,1

AC=,

60BAC ∠=?,11

21sin 6032AA ∴?????=,12AA ∴=,

2222cos60412BC AB AC AB AC =+-??=+-Q ,3BC ∴=,

设ABC △外接圆的半径为R ,则

2sin 60BC

R ?

=,1R ∴=, ∴外接球的半径为112+=,∴球的表面积等于()

2

4π2

8π?

=.故答案为8π.

16.在三棱锥A BCD -中,AB AC =,DB DC =,4AB DB +=,AB BD ⊥,则三棱锥A BCD -外接球的体积的最小值为_____. 【答案】

82π

3

【解析】如图所示,三棱锥A BCD -的外接圆即为长方体的外接圆,外接圆的直径为长方体的体对角线AD ,

设AB AC x ==,那么4DB DC x ==-,AB BD ⊥,所以22AD AB DB =+积的最小值即为

AD 最小,()2

24AD x x =+-2x =时,AD 的最小值为222

故体积的最小值为

82π

3

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

2019中考数学几何证明专题试卷精选汇编(有解析答案)

几何证明 东城区 19.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D.BF平分∠ABC交AD于点E,交AC于点F.求 证:AE=AF. 19.证明:∵∠BAC=90°, ∴∠FBA+∠AFB=90°.-------------------1分 ∵AD⊥BC, ∴∠DBE+∠DEB=90°.----------------2分 ∵BE平分∠ABC, ∴∠DBE=∠FBA.-------------------3分 ∴∠AFB=∠DEB.-------------------4分 ∵∠DEB=∠FEA, ∴∠AFB=∠FEA. ∴AE=AF.-------------------5分 西城区 19.如图,AD平分∠BAC,BD⊥AD于点D,AB的中点为E,AE

∴AE=AB A E C B D 【解析】(1)证明:∵AD平分∠BAC, ∴∠1=∠2, ∵BD⊥AD于点D, ∴∠ADB=90?, ∴△ABD为直角三角形. ∵AB的中点为E, AB ,DE=, 22 ∴DE=AE, ∴∠1=∠3, ∴∠2=∠3, ∴DE∥AC. (2)△ADE. A 12 E C 3 B D 海淀区 19.如图,△ABC中,∠ACB=90?,D为AB的中点,连接C D,过点B作CD的平行线EF,求证:BC平分∠ABF. 2

A D C E B F 19.证明:∵∠ACB=90?,D为AB的中点, 1 ∴CD=AB=BD. 2 ∴∠ABC=∠DCB.…………… ∵DC∥EF, ∴∠CBF=∠DCB. ∴∠CBF=∠ABC. ∴BC平分∠ABF. 丰台区 19.如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF. A E F B D C 19.证明:连接AD. ∵AB=BC,D是BC边上的中点,A 3E F

2010-2019年高考数学真题专项分类练习-集合

集合 1.(2019?全国1?理T1)已知集合M={x|-40},B={x|x-1<0},则A∩B=( ) A.(-∞,1) B.(-2,1) C.(-3,-1) D.(3,+∞) 【答案】A 【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A. 4.(2019?全国2?文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( ) A.(-1,+∞) B.(-∞,2) C.(-1,2) D.? 【答案】C 【解析】由题意,得A∩B=(-1,2),故选C. 5.(2019?全国3?T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2} 【答案】A 【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A. 6.(2019?北京?文T1)已知集合A={x|-11},则A∪B=( ) A.(-1,1) B.(1,2) C.(-1,+∞) D.(1,+∞) 【答案】C 【解析】∵A={x|-11},∴A∪B=(-1,+∞),故选C. 7.(2019?天津?T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( ) A.{2} B.{2,3} C.{-1,2,3} D.{1,2,3,4} 【答案】D 【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

2019-2020年高考数学第二轮专题复习数列教案

2019-2020年高考数学第二轮专题复习数列教案 二、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 三、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即(a3+a5)2=25. 4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。 6.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质. 通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降. 四、复习建议 1.对基础知识要落实到位,主要是等差(比)数列的定义、通项、前n项和.

2019年中考数学真专题13 图形的相似-分类汇编

专题13 图形的相似 1.(2019?常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4 2.(2019?兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BC B'C' = A.2 B.4 3 C.3 D. 16 9 3.(2019?安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为 A.3.6 B.4 C.4.8 D.5 4.(2019?杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则 A.AD AN AN AE =B. BD MN MN CE = C.DN NE BM MC =D. DN NE MC BM = 5.(2019?连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马” 应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似 A.①处B.②处C.③处D.④处

6.(2019?重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是 A.2 B.3 C.4 D.5 7.(2019?赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是 A.1 B.2 C.3 D.4 8.(2019?凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC= A.1∶2 B.1∶3 C.1∶4 D.2∶3 9.(2019?常德)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是 A.20 B.22 C.24 D.26 10.(2019?玉林)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有

2019届高考数学专题14外接球

培优点十四 外接球 1.正棱柱,长方体的外接球球心是其中心 例1:已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .16π B .20π C .24π D .32π 【答案】C 【解析】162==h a V ,2=a ,24164442222=++=++=h a a R ,24πS =,故选C . 2.补形法(补成长方体) 例2:若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 【答案】9π 【解析】933342=++=R ,24π9πS R ==. 3.依据垂直关系找球心 例3:已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC △满足 6BA BC ==π 2 ABC ∠= ,若该三棱锥体积的最大值为3,则其外接球的体积为( ) A .8π B .16π C .16π3 D .32 π3 【答案】D 【解析】因为ABC △是等腰直角三角形,所以外接球的半径是1 1232r =的半径是R ,球心O 到该底面的距离d ,如图,则1 632ABC S =?=△,3BD =11 6336 ABC V S h h ==?=△, 最大体积对应的高为3SD h ==,故223R d =+,即()2 233R R =-+,解之得2R =, 所以外接球的体积是3432ππ33 R =,故答案为D . 一、单选题 1.棱长分别为235的长方体的外接球的表面积为( ) A .4π B .12π C .24π D .48π 【答案】B 对点增分集训

【解析】设长方体的外接球半径为R ,由题意可知:()()() 22 2 2223 5 R =+ + ,则:23R =, 该长方体的外接球的表面积为24π4π312πS R ==?=.本题选择B 选项. 2.设三棱柱的侧棱垂直于底面,所有棱的长都为23,顶点都在一个球面上,则该球的表面积为( ) A .12π B .28π C .44π D .60π 【答案】B 【解析】设底面三角形的外接圆半径为r ,由正弦定理可得:23 2r =,则2r =, 设外接球半径为R ,结合三棱柱的特征可知外接球半径() 2 223 27R =+=, 外接球的表面积24π28πS R ==.本题选择B 选项. 3.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC ,则三棱锥 D ABC -的外接 球的表面积为( ) A .32π B .27π C .18π D .9π 【答案】C 【解析】把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC , 则三棱锥D ABC -的外接球直径为32AC =,外接球的表面积为24π18πR =,故选C . 4.某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为( ) A .2πa B .22πa C .23πa D .24πa 【答案】C 【解析】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为2a 的正三角形,一个是三条侧棱两两垂直,且侧棱长为a 的正三棱锥,另一个是棱长为2a 的正四面体,如图所示: 该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以2223 23R a a a a R =++?,所以该几何体外接球面积

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

2019中考数学总复习汇总专题

中 考 总 复 习 专 题 汇 总 反比例函数 【反比例函数的性质——增减性】 1.点A(2,1)在反比例函数x k y 的图象上,当10,x>0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC ,△AOC 的面积为6,则k 的值为. 7.如图,在平面直角坐标系xOy 中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数x k y (x>0)的图象上,若△OAB 的面积等于6,则k 的值为( ) A.2 B.4 C.6 D.8 【反比例函数与一次函数综合题】 8.如图,直线y=kx 与双曲线x y 2(x>0)交于点A(1,a), 则k= .

9.如图,一次函数y=-x+b 与反比例函数x k y (x>0)的图象交于点A(m,3)和B(3,1). (1)填空:一次函数的解析式为,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围. 10.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线x k y (x>0)的图象经过BC 的中点D ,且与AB 交于点E ,连接DE.(1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式 11.如图,一次函数y 1=k 1x+2与反比例函数x k y 22 的图象交于点A(4,m)和B(-8,-2),与y 轴交于点C 。(1)k 1= ,k 2= ;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是;(3)过点A 作AD ⊥x 轴于点D,点P 是反比例函数在第一象限的图象 上一点.设直线OP 与线段AD 交于点E,当S 四边形ODAC :S △ODE =3:1时,求点P 的坐标. 12.如图,反比例函数x k y (k ≠0,x>0)的图象与直线y=3x 相交于点C, 过直线上点A(1,3)作AB ⊥x 轴于点B,交反比例函数图象于点 D,且AB=3BD.(1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M , 使点M 到C. D 两点距离之和d=MC+MD 最小,求点M 的坐标.

2019年高考数学填空题专项训练题库100题(含答案)

2019年高考数学填空题专项训练题库100 题(含答案) 1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且 =?}B A x __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m b a ==32,且211=+b a ,则实数m 的值为______________; 4.若0>a ,9 43 2=a ,则=a 3 2log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=x x f , 则方程0)(=x f 的解集是____________________; 7.已知)78l g ()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________; 8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程a a x -+= 53 5有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且 )()()(2121x f x f x x f ?=+. 写出满足上述条件的一个函数:=)(x f _____________; 11.定义在区间)1,1(-内的函数)(x f 满足)1l g ()()(2+=--x x f x f ,则=)(x f ______________;

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

2019年高考试题汇编理科数学--数列

(2019全国1理)9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A.25n a n =- B.310n a n =- C.228n S n n =- D.2 122 n S n n =- 答案: A 解析: 依题意有415146045 S a d a a d =+=??=+=?,可得13 2a d =-??=?,25n a n =-,24n S n n =-. (2019全国1理)14.记n S 为等比数列{}n a 的前n 项和,若113 a =,2 46a a =,则5S = . 答案: 5S = 121 3 解答: ∵113 a = ,2 46a a = 设等比数列公比为q ∴32 5 11()a q a q = ∴3q = ∴5S = 121 3 2019全国2理)19. 已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n n b a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列; (2)求{}n a 和{}n b 的通项公式. 答案: (1)见解析 (2)21)21(-+=n a n n ,2 1)21(+-=n b n n . 解析: (1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得n n n n n n b a b a b a --+=+++334411, 整理可得)(2111n n n n b a b a += +++,又111=+b a ,故{}n n b a +是首项为1,公比为2 1 的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a , 整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列. (2)由{}n n b a +是首项为1,公比为 21的等比数列可得1)2 1 (-=+n n n b a ①;

2019年中考数学真题分类汇编—几何题汇总

2019年中考数学真题分类汇编—几何题汇总 一、选择题 1.【2019连云港市】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是 A.18m2B.m2C.2D2 (第1 题)(第2题)(第3题) 2.【2019宿迁】一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于( ) A.105°B.100°C.75°D.60° 3.【2019宿迁】一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( ) A.20πB.15πC.12πD.9π 4、【2019常州】下图是某几何体的三视图,该几何体是()

A. 圆柱 B. 正方体 C. 圆锥 D.球 5、【2019常州】如图,在线段PA、PB、PC、PD中,长度最小的是( ) A、线段PA B、线段PB C、线段PC D、线段PD 6.【2019镇江】一个物体如图所示,它的俯视图是( ) A.B. C.D. 7、【2019淮安】下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是

( ) 8.【2019泰州】如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、 G 在小正方形的顶点上,则△ABC 的重心是( ) A .点D B .点E C .点F D .点G 9、【2019扬州】 已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足 条件的n 的值有( )A.4个 B.5个 C.6个 D.7个 10.【2019连云港市】如图,在矩形ABCD 中,AD =AB .将矩形ABCD 对折,得 到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:① △CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC = ;④BP =AB ;⑤点 F 是△CMP 外接圆的圆心.其中正确的个数为A B C E D F G ····

2019高考数学专题训练--解三角形(有解析)

2019高考数学专题训练--解三角形(有解析) 专题限时集训(二) 解三角形 (建议用时:60分钟) 一、选择题1.(2018?天津模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,若AB=13,a=3,∠C=120°,则AC等于( ) A.1 B.2 C.3 D.4 A [由余弦定理得13=AC2+9-6ACcos 120° 即AC2+3AC-4=0 解得AC=1或AC=-4(舍去).故选A.] 2. (2018?合肥模拟)△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,bcos A+acos B=2,则△ABC的外接圆的面积为( ) A.4πB.8πC.9πD.36π C [由bcos A+acos B=2,得b2+c2-a22c +a2+c2-b22c=2 化简得c=2,又sin C=13,则△ABC的外接圆的半径R=c2sin C=3,从而△ABC的外接圆面积为9π,故选C.] 3.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积( ) A.3 B.932 C.332 D.33 C [因为c2=(a-b)2+6,C=π3,所以由余弦定理得:c2=a2+b2- 2abcosπ3,即-2ab+6=-ab,ab=6,因此△ABC的面积为12absin C=3×32=332,选C.] 4.如图216,为测得河对岸塔AB的高,先 在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高为( ) 图216 A.10米 B.102米 C.103米 D.106米 D [在△BCD中,∠DBC=180°-105°-45°=30°,由正弦 定理得10sin 30°=BCsin 45°,解得BC=102. 在△ABC中,AB=BCtan∠ACB=102×tan 60°=106.] 5.(2018?长沙模拟)在△ABC 中,角A,B,C对应边分别为a,b,c,已知三个向量m=a,cos A2,n=b,cos B2,p=c,cosC2共线,则△ABC的形状为( ) A.等 边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 A [由m∥n得acosB2=bcosA2,即sin Acos B2=sin Bcos A2化简得sinA2=sinB2,从而A=B,同理由m∥p得A=C,因此△ABC为等边三角形.] 6.如图217,在△ABC中,C=π3,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足.若DE=22,则cos A=( ) 图217 A.223 B.24 C.64 D.63 C [∵DE=22,∴BD=AD=DEsin A=22sin A.∵∠BDC=2∠A,在△BCD中,由正弦定理得BCsin∠BDC=BDsin C,

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

2019-2020全国高考专题全国卷Ⅲ(理)数学试卷

2019-2020全国高考专题全国卷Ⅲ(理)数学试卷 一、选择题 1. 已知集合A ={(x,y )|x,y ∈N ?,y ≥x},B ={(x,y )|x +y =8},则A ∩B 中元素的个数为( ) A.2 B.3 C.4 D.6 2. 复数11?3i 的虚部是( ) A.?3 10 B.?1 10 C.1 10 D.3 10 3. 在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑p i 4i=1=1,则下面四种情形中,对应样本的标准差最大的一组是( ) A.p 1=p 4=0.1,p 2=p 3=0.4 B.p 1=p 4=0.4,p 2=p 3=0.1 C.p 1=p 4=0.2,p 2=p 3=0.3 D.p 1=p 4=0.3,p 2=p 3=0.2 4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e ?0.23(t?53),其中K 为最大确诊病例数.当I (t ?)=0.95K 时,标志已初步遏制疫情,则t ?约为( )(ln 19≈3) A.60 B.63 C.66 D.69 5. 设O 为坐标原点,直线x =2与抛物线C:y 2 =2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.(1 4,0) B.(1 2 ,0) C.(1,0) D.(2,0) 6. 已知向量a → ,b → 满足|a → |=5 ,|b → |=6,a → ?b → =?6,则cos =( ) A.?31 35 B.?19 35 C.17 35 D.19 35 7. 在△ABC 中,cos C =2 3,AC =4,BC =3,则cos B =( ) A.1 9 B.1 3 C.1 2 D.2 3 8. 如图为某几何体的三视图,则该几何体的表面积是( ) A.6+4√2 B.4+4√2 C.6+2√3 D.4+2√3 9. 已知2tan θ?tan (θ+π 4)=7,则tan θ=( ) A.?2 B.?1 C.1 D.2 10. 若直线l 与曲线y =√x 和圆x 2+y 2=1 5相切,则l 的方程为( ) A.y =2x +1 B.y =2x +1 2 C.y =1 2 x +1 D.y =12 x +1 2 11. 已知双曲线C :x 2 a 2?y 2 b 2=1(a >0,b >0)的左右焦点F 1,F 2,离心率为√5.P 是C 上的一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A.1 B.2 C.4 D.8 12. 已知55<84,134<85.设a =log 53,b =log 85,c =log 138, 则( ) A. a

相关文档
相关文档 最新文档