文档库 最新最全的文档下载
当前位置:文档库 › 高考数学全国二卷(理科)完美版

高考数学全国二卷(理科)完美版

高考数学全国二卷(理科)完美版
高考数学全国二卷(理科)完美版

年高考数学全国二卷(理科)完美版

————————————————————————————————作者:————————————————————————————————日期:

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷(选择题 共60分)

2014·新课标Ⅱ卷 第1页一、选择题(本大题共12小题,每小题5分,共60分.在每

小题给出的四个选项中,只有一项是符合题目要求的)

1.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( )

A .{1}

B .{2}

C .{0,1}

D .{1,2}

2.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )

A .-5

B .5

C .-4+i

D .-4-i

3.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( )

A .1

B .2

C .3

D .5

4.钝角三角形ABC 的面积是12

,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1

5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )

A .0.8

B .0.75

C .0.6

D .0.45

6.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视

图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )

A.1727

B.59

C.1027

D.13

7.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( )

A .4

B .5

C .6

D .7

8.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )

A .0

B .1

C .2

D .3

9.设x ,y 满足约束条件?????

x +y -7≤0,x -3y +1≤0,3x -y -5≥0,

则z =2x -y 的最大值为( )

A .10

B .8

C .3

D .2

10.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94

11.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )

A.110

B.25

C.3010

D.22

2014·新课标Ⅱ卷 第2页12.设函数f (x )=3sin πx m

.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2

A .(-∞,-6)∪(6,+∞)

B .(-∞,-4)∪(4,+∞)

C .(-∞,-2)∪(2,+∞)

D .(-∞,-1)∪(1,+∞) 第Ⅱ卷(非选择题 共90分)

二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)

13.(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)

14.函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.

15.已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.

16.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.

三、解答题(解答应写出文字说明,证明过程或演算步骤)

17.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明????

??a n +12是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <32

.

2014·新课标Ⅱ卷 第3页

18.(本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,

E 为PD 的中点.

(1)证明:PB ∥平面AEC ;

(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.

19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:

年 份 2007 2008 2009 2010 2011 2012 2013

年份代号t 1 2 3 4 5 6 7

人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9

(1)求y 关于t 的线性回归方程;

2014·新课标Ⅱ卷 第4页(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:

b ^=∑n i =1 (t i -t -)(y i -y -)∑n i =1

(t i -t -)2,a ^=y --b ^t -.

20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .

(1)若直线MN 的斜率为34

,求C 的离心率;

2014·新课标Ⅱ卷 第5页(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .

21.(本小题满分12分)已知函数f (x )=e x -e -x -2x .

(1)讨论f (x )的单调性;

(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值;

(3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).

2014·新课标Ⅱ卷 第6页请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.作答时请写清题号.

22.(本小题满分10分)选修4-1:几何证明选讲

如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:

(1)BE =EC ;

(2)AD ·DE =2PB 2.

23.(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的

极坐标方程为ρ=2cos θ,θ∈???

?0,π2. (1)求C 的参数方程;

(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.

24.(本小题满分10分)选修4-5:不等式选讲

设函数f (x )=???

?x +1a +|x -a |(a >0). (1)证明:f (x )≥2;

(2)若f (3)<5,求a 的取值范围.

2015年高考理科数学试题及答案-全国卷2

绝密★启用前 2015年普通高等学校招生全国统一考试(全国卷2) 理 科 数 学 注意事项: 1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。 2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( ) (A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2} (2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( ) (A )-1 (B )0 (C )1 (D )2 (3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( ) (A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现 (C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 (4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) (A )21 (B )42 (C )63 (D )84

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

2016年高考数学全国二卷(理科)

2016年普通高等学校招生全国统一考试 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 (A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--, (2)已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =U (A ){}1 (B ){12}, (C ){}0123, ,, (D ){10123}-, ,,, (3)已知向量(1,)(3,2)a m b =-r r , =,且()a b b +⊥r r r ,则m = (A )8- (B )6- (C )6 (D )8 (4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4 - (C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则 小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移π 12 个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ 26k x k =+∈Z (C )()ππ 212 Z k x k = -∈ (D )()ππ212Z k x k = +∈ (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =, 2n =,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34 (9)若π3 cos 45 α??-= ???,则sin 2α= (A ) 725 (B )15 (C )1 5 - (D )725 - (10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…, (),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为

全国统一高考数学试卷(理科全国卷1)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2016?新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3) 2.(5分)(2016?新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=() A.1 B.C.D.2 3.(5分)(2016?新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97 4.(5分)(2016?新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是() 《 A.B.C.D. 5.(5分)(2016?新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距 离为4,则n的取值范围是() A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,) 6.(5分)(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是() A.17πB.18πC.20πD.28π 7.(5分)(2016?新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()

A.B.C. D. 8.(5分)(2016?新课标Ⅰ)若a>b>1,0<c<1,则() A.a c<b c B.ab c<ba c : C.alog b c<blog a c D.log a c<log b c 9.(5分)(2016?新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足() A.y=2x B.y=3x C.y=4x D.y=5x 10.(5分)(2016?新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ). A .13 B .13- C .19 D .1 9- 4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ). A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ). A .1111+23 10+++ B .1111+2!3! 10!+++ C .1111+23 11+++ D .1111+2!3!11!+++ 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ). A .c >b >a B .b >c >a C .a >c >b D .a >b >c

2015年全国高考数学卷文科卷1及解析

2015年全国高考数学卷文科卷1 一、选择题 1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( ) (A ) 5 (B )4 (C )3 (D )2 2.已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =( ) (A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5.已知椭圆E 的中心为坐标原点,离心率为12 ,E 的右焦点与抛物线2 :8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = ( ) (A ) 172 (B )19 2 (C )10 (D )12 8.函数()cos()f x x ω?=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13 (,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13 (,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈

高考真题理科数学全国卷

2018年普通高等学校招生全国统一考试 数学(理)(全国II 卷) 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1.1212i i +=-()(A )4355i --(B )4355i -+(C )3455i --(D )3455 i -+ 2.已知集合(){}22,|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为() (A )9 (B )8 (C )5(D )4 3.函数()2x x e e f x x --=的图像大致为() 4.已知向量,a b 满足||1a =,1a b ?=-,则() 2a a b ?-=() (A )4(B )3(C )2(D )0 5.双曲线()22 2210,0x y a b a b -=>>的离心率为3,则其渐近线方程为() (A )2y x =±(B )3y x =±(C )22y x =±(D )32 y x =± 6.在ABC ?中,5cos 25 C =,1BC =,5AC =,则AB =() (A )42(B )30(C )29( D )25 7.为计算11111123499100 S =-+-++-,设计了下面的程序框图,则在空白框中应填入() (A )1i i =+ (B )2i i =+ (C )3i i =+ (D )4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+。在不超过 30的素数中,随机选取两个不同的数,其和等于30的概率是()(A )112(B )114 (C )115(D )118

2018高考理科数学全国2卷_含答案解析

2017年普通高等学校招生全国统一考试 理科数学(全国2卷) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 31i i +=+() A .12i + B .12i - C .2i + D .2i - 2.设集合{}1,2,4A =,{} 2 40x x x m B =-+=.若{}1A B =,则B =() A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π 5.设x ,y 满足约束条件2330233030x y x y y +-≤?? -+≥??+≥? ,则2z x y =+的最小值是() A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种 B .18种 C .24种 D .36种 7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .5 9.若双曲线C:22221x y a b -=(0a >,0b >)的一条渐近线被圆()2 224x y -+=所 截得的弦长为2,则C 的离心率为() A .2 B D . 3 10.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1 AB 与1C B 所成角的余弦值为()

2017高考全国Ⅰ卷理科数学试卷及答案(word版)

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B =R C. {|1}A B x x => D. A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. 14 B. π8 C. 12 D. π4 3.设有下面四个命题 1:p 若复数z 满足1z ∈R ,则z ∈R ; 2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R . 其中的真命题为

A.13,p p B.14,p p C.23,p p D.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在 和两个空白框中,可以分别 填入

2013年高考理科数学试题及答案-全国卷1

2013年普通高等学校招生全国统一考试(全国课标I) 理科数学 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B 2.若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ). A.-4 B. 4 5 - C.4 D. 4 5 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ). A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 4.已知双曲线C: 22 22 =1 x y a b -(a>0,b>0)的离心率为 5 2 ,则C的渐近线方程为( ). A.y= 1 4 x ± B.y= 1 3 x ± C.y= 1 2 x ± D.y=±x 5.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).

A .[-3,4] B .[-5,2] C .[-4,3] D .[-2,5] 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ). A . 500π3cm 3 B .866π3 cm 3 C . 1372π3cm 3 D .2048π3 cm 3 7.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何体的体积为( ).

2018年高考全国新课标2卷理科数学word版及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 12i 12i +=- A .43i 55 -- B .43i 55 -+ C .34i 55 -- D .34i 55 -+ 2.已知集合(){} 2 23A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9 B .8 C .5 D .4 3.函数()2 e e x x f x x --=的图像大致为 4.已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b A .4 B .3 C .2 D .0 5.双曲线22 221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为 A .2y x =± B .3y x =± C .22 y x =± D .3 2y x =± 6.在ABC △中,5 cos 25 C =,1BC =,5AC =,则AB = A .42 B .30 C .29 D .25

7.为计算11111 123499100 S =-+-++-…,设计了右侧的程序框图, 则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A . 112 B . 114 C . 1 15 D . 118 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 56 C . 55 D . 22 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是 A . π4 B . π2 C . 3π4 D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则 (1)(2)(3)(50)f f f f ++++=… A .50- B .0 C .2 D .50 12.已知1F ,2F 是椭圆22 221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率 为 3 6 的直线上,12PF F △为等腰三角形,12120F F P ∠=?,则C 的离心率为 A . 23 B . 12 C .13 D . 14 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥?? -+≥??-≤? ,,, 则z x y =+的最大值为__________. 开始0,0 N T ==S N T =-S 输出1i =100 i <1 N N i =+11 T T i =+ +结束 是否

2013年高考理科数学全国卷1有答案

数学试卷 第1页(共21页) 数学试卷 第2页(共21页) 数学试卷 第3页(共21页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 理科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.已知集合2 0{}|2A x x x =-> ,{|B x x <<=,则 ( ) A .A B =R B .A B =? C .B A ? D .A B ? 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为 ( ) A .4- B .45 - C .4 D .45 3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样 D .系统抽样 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4y x =± B .1 3y x =± C .1 2 y x =± D .y x =± 5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 6.如图,有一个水平放置的透明无盖的正方体容器,容器 高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为 ( ) A .3866π cm 3 B . 3500π cm 3 C .31372πcm 3 D .32048πcm 3 7.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m = ( ) A .3 B .4 C .5 D .6 8.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 9.设m 为正整数,2()m x y +展开式的二项式系数的最大值 为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m = ( ) A .5 B .6 C .7 D .8 10.已知椭圆 E :22 221(0)x y a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点. 若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A .22 14536 x y += B .2213627x y += C .2212718x y += D .22 1189x y += 11.已知函数22,0, ()ln(1),0.x x x f x x x ?-+=?+>? ≤若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,1]-∞ B .(,0]-∞ C .[2,1]- D .[2,0]- 12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3, n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++= ,12 n n n b a c ++=,则 ( ) A .{}n S 为递增数列 B .{}n S 为递减数列 C .21{}n S -为递增数列,2{}n S 为递减数列 D .21{}n S -为递减数列,2{}n S 为递增数列 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________. 14.若数列{}n a 的前n 项和21 33 n n S a = +,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效 ---------------- 姓名________________ 准考证号_____________

2015年高考全国卷1理科数学(解析版)

注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设复数z满足1+z 1z - =i,则|z|= (A)1 (B)2(C)3(D)2 【答案】A 考点:1.复数的运算;2.复数的模. (2)sin20°cos10°-con160°sin10°= (A)3 (B 3 (C) 1 2 -(D) 1 2 【答案】D 【解析】 试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=1 2 ,故选D. 考点:诱导公式;两角和与差的正余弦公式 (3)设命题P:?n∈N,2n>2n,则?P为 (A)?n∈N, 2n>2n(B)?n∈N, 2n≤2n (C)?n∈N, 2n≤2n(D)?n∈N, 2n=2n

【答案】C 【解析】 试题分析:p ?:2,2n n N n ?∈≤,故选C. 考点:特称命题的否定 (4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A 【解析】 试题分析:根据独立重复试验公式得,该同学通过测试的概率为 22330.60.40.6C ?+=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式 (5)已知M (x 0,y 0)是双曲线C :2 212 x y -=上的一点,F 1、F 2是C 上的两个焦 点,若1MF u u u u r ?2MF u u u u r <0,则y 0的取值范围是 (A )(- 33,3 3 ) (B )(- 36,3 6 ) (C )(223- ,223) (D )(233-,23 3 ) 【答案】A 考点:向量数量积;双曲线的标准方程

(完整)2018高考数学全国2卷理科试卷

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试(全国2卷) 理科数学 注意事项: 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2. 作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3. 考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 1212i i +=-( ) A .4355 i -- B .4355 i -+ C .3455 i -- D .3455 i -+ 2.已知集合(){} 2 23A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8 C .5 D .4 3.函数()2 x x e e f x x --=的图象大致为( ) 4.已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b A .4 B .3 C .2 D .0 5.双曲线22 221(0,0)x y a b a b -=>> A .y = B .y = C .y x = D .y = 6.在ABC △中,cos 2C 1BC =,5AC =,则AB = A . B C D .

7.为计算11111 123499100 S =-+-++-L ,设计了右侧的程序框图, 则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+ 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A . 1 12 B . 114 C . 115 D . 118 9.在长方体1111ABCD A B C D -中,1AB BC == ,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是 A . π4 B . π2 C . 3π4 D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =, 则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .50 12.已知1F ,2F 是椭圆22 221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率 的直线上,12PF F △为等腰三角形,12120F F P ∠=?,则C 的离心率为 A .23 B . 12 C .13 D . 14 二.填空题:本题共4小题,每小题5分,共20分。 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为 .

2014年高考数学全国二卷(理科)完美版

2014年高考数学全国二卷(理科)完美版

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷(选择题共60分) 2014·新课标Ⅱ卷第1页一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=() A.{1}B.{2} C.{0,1}D.{1,2} 2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=() A.-5 B.5 C.-4+i D.-4-i 3.设向量a,b满足|a+b|=10,|a-b|=6,则a·b=() A.1 B.2 C.3 D.5 4.钝角三角形ABC的面积是1 2,AB=1, BC=2,则AC=() A.5 B. 5 C.2 D.1 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是() A.0.8 B.0.75 C.0.6 D.0.45

6.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A.1727 B.59 C.1027 D.13 7.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6 D .7

8.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3 9.设x ,y 满足约束条件???? ? x +y -7≤0,x -3y +1≤0, 3x -y -5≥0, 则z =2x -y 的最大值为( ) A .10 B .8 C .3 D .2 10.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94 11.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 2014·新课标Ⅱ卷 第2页12.设函数f (x )= 3sin πx m .若存在f (x )的极值点x 0满足x 20+[f (x 0)]2

2018高考全国1卷理科数学试卷及答案

2018 年普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题,本题共12小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合题目要求的。 1i 1. 设z 2i ,则z 1i 1 A.0 B. C.1 D. 2 2 2. 已知集合A x |x2 x 2 0 ,则C R A A. x | 1 x 2 B. x|1x2 C. x|x 1 x|x2 D. x|x 1 x| x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图: A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记S n为等差数列a n 的前n项和,若3S3 S2 S4,a1 2,则a5 A.-12 B.-10 C.10 D.12 5.设函数f x x3 a 1 x2 ax ,若f x 为奇函数,则曲线y f x 在点0,0 处的切 绝密★启用 前 则下面结论中不正确的 是

线方程为 10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。三个半圆 的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC , ABC 的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。 在整个图形中随机取一点,此点取自的概率分 别记为 p 1, p 2, p 3 ,则 A. y 2x B.y x C.y 2x D. y x 6.在 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB 3 1 1 3 A. AB AC B. AB AC 4 4 4 4 3 1 1 3 C. AB AC D. AB AC 4 4 4 4 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面 上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视 图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中, 最短路径的长度为 A.2 17 B.2 5 C.3 D.2 则 FM FN A.5 B.6 C.7 9.已知函数 f e x ,x 0 x ,g x ln x,x 0 fx 围是 A. 1,0 B. 0, 2 2,0 且斜率为 的直线与 C 交于 M ,N 两点, 3 D.8 x a ,若 g x 存在 2 个零点,则 a 的取值范 C. 1, D. 1, 8.设抛物线 C: y 2 4 x 的焦点为 F ,过点

2013年高考文科数学全国卷1有答案

数学试卷 第1页(共15页) 数学试卷 第2页(共15页) 数学试卷 第3页(共15页) 绝密★启用前 2013年普通高等学校招生全国统一考试(全国新课标卷1) 文科数学 使用地区:河南、山西、河北 注意事项: 1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,2,3,4}A =,2 {|,}B x x n n A ==∈,则A B = ( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2. 2 12i (1i) +=- ( ) A .11i 2 -- B .11i 2 -+ C .11i 2 + D .11i 2 - 3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( ) A .12 B .1 3 C .14 D .16 4.已知双曲线C :22 221(0,0)x y a b a b -=>> ,则C 的渐近线方程为 ( ) A .1 4 y x =± B .13y x =± C .1 2y x =± D .y x =± 5.已知命题p :x ?∈R ,23x x <;命题q :x ?∈R ,321x x =-,则下列命题中为真命题的 是 ( ) A .p q ∧ B .p q ?∧ C .p q ∧? D .p q ?∧? 6.设首项为1,公比为 2 3 的等比数列{}n a 的前n 项和为n S ,则 ( ) A .21n n S a =- B .32n n S a =- C .43n n S a =- D .32n n S a =- 7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于 ( ) A .[3,4]- B .[5,2]- C .[4,3]- D .[2,5]- 8.O 为坐标原点,F 为抛物线C :2y =的焦点,P 为C 上一点, 若||PF =,则 POF △的面积为 ( ) A .2 B .C .D .4 9.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为 ( ) 10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,2 23cos cos20A A +=,7a =, 6c =,则b = ( ) A .10 B .9 C .8 D .5 11.某几何体的三视图如图所示,则该几何体的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 12.已知函数22,0()ln(1),0.x x x f x x x ?-+=?+? ≤, >若|()|f x ax ≥,则a 的取值范围是 ( ) A .(,0]-∞ B .(,1]-∞ C .[2,1]- D .[2,0]- 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________. 14.设x ,y 满足约束条件13, 10,x x y ??--? ≤≤≤≤,则2z x y =-的最大值为________. 15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________. 16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; --------在 --------------------此--------------------卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效---------------- 姓名________________ 准考证号_____________

相关文档
相关文档 最新文档