文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考新课标全国1卷文科数学试题及答案解析

2018年高考新课标全国1卷文科数学试题及答案解析

2018年高考新课标全国1卷文科数学试题及答案解析
2018年高考新课标全国1卷文科数学试题及答案解析

2018年高考新课标Ⅰ理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 12 C .1 D .2 2.已知集合{} 2 20A x x x =-->,则A =R e A .{} 12x x -<< B .{} 12x x -≤≤ C .} {}{|1|2x x x x <-> D .} {}{|1|2x x x x ≤-≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍

D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A . 31 44 AB AC - B . 13 44 AB AC - C . 31 44 AB AC + D . 13 44 AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?= A .5 B .6 C .7 D .8 9.已知函数e 0()ln 0x x f x x x ?≤=? >?,, ,, ()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为 直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2 B .p 1=p 3 C .p 2=p 3 D .p 1=p 2+p 3

2016年高考新课标1卷(理科数学答案)

2016年普通高等学校招生全国统一考试 理科数学 参考答案 一、选择题: 1—12:DBCBA ADCCB AB 二、填空题: (13)2- (14)10 (15)64 (16)216000 三、解答题: (17)解:(I )由2cos (cos cos )C a B+b A c =得2cos (cos cos )sin C sinA B+sinB A C =, 即1cos 2C = ,又(0,)C π∈,3 C π∴=; (II )2271 cos 22a b C ab +-==, 1sin 2ABC S ab C == ,6ab ∴=,2213a b += 5a b ∴+==,所以ABC ? 的周长为5 (18)解:(I ),AF FE AF FD ⊥⊥,F FD FE = ,⊥∴AF 平面EFDC , 又?AF 平面ABEF ,所以平面⊥ABEF 平面EFDC ; (II )以E 为坐标原点,EF ,EB 分别为x 轴和y 轴建立空间直角坐标系(如图), 设2AF =,则1FD =, 因为二面角D -AF -E 与二面角C -BE -F 都是60, 即60o EFD FEC ∠=∠=, 易得(0,2,0)B ,(2,2,0)A ,1(2 C , 1(0,2,0),(2,0,0),(,2EB BA BC ∴===-, 设平面EBC 与平面ABCD 的法向量分别 为1111(,,)n x y z =和2222(,,)n x y z =,则 111111111111(,,)(0,2,0)2011(,,)(,2022n EB x y z y n BC x y z x y ??=?==? ??=?-=-=?? 令11x = ,则110,3y z ==- ,1(1,0,3 n ∴=- 由222222222222(,,)(2,0,0)2011(,,)(,2, 2022 22 n BA x y z x n BC x y z x y z ??=?==???=? -=-+= ??, 令22z = ,则22 0,x y ==,13 (0,n ∴= 12(1,0, 2)cos ,n n ?∴<>===, 所以二面角E -BC -A 的余弦值为.

2018年全国高考新课标3卷理科数学试题

2018年普通高等学校招生全国统一考试新课标3卷 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项 中,只有一项是符合题目要求的。 1.已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2} 解析:选C 2.(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-i D.3+i 解析:选D 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

解析:选A 4.若sin α=1 3,则cos2α= ( ) A .89 B .79 C .- 79 D .- 89 解析:选B cos2α=1-2sin 2 α=1-19=8 9 5.(x 2 +2x )5 的展开式中x 4的系数为( ) A .10 B .20 C .40 D .80 解析:选C 展开式通项为T r+1=C 5r x 10-2r (2x )r = C 5r 2r x 10-3r ,r=2, T 3= C 5222x 4,故选C 6.直线x+y+2=0分别与x 轴,y 轴交于A,B 两点,点P 在圆(x-2)2+y 2=2上,则Δ ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[2,32] D .[22,32] 解析:选A ,线心距d=22,P 到直线的最大距离为32,最小距离为2,|AB|=22,S min =2, S max =6

最新全国新课标高考理科数学考试大纲

全国新课标高考文科数学考试大纲 I.命题指导思想 坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能. II.考试内容与要求 一.考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. (1)了解 要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解 要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等. (3)掌握 要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决

2018年新课标1理科数学真题

2019年09月01日xx 学校高中数学试卷 学校:___________姓名:___________班级:___________考号:___________ 一、选择题 1.设21z i i =++则z = ( ) A. 0 B. 12 C. 1 D. 答案:C 解析:()()()() 11222112i i i z i i i i i ---= +=+=++,1z =,故选C 2.已知集合=-->2 {|20}A x x x ,则R C A = ( ) A. {}|12x x -<< B. {|12}x x -≤≤ C. <->{| 1}{|2}x x x x D. {}{}|1|2x x x x ≤-?≥ 答案:B 解析:由题得()(){} 210A x x x =-+>={|2x x >或1}x <-,故 {}12R C A x x =-≤≤,故选B 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图: 则下面结论中不正确的是( )

A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 答案:A 解析:设建设前总经济收入为100则建设后总经济收入为200 对于A,建设前种植收入为10060%60?=,建设后种植收入为20037%74,6074?=<故A 借误: 对于B,建设前其他收入为1004%4?=,建设后其他收入为2005%10,1024?=>?,故B 正确 对于C,建设前养殖收入为10030%30?=,建设后养殖收入为 20030%60,60230?==?,故C 正确: 对于D,建设后,养殖收入占30%,第三产业收入占28%,30%28%58%50%+=>故D 正确: 4.记n S 为等差数列{}n a 的前n 项和,若32413,2S S S a =+=,则5a = ( ) A.-12 B.-10 C.10 D.12 答案:B 解析:由{}n a 为等差数列,且3243S S S =+,故有 1113221433324222a d a d a d ???? ?????+=+++ ? ? ??????? ,即1320a d +=又由12a =,故可得 3d =-,故51424(3)10a a d =+=+?-=-,故选B 5.设函数3 2 ()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切 线方程为( ) A. 2y x =- B. y x =- C. 2y x = D. y x = 答案:D 解析:因为()f x 是奇函数,所以()()11f f -=-,即()() 1111a a a a -+--=-+-+解得1a =,所以()()2 31,01f x x f '=+=,故切线方程为:y x =,故选D 6.在ABC ?中, AD 为BC 边上的中线, E 为AD 的中点,则EB =uur ( ) A. 31 44AB AC - B. 13 44 AB AC -

2018年高考数学新课标3理科真题及答案

1.(2018 年新课标Ⅲ理)已知集合 A ={x |x -1≥0},B ={0,1,2},则 A ∩B =( ) A .{0} B .{1} C .{1,2} D .{0,1,2} C 【解析】A ={x |x -1≥0}={x |x ≥1},则 A ∩B ={x |x ≥1}∩{0,1,2}={1,2}. 2.(2018 年新课标Ⅲ理)(1+i)(2-i)=( ) A .-3-i B .-3+i C .3-i D .3+i D 【解析】(1+i)(2-i)=2-i +2i -i = 3+i . 3.(2018 年新课标Ⅲ理)中国古建筑借助榫卯将木构件连接起来 .构件的凸出部分叫榫头 ,凹 进部分叫卯眼 ,图中木构件右边的小长方体是榫头 .若如图摆放的木构件与某一带卯眼的木 构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) A B C D A 【解析】由题意可知木构件与某一带卯眼的木构件咬合成长方体,小的长方体是榫头,从 图形看出轮廓是长方形,内含一个长方形,且一条边重合,另外 3 边是虚线.故选 A . 1 4.(2018 年新课标Ⅲ理)若 sin α= ,则 cos 2α=( ) 8 7 7 A . B . C .- 9 9 9 1 7 B 【解析】cos 2α=1-2sin α=1-2× = . 2 5.(2018 年新课标Ⅲ理) x + 的展开式中 x 的系数为( ) A .10 B .20 C .40 8 D .- 9 D .80 2 3 2 9 9 2 5 4 x

2 2 C 【解析】 x + 的展开式的通项为 T =C (x ) =2 C x r +1 5 5 .由 10-3r =4,解得 r 2 =2.∴ x + 的展开式中 x 的系数为 2 C =40. 5 6.(2018 年新课标Ⅲ理)直线 x +y +2=0 分别与 x 轴,y 轴交于 A ,B 两点,点 P 在圆(x -2) + y =2 上, △则△ ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[ 2,3 2] D .[2 2,3 2] A 【解析】易得 A (-2,0), B (0,-2),|AB |=2 2.圆的圆心为(2,0),半径 r = 2.圆心(2,0)到 直线 x +y +2=0 的距离 d = |2+0+2| =2 2,∴点 P 到直线 x +y +2=0 的距离 h 的取值范围 1 +1 1 为[2 2-r ,2 2+r ],即[ 2,3 2].又△ ABP 的面积 S = |AB |·h = 2h ,∴S 的取值范围是 [2,6]. 7.(2018 年新课标Ⅲ理)函数 y =-x + x +2 的图象大致为( ) A B C D D 【解析】函数过定点(0,2),排除 A ,B ;函数的导数 y ′=-4x +2x =-2x (2x -1),由 y ′>0 解得 x <- 2 2 或 0<x < ,此时函数单调递增,排除 C .故选 D . 2 2 8.(2018 年新课标Ⅲ理)某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式 相互独立.设 X 为该群体的 10 位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6), 2 5 r 2 5 r r r r 10 3r - - x x 2 5 4 2 2 x 2 2 2 2 2 4 2 3 2

2017年高考新课标1理科数学及答案【精】

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ) 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合A ={x |x <1},B ={x |31x <},则 A. B. C. D. (2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. (3)设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为 A. B. C. D. (4)记为等差数列的前项和.若,,则的公差为 A.1 B.2 C.4 D.8 {|0}A B x x =< A B =R {|1}A B x x => A B =? 14 π 812 π 41p z 1 z ∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={} n a

(5)函数在单调递减,且为奇函数.若,则满足的的取值范围是 A. B. C. D. (6) 展开式中的系数为 A.15 B.20 C.30 D.35 (7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.16 (8)右面程序框图是为了求出满足3n ?2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别填入 A.A >1 000和n =n +1 B.A >1 000和n =n +2 C.A ≤1 000和n =n +1 D.A ≤1 000和n =n +2 (9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是 ()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621 (1)(1)x x + +2 x 2π 3

2018全国高考新课标1卷理科数学试题卷解析版

2018年普通高等学校招生全国统一考试新课标1卷 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设z=1-i 1+i +2i ,则|z|= A .0 B .1 2 C .1 D . 2 解析:选C z=1-i 1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则?R A = A .{x|-12} D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2} 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A 4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12 B .-10 C .10 D .12 解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-10 5.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x 解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D

2018年高考数学新课标1卷(理科试卷) - 精美解析版

2018年普通高等学校招生全国统一考试(新课标I 卷) 理科数学 本试卷4页,23小题,满分150分.考试用时120分钟. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的. 1.设i 2i 1i 1++-= z ,则=z ( ) A .0 B . 2 1 C .1 D .2 1.【解析】()()()i i 22 i 2i 2i 1i 1i 12 =+-=+-+-=z ,则1=z ,选C . 2.已知集合}02|{2>--=x x x A ,则=A C R ( ) A .}21|{<<-x x B .}21|{≤≤-x x C .}2|{}1|{>-

2016年全国统一高考数学试卷(理科)(新课标一)及解析

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=() A.(﹣3,﹣) B.(﹣3,)C.(1,)D.(,3) 2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2 3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D. 5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中 两条相互垂直的半径.若该几何体的体积是,则它的表面积是()

A.17πB.18πC.20πD.28π 7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为() A.B. C.D. 8.(5分)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c C.alog b c<blog a c D.log a c<log b c 9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()

A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为() A.2 B.4 C.6 D.8 11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,则m、n所成角的正弦值为() A. B. C. D. 12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣ 为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(, )单调,则ω的最大值为() A.11 B.9 C.7 D.5 二、填空题:本大题共4小题,每小题5分,共25分. 13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.

高考新课标大纲及解读:数学(文)

2019年高考新课标大纲及解读:数学(文) 2019年高考考试说明(课程标准实验版) 数学(文) I.考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度. Ⅱ.考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2019年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的

数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明 对知识的要求依次是了解、理解、掌握三个层次。 (1)了解:要求对所列知识的含义有初步的、感性的认识.知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。比较、判断,初步应用等。 (3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。这一层次所涉及的主要行为动词有:掌握、导出、分析.推导、证明.研究、讨论、运用、解决问题等. 2.能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运

2020年高考新课标Ⅲ理科数学试卷及答案

2020年高考新课标Ⅲ理科数学试卷及答案 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 【答案】C 采用列举法列举出A B 中元素的即可. 【详解】由题意,A B 中的元素满足8 y x x y ≥??+=?,且*,x y N ∈, 由82x y x +=≥,得4x ≤, 所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B 中元素的个数为4. 故选:C. 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数1 13i -的虚部是( ) A. 310 - B. 110 - C. 110 D. 310 【答案】D 利用复数的除法运算求出z 即可. 【详解】因为11313 13(13)(13)1010 i z i i i i += ==+--+, 所以复数113z i =-的虚部为310 . 故选:D. 【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且4 11i i p ==∑,则下面四种情形中,对应 样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====

2018年全国统一高考数学试卷文科新课标

2018年全国统一高考数学试卷(文科)(新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5.00分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2} 2.(5.00分)设z=+2i,则|z|=() A.0 B.C.1 D. 3.(5.00分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5.00分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D. 5.(5.00分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π 6.(5.00分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为() A.y=﹣2x B.y=﹣x C.y=2x D.y=x 7.(5.00分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5.00分)已知函数f(x)=2cos2x﹣sin2x+2,则()

2017高考新课标1卷理科数学试题及答案

精选文档 A . p 1, p 3 B . p 1, p 4 C . p 2, p 3 D . p 2,p 4 绝密★启用前 2017 年普通高等学校招生全国统一考试(新课标 1 ) 理科数学 、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 x 1.已知集合 A ={x |x <1},B ={ x |3x 1},则 A . AI B { x|x 0} B . AU BR C . AUB {x|x 1} D . AI B 2 .如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白 率是 π B . 8 π D . 4 3.设有下面四个命题 1 p 1 :若复数 z 满足 R ,则 z R ; z 2 p 2 :若复数 z 满足 z 2 R ,则 z R ; p 4 :若复数 z R ,则 z R . 其中的真命题为 色部分关于正方形的中心成中心对称 .在正方形内随机取一点, 则此点取自黑色部分的概 A . C . p 3 :若复数 z 1, z 2满足 z 1z 2 R ,则 z 1 z 2 ;

精选文档 B .A >1 000 和 n = n +2 4 .记S n 为等差数列 {a n }的前n 项和.若 a 4 a 5 24,S 6 48,则{ a n }的公差为 A .1 B .2 C . 4 D .8 5.函数 f (x)在 ( , ) 单调递减,且为奇函 数. 若 f (1) 1 ,则满足 1 f (x 2) 1 的 x 的取值范围是 A . [ 2,2] B . [ 1,1] C . [0,4] D . [1,3] 6. (1 1 2 )(1 x)6 展开式中 x 2 的系数为 x 2 A . 15 B .20 C . 30 D . 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为 2 ,俯视图为等腰直角三角形 .该多面体的各个面中有若干个是梯形,这 些梯形的面积之和为 A .A >1 000 和 n = n +1 A . 10 B . 12 C .14 D .16 8.右面程序框图是为了求出满足 3n - 2n >1000 的最小偶数 n ,那么在 和 两个空白 框中,可以分别填入

新课标高考数学考纲.doc

新课标高考数学考纲 一)命题指导思想 1.命题应依据教育部《普通高中数学课程标准(实验)》和《2007年普通高等学校招生全国统一考试新课程标准数学科考试大纲》(待发),并结合我省普通高中数学教学实际,体现数学学科的性质和特点。 2.命题注重考查考生的数学基础知识、基本技能和数学思想、数学方法、数学能力,体现知识与能力、过程与方法、情感态度与价值观等目标要求。 3.命题既要实现平稳过渡,又要体现新课程理念。 4.注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。 5.命题要坚持公正、公平原则。试题要切合我省中学数学教学实际,数学问题的难度、问题的情景等要符合考生的实际水平。应用题要“贴近生活,背景公平,控制难度”。 6.命题要注意必修内容和选修内容的有机联系与适当差异,注重数学学科知识的内在联系。 7.试卷要有较高的信度、效度和必要的区分度以及适当的难度,难度系数控制在0.55—0.65之内。 (二)知识和能力要求 1.知识要求 对知识的要求由低到高分为三个层次,依次是感知和了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。 (1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。 (2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。 (3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。 2.能力要求 能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。 (1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷的运算途径。 (2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。 (3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。

2018年全国高考新课标1卷理科数学试题(解析版)

高考真题高三数学2018 年普通高等学校招生全国统一考试新课标 1 卷 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净 后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无 效 。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12 小题,每小题 5 分,共60 分。在每小题给出的四个选项中,只有一项是 符合题目要 求的。 1-i 1.设z= 1+i +2i ,则|z|= 1 2 A.0 B . C .1 D . 2 解析:选 C z= 1-i 1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0} ,则? R A = R A = A.{x|-12} D .{x|x ≤-1} ∪{x|x ≥2} 解析:选 B A={x|x<-1 或x>2} 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济 收入变化情况,统计了该地区新农村建设前后农村的经济收入构成 比例 ,得 到如 下饼 图 : 建设前经济收入构成比例 建设后经济收入构成比 例 则下面结论中不正确 的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选 A 4.设S n 为等差数列{a n} 的前n 项和,若3S3=S2+S4,a1=2,则a5= A.-12 B.-10 C.10 D.12 解析:选∵3(3a 1 +3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-10 5.设函数f(x)=x 3+(a-1)x 2+ax,若f(x) 为奇函数,则曲线y=f(x) 在点(0,0) 处的切线方程为 A.y=-2x B.y=-x C.y=2x D.y=x 解析:选 D ∵f(x) 为奇函数∴a=1 ∴f(x)=x 3+x f ′(x) =3x2+1 f ′(0)=1 故选 D →= 6.在ΔABC中,AD为BC边上的中线, E 为AD的中点, 则EB 3 →- A.AB 4 1 4 →B. AC 1 4 →- AB 3 4 →C. AC 3 4 →+ AB 1 4 →D. AC 1 4 →+ AB 3 → AC 4

2014年高考理科数学新课标1卷解析版

2014年高考理科数学新课标1卷解析版 一、选择题(题型注释) 1.已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 【答案】A 【解析】 试题分析:由已知得,{ 1A x x =≤-或}3x ≥,故{} 21A B x x =-≤≤- ,选A . 【考点定位】1、一元二次不等式解法;2、集合的运算. 2.=-+2 3)1()1(i i ( ) A. i +1 B. i -1 C. i +-1 D. i --1 【答案】D 【解析】 试题分析:由已知得=-+23)1()1(i i 22(1)(1)2(1) 1(1)2i i i i i i i +++==----. 【考点定位】复数的运算. 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( ) A .)()(x g x f 是偶函数 B .)(|)(|x g x f 是奇函数 C..|)(|)(x g x f 是奇函数 D .|)()(|x g x f 是奇函数 【答案】C 【解析】 试题分析:设()()()H x f x g x =,则()()()H x f x g x -=--,因为)(x f 是奇函数,)(x g 是偶函数,故()()()()H x f x g x H x -=-=-,即|)(|)(x g x f 是奇函数,选C . 【考点定位】函数的奇偶性. 4.已知F 为双曲线C :)0(32 2 >=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B. 3 C. m 3 D. m 3 【答案】A 【解析】 试题分析:由已知得,双曲线C 的标准方程为22133 x y m -=.则2 33c m =+,c =

2018年全国统一高考数学试卷理科新课标

2018年全国统一高考数学试卷(理科)(新课标Ⅱ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)=() A.i B.C.D. 2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.4 3.(5分)函数f(x)=的图象大致为() A. B.C. D. 4.(5分)已知向量,满足||=1,=﹣1,则?(2)=() A.4 B.3 C.2 D.0 5.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=() A.4B.C.D.2

7.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入() A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4 8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A.B.C.D. 9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为() A.B.C.D. 10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π 11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.﹣50 B.0 C.2 D.50 12.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,

相关文档
相关文档 最新文档