文档库 最新最全的文档下载
当前位置:文档库 › 广东高考文科数学真题

广东高考文科数学真题

广东高考文科数学真题
广东高考文科数学真题

广东高考文科数学真题

精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

2017年普通高等学校招生全国统一考试

文科数学

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}023|{}2|{>-=<=x x B x x A ,则

A. }23|{<=x x B A

B. =B A

C.}2

3

|{<=x x B A D. R =B A

2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x1,x2,…,xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是

A .x1,x2,…,xn 的平均数

B .x1,x2,…,xn 的标准差

C .x1,x2,…,xn 的最大值

D .x1,x2,…,xn 的中位数 3.下列各式的运算结果为纯虚数的是

A .i(1+i)2

B .i 2(1-i)

C .(1+i)2

D .i(1+i)

4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是

A.41

B. 8π

C. 21

D. 4

π

5.已知F 是双曲线C :13

2

2

=-

y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为

A. 31

B. 21

C. 32

D. 2

3 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是

7.设x ,y 满足约束条件??

?

??≥≥-≤+0133y y x y x ,则z=x+y 的最大值为

A .0

B .1

C .2

D .3 ?

8.函数x

x

y cos 12sin -=的部分图像大致为

9.已知函数)2ln(ln )(x x x f -+=,则

A .)(x f 在(0,2)单调递增

B .)(x f 在(0,2)单调递减

C .y=)(x f 的图像关于直线x=1对称

D .y=)(x f 的图像关于点(1,0)对称 10.如图是为了求出满足100023>-n n 的最小偶数n ,那么在和

两个

空白框中,可以分别填入

A .A>1000和n=n+1

B .A>1000和n=n+2

C .A ≤1000和n=n+1

D .A ≤1000和n=n+2

11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知

0)cos (sin sin sin =-+C C A B ,a=2,c=2,则C=?

A.

12π B. 6π C. 4

π D. 3π

12.设A 、B 是椭圆C :132

2=+m

y x 长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是

A .),9[]1,0(+∞

B .),9[]3,0(+∞

C .),4[]1,0(+∞

D .),4[]3,0(+∞

二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a =(–1,2),b =(m ,1).若向量a+b 与a 垂直,则

m=______________.

14.曲线x

x y 1

2+=在点(1,2)处的切线方程为_________________________.

15.已知a )2,0(π∈,tan α=2,则)4

cos(π

α-=__________。

16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。 17.(12分)

记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6.

(1)求{a n }的通项公式;

(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列。

?

18.(12分)

如图,在四棱锥P-ABCD 中,AB ∠∠

3

8

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 抽取次序 9 10 11 12 13 14 15 16 零件尺寸

经计算得,212.0)16(161)(161s 97.9161161

22

2

161161≈-=-===∑∑∑===i i

i i i i x x x x x x , 439.18)

5.8(2

16

1

≈-∑=i i ,78.2)5.8()(16

1

-=--∑=i x x i i ,其中x i 为抽取的第i 个零件

的尺寸,i=1,2,```16

(1)求(x i , i )(i=1,2,```16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若| r |<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).

(2)一天内抽检零件中,如果出现了尺寸在(x-3s,x+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

(ⅱ)在(x -3s, x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)

附:样本(x i , y i ) (i=1,2,```16)的相关系数

r=

09.0008.0,)

()

()

)((2

1

2

1

1

≈----∑∑∑===n

i i

n i i

n

i i i

y y

x x

y y x x

20.(12分)设A ,B 为曲线C :4

2

x y =上两点,A 与B 的横坐标之和为4.

(1)求直线AB 的斜率;

(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.

21.(12分)已知函数x a a e e x f x x 2)()(--=.

(1)讨论)(x f 的单调性;

(2)若0)(≥x f ,求a 的取值范围.

(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.(10分)

在直角坐标系xOy 中,曲线C 的参数方程为???==θθ

sin y cos 3x (θ为参数),直线l 的

参数方程为???-=+=t t

a x 1y 4(t 为参数).

(1)若a=?1,求C 与l 的交点坐标;

(2)若C 上的点到l 的距离的最大值为17,求a.

23.(10分)

已知函数4)(2++-=ax x x f ,g (x )=│x+1│+│x –1│.

(1)当a=1时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.

历年江西高考数学文科卷

2006高等学校全国统一数学文试题(江西卷) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}(1)0P x x x =-≥, 101Q x x ??=>?? -??,则P Q 等于( ) A.? B.{}1x x ≥ C. {}1x x > D. {}1x x x <0或≥ 2.函数 4sin 21 y x π? ?=++ ?3??的最小正周期为( ) A.π 2 B.π C.2π D.4π 3.在各项均不为零的等差数列{}n a 中,若2 110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2- B.0 C.1 D.2 4.下列四个条件中,p 是q 的必要不充分条件的是( ) A.:p a b >,22 :q a b > B.:p a b >,:22a b q > C. 22 :p ax by c +=为双曲线,:0q ab < D.2 :0p ax bx c ++>, 2: 0c b q a x x -+> 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( ) A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤

C.(0)(2)2(1)f f f +≥ D.(0)(2)2(1)f f f +> 6.若不等式2 10x ax ++≥对一切 102x ??∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.52- D.3- 7 .在 2n x ?? ?的二项展开式中,若常数项为60,则n 等于( ) A.3 B.6 C.9 D.12 8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取 10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( ) A.1234481216 1040C C C C C B.2134 481216 1040C C C C C C.2314481216 1040C C C C C D.1342481216 1040C C C C C 9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题 中,假命题是( ) A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 10.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且A B C ,,三点共线(该直 线不过点O ),则200 S 等于( ) A.100 B.101 C.200 D.201 11.P 为双曲线22 1916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和 22 (5)1x y -+=上的点,则PM PN -的最大值为( ) A.6 B.7 C.8 D.9

2013年高考广东省理科数学试题

2013年普通高等学校招生全国统一考试(广东卷) 数学(理科) 本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填 写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效. 5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式: 台体的体积公式() 121 3 V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{ }2 |20,M x x x x =+=∈R ,{ } 2 |20,N x x x x =-=∈R ,则M N = ( ) A . {}0 B .{}0,2 C .{}2,0- D .{}2,0,2- 2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( ) A . 4 B .3 C .2 D .1 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A . ()2,4 B .()2,4- C .()4,2- D .()4,2 4.已知离散型随机变量X 的分布列为 X 1 2 3 P 35 310 110 则X 的数学期望EX = ( ) A . 32 B .2 C . 5 2 D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .14 3 C .163 D .6 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α?,n β?,则m n ⊥ B .若//αβ,m α?,n β?,则//m n C .若m n ⊥,m α?,n β?,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于 3 2 ,在双曲线C 的方程是 ( ) A . 221x = B .221x y -= C .22 1x y -= D .22 1x = 正视图 俯视图 侧视图 第5题图

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2019年全国I卷高考文科数学真题及答案

2019年全国I 卷高考文科数学真题及答案 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设3i 12i z -=+,则z = A .2 B .3 C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则 A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 51-( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是

A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[-π,π]的图像大致为 A . B . C . D . 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°= A .-2-3 B .-2+3 C .2-3 D .2+3 8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 9.如图是求 112122 + +的程序框图,图中空白框中应填入 A .A = 12A + B .A =12A + C .A = 1 12A + D .A =112A +

2013年广东高考理科数学试题及答案

试卷类型:A 2013年普通高等学校招生全国统一考试(广东卷) 数学(理科)题目及答案 本试卷共4页,21题,满分150分。考试用时120分钟。 注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。不按以上要求作答的答案无效。 4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。 5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。 锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1 . 设i为虚数单位,则复数56i i = A 6+5i B 6-5i C -6+5i D -6-5i 2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM= A .U B {1,3,5} C {3,5,6} D {2,4,6} 3 若向量BA=(2,3),CA=(4,7),则BC= A (-2,-4) B (3,4) C (6,10 D (-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是

历年高考真题(数学文化)

历年高考真题(数学文化) 1.(2019湖北·理)常用小石子在沙滩上摆成各种形状研究数, 如他们研究过图1中的1, 3, 6, 10, …, 由于这些数能表示成三角形, 将其称为三角形数;类似地, 称图2中的1, 4, 9, 16…这样的数为正方形数, 下列数中既是三角形数又是正方形数的是( ) A.289 B.1024 C.1225 D.1378 2.(2019湖北·文)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 A .1升 B .6667升 C .4447升 D .3337 升 3.(2019湖北·理)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 升. 4.(2019?湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之, 九而一, 所得开立方除之, 即立圆径, “开立圆术”相当于给出了已知球的体 积V , 求其直径d 的一个近似公式 3 916V d ≈.人们还用过一些类似的近似公式.根据π =3.14159…..判断, 下列近似公式中最精确的一个是( ) A. 3 916V d ≈ B.32V d ≈ C.3157300V d ≈ D.31121V d ≈ 5.(2019?湖北)在平面直角坐标系中, 若点P (x , y )的坐标x , y 均为整数, 则称点P 为格点.若一个多边形的顶点全是格点, 则称该多边形为格点多边形.格点多边形的面积记为S , 其内部的格点数记为N , 边界上的格点数记为L .例如图中△ABC 是格点三角形, 对应的S=1, N=0, L=4. (Ⅰ)图中格点四边形DEFG 对应的S , N , L 分别是________; (Ⅱ)已知格点多边形的面积可表示为c bL aN S ++=其中a , b , c 为常数.若某格点多边形对应的N=71, L=18, 则S=________(用数值作答). 6.(2019?湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土, 这是我国现存最早的有系统的数学典籍, 其中记载有求“囷盖”的术:置如其周, 令相乘也, 又以高乘之, 三十六成一, 该术相当于给出了由圆锥的底面周长L 与高h , 计算其体积

高考文科数学真题 全国卷

2018年普通高等学校招生全国统一考试(全国卷3) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 C.{1,2} ( ) 5.若某群里中的成员只用现金支付的概率为0.45,既用现金支付又用非现金支付的概率为0.15,则不用现金支付的概率为() A.0.3 B.0.4 C.0.6 D.0.7 A.π 4B.π 2 C.π D.2π 8.直线x+y+2=0分别于x轴,y轴交于A,B两点,则?ABP的面积的取值范围是()A.[2,6] B.[4,8] C.[√2,3√2] D.[2√2,3√2] A.π 2B.π 3 C.π 4 D.π 6 A.12√3 B.18√3 C.24√3 D.54√3 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是。

19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。 (1)证明:平面AMD ⊥平面BMC ; (2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。 20. 已知斜率为k 的直线l 与椭圆C :22143x y +=交于,A B 两点,线段AB 的中点()1,(0)M m m >. (1)证明:1;2 k <- (2)设F 为C 右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r ,证明:2.FP FA FB =+u u u r u u u r u u u r (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 23.[选修4-5:不等式选讲](10分)

2012广东高考数学试题及答案

2012年普通高等学校(广东卷) 数学(理科) 本试题共4页,21小题,满分150分,考试用时120分钟。 注意事项: 1、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求做大的答案无效。 3、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。漏涂、错涂、多涂的,答案无效。 4、考生必须保持答题卡得整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:柱体的体积公式 V=Sh 其中S 为柱体的底面积,h 为柱体的 高 线性回归方程 y bx a =+ 中系数计算公式 其中,x y 表示样本均值。 N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+) 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四

个选项中,只有一项是符合题目要求的。 1.把复数的共轭复数记作z ,设(1+2i )z =4+3i ,其中i 为虚数单位,则z i = A . 2- i B. 2+ i C.1+2 i D.-1+2i 2.已知集合A={x ∣f(x)=3+x + 2 1 +x },B={x ∣3x-7≤8-2x},则A B ?为 A.[3,-3] B.[3,-2)U (-2,-3] C.[3,-2) D.[-2,-3] 3. 函数y=f(a+x)与函数y=f(a-x)的图像关于 A.直线x=a 对称 B.点(a ,0)对称 C.原点对称 D.Y 轴对称 4.已知{}n a 是等比数列,且,20252,0645342=++>a a a a a a a n 那么,53a a +的值为 A.45 B.35 C.25 D.15 5. 在平行四边形ABCD 中,O 是对角线AC 与BD 的交点,E 是BC 边的中点,连 接DE 交AC 于点F 。已知→ → → → ==b AD a AB ,,则=→ OF A .→→+b a 6131 B .)(4 1→ →+b a C .)(61→→+b a D .→→+b a 4 161 6. 对于命题p 、q ,有p ∧q 是假命题,下面说法正确的是 A .p ∨q 是真命题 B .p ?是真命题 C .q p ??∧是真命题 D. q p ??∨是真命题 7. 如图是某几何体三视图的斜二测画法,正视图(主视图)是等腰三角形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 A.3 16 B.16 C.8 D. 4

高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2)212i 1i +(-) =( ). A. ?1?12i B .11+i 2 - C .1+12i D .1?12i 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .1 6 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A . y =±14x B .y =±13x C .12 y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵e = c a =2254 c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12 b a =. ∵双曲线的渐近线方程为b y x a =±,

选做题全国高考文科数学历年试题分类汇编

全国高考文科数学近三年试题分类汇编 大题分类之选做题 (1)坐标系与参数方程 1.(2015卷1)在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,x 轴 的正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ= ∈,设23,C C 的交点为,M N ,求2C MN ?的面积. 2.(2015卷2)在直角坐标系xOy 中,曲线1cos :sin x t C y t αα =??=?(t 为参数,且0t ≠),其中0απ≤<,在以O 为极 点,x 轴的正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:C ρθ= (1)求23,C C 交点的直角坐标;(2)若1C 与2C 相交于A ,1C 与3C 相交于B ,求AB 的最大值. 3.(2016卷1)在直角坐标系xOy 中,曲线1C 的参数方程cos 1sin x a t y a t =??=+? (t 为参数,且0a >),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:4cos C ρθ= (1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程; (2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求0α.

4.(2016年卷2)在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++= (1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程为cos sin x t y t αα =?? =?(t 为参数),l 与C 相交于,A B 两点,AB =l 的斜率. 5.(2017年卷1)在直角坐标系xOy 中,曲线C 的参数方程3cos sin x y θθ=??=?(θ为参数),直线l 的参数方程为41x a t y t =+??=-?(t 为参数), (1)若1a =-,求C 与l 交点的坐标;(2)若C 上的点到l ,求a . 6.(2017年卷2)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ= (1)M 为曲线1C 的动点,点P 在线段OM 上,且满足16OM OP ?=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2, )3π,点B 在曲线2C 上,求OAB V 的面积的最大值.

2013年广东省高考数学试卷(理科)附送答案

2013年广东省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2} 2.(5分)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是() A.4 B.3 C.2 D.1 3.(5分)若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是()A.(2,4) B.(2,﹣4)C.(4,﹣2)D.(4,2) 4.(5分)已知离散型随机变量X的分布列为 X123 P 则X的数学期望E(X)=() A.B.2 C.D.3 5.(5分)某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.C.D.6 6.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()

A.若α⊥β,m?α,n?β,则m⊥n B.若α∥β,m?α,n?β,则m∥n C.若m⊥n,m?α,n?β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β7.(5分)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是() A.B.C.D. 8.(5分)设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是() A.(y,z,w)∈S,(x,y,w)?S B.(y,z,w)∈S,(x,y,w)∈S C.(y,z,w)?S,(x,y,w)∈S D.(y,z,w)?S,(x,y,w)?S 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.9.(5分)不等式x2+x﹣2<0的解集为. 10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=.11.(5分)执行如图所示的程序框图,若输入n的值为4,则输出s的值为. 12.(5分)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=. 13.(5分)给定区域D:.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0, y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.

2014-2019历年高考文科数学函数真题全国卷

(2019-1-3)3. 已知3.02.022.022.0log ===c b a ,,,则 A. c b a << B. b c a << C. b a c << D. a c b << (2019-1-5)5. 函数],[cos sin )(2 ππ-++=在x x x x x f 的图像大致为 A. B. C. D. (2019-2-6)6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A . B .e 1x -+ C . D .e 1x --+ (2019-2-11)11.已知a ∈(0, π 2 ),2sin2α=cos2α+1,则sinα= A .15 B .5 C . D . 25 (2019-3-12)12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则 A .f (log 314)>f (3 2 2-)>f (2 32-) B .f (log 31 4 )>f (2 32-)>f (3 22-) C .f (32 2 - )>f (232 - )>f (log 3 14 ) e 1x --e 1x ---3

D .f (23 2 - )>f (32 2 - )>f (log 3 14 ) (2018-1-12)12.设函数()20 1 0x x f x x -?=?>?,≤,,则满足()()12f x f x +<的x 的取值范围是 A .(]1-∞-, B .()0+∞, C .()10-, D .()0-∞, (2018-1-13)13.已知函数()() 2 2log f x x a =+,若()31f =,则a =________. (2018-2-3)3.函数()2 e e x x f x x --=的图像大致为 (2018-2-12)12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =, 则(1)(2)(3)f f f ++(50)f ++=L A .50- B .0 C .2 D .50 (2018-3-7)7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ (2018-3-9)9.422y x x =-++的图像大致为( ) x x x x D. C. B. A.

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

重庆市历年高考文科数学真题及答案详解

2005年普通高等学校招生全国统一考试(重庆卷) 数学试题卷(文史类) 数学试题(文史类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。 2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 5.考试结束后,将试题卷和答题卡一并交回。 参考公式: 如果事件A、B互斥,那么P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么P(A·B)=P(A)·P(B) 如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概 率 k n k k n n P P C k P- - =) 1( ) ( 第一部分(选择题共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆 5 )2 (2 2= + +y x关于原点(0,0)对称的圆的方程为() A. 5 )2 (2 2= + -y x B.5 )2 (2 2= - +y x C. 5 )2 ( )2 (2 2= + + +y x D.5 )2 (2 2= + +y x 2. = + -) 12 sin 12 )(cos 12 sin 12 (cos π π π π ()A.2 3 - B.2 1 - C.2 1 D.2 3 3.若函数 ) (x f是定义在R上的偶函数,在]0, (-∞上是减函数,且0 ) (= x f,则使得x x f的 ) (<的取值范围是() A. )2, (-∞B.) ,2(+∞ C. ) ,2( )2 , (+∞ - -∞ D.(-2,2) 4.设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于()A.(1,1)B.(-4,-4)C.-4 D.(-2,-2)

2013广东高考数学(理科)试题及详解

2013广东高考数学(理科)试题及详解 参考公式:台体的体积公式() 11221 3 V S S S S h = ++,其中12,S S 分别是台体的上、下底面积,h 表示台体的高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{ } 2 |20,M x x x x =+=∈R ,{ } 2 |20,N x x x x =-=∈R ,则M N =( ) A . {}0 B .{}0,2 C .{}2,0- D .{}2,0,2- 【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N ={}2,0,2-,故选D . 2.定义域为R 的四个函数3y x =,2x y =,2 1y x =+,2sin y x =中,奇函数的个数是 ( ) A . 4 B .3 C .2 D .1 【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3 y x =与2sin y x =,故选 C . 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A . ()2,4 B .()2,4- C .()4,2- D .()4,2 【解析】C ;2442i z i i += =-对应的点的坐标是()4,2-,故选C . 4.已知离散型随机变量X 的分布列为 X 1 2 3 P 35 310 110 则X 的数学期望EX = ( ) A . 32 B .2 C .52 D .3 【解析】A ;331153 12351010102 EX =?+? +?==,故选A . 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B . 14 3 C . 16 3 D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为 1和2的正方形,高为2,故() 2222114 1122233 V = +?+?=,,故选B . 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α?,n β?,则m n ⊥ B .若//αβ,m α?,n β?,则 //m n 1 2 2 1 1 正视图 俯视图 侧视图 第5题图

2010高考数学文科试题及答案-全国卷1

2010年普通高等学校招生全国统一考试(全国Ⅰ卷) 文科数学(必修+选修) 本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。第I 卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答题卡一并交回。 第I 卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。 3.第I 卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 2 4S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3 34 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 一、选择题 (1)cos 300?= (A)2 - 12 (C) 12 (D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1co s 300co s 36060co s 602 ?=?-?=?= (2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ?=e A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识 【解析】{}2,3,5U M =e,{}1,3,5N =,则()U N M ?=e{}1,3,5{}2,3,5?={}3,5

2013年广东省高考数学理科试题(已编辑好)

2013年广东省高考数学理科试题(已编辑好)

绝密★启用前 试卷类型:A 2013年普通高等学校招生全国统一考试(广东卷)数学(理科) 台体的体积公式h S S S S V )(3 12121 ++=,其中S 1,S 2分别表示台 体的上、下底面积,h 表示台体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={x |x 2+2x =0,x ∈R},N={x |x 2-2x =0,x ∈R},则N M ?=( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2} 2.定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) A . 4 B .3 C .2 D .1 3.若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C . (4,-2) D .(4,2) 4.已知离散型随机变量X 的分布列如右表,则X 的数学期望E (X )=( ) A .23 B .2 C .2 5 D .3 5.某四棱台的三视图如图1所示,则该四棱台的体积是( ) A .4 B .314 C .316 D .6 X 1 2 3 P 53 103 101

7=_______. 13.给定区域D : ?? ? ??≥≤+≥+0444x y x y x ,令点集T ={(x 0,y 0)∈D |x 0,y 0∈ Z}是z =x +y 在D 上取得最大值或最小值的点,则T 中的点共确定____条不同的直线. (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 的参数方 程为???==t y t x sin 2cos 2 (t 为参数),C 在点(1,1)处的切线为L ,一座标原点为极点,x 轴的 正半轴为极轴建立极坐标,则L 的极坐标方程为_________________. 15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,点C 在⊙O 上,延长BC 到D 是BC =CD ,过C 作⊙O 的切线交AD 于E . 若AB =6,ED =2,则BC =______. 三、解答题:本大题共6小题,满分80分. 16.(本小题满分12分)已知函数R x x x f ∈-=),12cos(2)(π . (1)求)6(π-f 的值;(2)若)2,2 3(,53cos ππθθ∈=,求)32(πθ+f . 17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数

历年高考数学真题(全国卷整理版)

参考公式: 如果事件A 、B 互斥, 那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立, 那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p , 那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m }, B ={1, m} ,A U B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点, 焦距为 4 一条准线为x=-4 , 则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 , AB=2, CC 1=22 E 为CC 1的中点, 则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n , a 5=5, S 5=15, 则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中, AB 边的高为CD , 若 a·b=0, |a|=1, |b|=2, 则 (A) (B ) (C) (D)

相关文档
相关文档 最新文档