文档库 最新最全的文档下载
当前位置:文档库 › 2020年高考文科数学预测押题密卷I卷 试题

2020年高考文科数学预测押题密卷I卷 试题

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

高考数学高三模拟试卷试题压轴押题高考模拟考试数学文科001

高考数学高三模拟试卷试题压轴押题高考模拟考试数学(文科) 本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项: 1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答 题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应 位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按 以上要求作答的答案无效. 4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂 的,答案无效. 5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体体积公式1 3 V Sh = ,其中S 为锥体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1. 已知i 为虚数单位,复数z =()12i i +对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知集合{}|11M x x =-<<,{|N x y ==,则M N = A. {}|01x x << B. {}|01x x ≤< C. {}|0x x ≥ D. {}|10x x -<≤ 3. 命题“若0x >,则2 0x >”的否命题是 A .若0x >,则20x ≤ B .若20x >, 则0x > C .若0x ≤,则20x ≤ D .若20x ≤,则0x ≤ 4. 设向量(,1)x =a ,(4,)x =b , ?a b 1=-, 则实数x 的值是 A .2- B .1- C .13- D .1 5 - 5. 函数()() 1cos f x x x =的最小正周期为 A .2πB .32πC .πD .2 π 6. 一算法的程序框图如图1,若输出的1 2 y =, 则输入的x 的值可能为

2016年高考全国三卷文科数学试卷

2016年普通高等学校招生全国统一考试(III 卷) 文科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1. 设集合A = {0,2,4,6,8,10},B = {4,8},则 =B A A. {4,8} B. {0,2,6} C. {0,2,6,10} D. {0,2,4,6,8,10} 2. =+=| |i 34z z z ,则 若 A. 1 B. 1- C. i 5354+ D. i 5 354- 3. 已知向量)2 1 ,23()23, 21(==,,则∠ABC = A. 30° B. 45° C. 60° D. 120° 4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温 和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约15℃,B 点 表示四月的平均最低气温约为5℃。下面叙述不正确的是 A. 各月的平均最低气温都在0℃以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20℃的月份有5个 5. 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M 、I 、N 中 的一个字母,第二位是1、2、3、4、5中的一个数字,则小敏输入一次密码 能够成功开机的概率是 A. 158 B. 81 C. 151 D. 30 1 6. θθcos 3 1tan ,则若-= A. 54- B. 51- C. 51 D. 5 4 7. 已知3 13 23 42532===c b a ,,,则 A. b < a < c B. a < b < c C. b < c < a D. c < a < b 8. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n = A. 3 B. 4 C. 5 D. 6 9. 在△ABC 中,4 π = B ,B C 边上的高等于 3 1 BC ,则sin A = A. 103 B. 1010 C. 55 D. 10 10 3 2016.6

2018高考押题卷-文科数学(一)(教师版)

1 / 9 绝密 ★ 启用前 好教育泄露天机2018高考押题卷 文 科 数 学(一) 注意事项: 1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3、考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.复数132i z =+,121i z z +=+,则复数12z z ?=( ) A .47i -- B .2i -- C .1+i D .14+5i 【答案】A 【解析】根据题意可得,21i 32i 2i z =+--=--,所以()()1232i 2i 47i z z ?=+?--=--. 2.集合{}|A x x a =<,{}3log 1B x x =<,若{} 3A B x x =>的焦点到渐近线的距离等于其实轴长,则双曲线C 的离 心率为( ) A . 2 B . 3 C .5 D .22 【答案】C 【解析】由题意可知:2b a =,2 2 4b a =,2 2 2 4c a a -=,5e =. 5.将函数215log cos π262 x y ????- ? ???? ?=对应的曲线沿着x 轴水平方向向左平移2 π3 个单位,得到曲线为( ) A .1πcos 26y x ?? ???=- B .1πsin 26y x ?? ???=- C .1sin 2 y x =- D .1sin 2 y x = 【答案】D 【解析】因为215log cos π261 52 cos π2 6x y x ????- ? ???? ??? ???==-,所以沿着x 轴水平方向向左平移2π3个单位, 此 卷 只 装 订 不 密封 班级 姓名 准考证号 考场号 座位号

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 3.设i i z ++= 11 ,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 4.已知双曲线)0(13 2 22>=-a y a x 的离心率为 2,则=a A. 2 B. 2 6 C. 2 5 D. 1 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B. )(|)(| x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 6.设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A.AD B. AD 2 1 C. BC 2 1 D. BC 7.在函数①|2|cos x y =,②|cos |x y = ,③)6 2cos(π+=x y ,④)4 2tan(π-=x y 中,最小 正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )

2018高考押题卷文科数学(二)(含答案)

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试 文 科 数 学(二) 注意事项: 1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3、考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{} 2 340A x x x =∈--≤Z ,{} 0ln 2B x x =<<,则A B =( ) A .{}1,2,3,4 B .{}3,4 C .{}2,3,4 D .{}1,0,1,2,3,4- 【答案】C 【解析】{ }{ } {}2 340141,0,1,2,3,4A x x x x x =∈--≤=∈-≤≤=-Z Z , {}{}2 0ln 21e B x x x x =<<=<<,所以{}2,3,4A B =. 2 .设复数1z =(i 是虚数单位),则z z +的值为( ) A .B .2 C .1 D .【答案】B 【解析】2z z +=,2z z +=. 3.“p q ∧为假”是“p q ∨为假”的( )条件. A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B 【解析】由“p q ∧为假”得出p ,q 中至少一个为假.当p ,q 为一假一真时,p q ∨为真,故不充分;当“p q ∨为假”时,p ,q 同时为假,所以p q ∧为假,所以是必要的,所以选B . 4.已知实数x ,y 满足约束条件2 22020 x x y x y ≤?? -+≥??++≥? ,则3x z y =-+的最大值为( ) A .143 - B .2- C . 43 D .4 【答案】C 【解析】作出的可行域为三角形(包括边界),把3x z y =- +改写为3 x y z =+,当且仅当动直线3x y z = +过点()2,2时,z 取得最大值为4 3 . 5.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2 B .3 C .26 D .27 【答案】C 【解析】设顶层有灯1a 盏,底层共有9a 盏,由已知得,则()91991 132691262 a a a a a =?? ?=?+=? ?, 所以选C . 6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的值可以是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】依次运行流程图,结果如下:13S =,12n =;25S =,11n =;36S =,10n =;46S =,9n =,此时退出循环,所以a 的值可以取10.故选C . 7.设双曲线()22 22:10,0x y C a b a b -=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1, 则双曲线的一个焦点到一条渐近线的距离为( ) A .2 B C .D . 4 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

2016年全国高考文科数学试题及答案-全国卷2

2016年普通高等学校招生全国统一考试文科数学 一、 选择题:本大题共12小题。每小题5分. (1)已知集合{1 23}A =,,,2{|9}B x x =<,则A B = (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, (2)设复数z 满足i 3i z +=-,则z = (A )12i -+ (B )12i - (C )32i + (D )32i - (3) 函数=sin()y A x ω?+的部分图像如图所示,则 (A )2sin(2)6y x π=- (B )2sin(2)3y x π =- (C )2sin(2+)6y x π= (D )2sin(2+)3 y x π = (4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B ) 32 3π (C )8π (D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 (6) 圆x 2+y 2?2x ?8y +13=0的圆心到直线ax +y ?1=0的距离为1,则a = (A )? 43 (B )?3 4 (C (D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π (8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒, 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A ) 710 (B )58 (C )38 (D )3 10 (9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若x =2,n =2,输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34

2014年全国大纲卷高考文科数学真题及答案

2014年全国大纲卷高考文科数学真题及答案2014年普通高等学校统一考试(大纲) 文科数学 第?卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给 出的四个选项中,只有一项 是符合题目要求的. 1.设集合,则中元素的个数为MNMN,,{1,2,4,6,8},{1,2,3,5,6,7}( ) A(2 B(3 C(5 D(7 2.已知角的终边经过点,则( ) ,cos,,(4,3), 4334A( B( C( D( ,, 5555 xx(2)0,,,3.不等式组的解集为( ) ,||1x,, A( B( C( D( {|21}xx,,,,{|10}xx,,,{|01}xx,,{|1}xx,4.已知正四面体ABCD 中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( ) 3311A( B( C( D( 6336 35.函数的反函数是( ) yxx,,,,ln(1)(1) x3x3A(yex,,,,(1)(1) B(yex,,,,(1)(1) x3x3C(yexR,,,(1)() D(yexR,,,(1)()

06.已知为单位向量,其夹角为,则( ) ab、(2)abb,,,60 A(-1 B(0 C(1 D(2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A(60种 B(70种 C(75种 D(150种 8.设等比数列的前n项和为,若则( ) {}aSSS,,3,15,S,nn246A(31 B(32 C(63 D(64 22xy 9. 已知椭圆C:,,1的左、右焦点为、,离心率FF(0)ab,,1222ab 3为,过的直线交C于A、B两点,若的周长为,则CF,AFB4321 3 的方程为( ) 2222222xyxyxyx2A(,,1 B(,,y1 C(,,1 D(,,1 33212812410.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) 81,27,A( B( C( D( 16,9, 4422xy ,,,,1(0,0)ab11.双曲线C:的离心率为2,焦点到渐近线的距 22ab 离为,则C的焦距等于( ) 3 A(2 B( C(4 D( 2242

高考文科数学押题卷(带答案)

文科数学押题卷(二) 一、选择题:本大题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只有一项是符合题目要求的。 1.已知集合A ={x |x ≤2}, B ={0, 1, 2, 3}, 则A ∩B =( ) A .{0, 1} B .{0, 1, 2} C .{1, 2} D .{0, 1, 2, 3} 2.已知复数z =1-2i (1+i )2 , 则z 的虚部为( ) A .-12 B .12 C .-12i D .12i 3.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下: A .利润率与人均销售额成正相关关系 B .利润率与人均销售额成负相关关系 C .利润率与人均销售额成正比例函数关系 D .利润率与人均销售额成反比例函数关系 4.已知a =????13π, b =????1312, c =π1 2, 则下列不等式正确的是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a 5.已知某空间几何体的三视图如图所示, 其中正视图和侧视图是边长为3的正三角形, 则该几何体的体积为( ) A .π B . π2 C .3π8 D .π4 6.已知△ABC 的内角A , B , C 的对边分别为a , b , c , 若cos A =-35, cos B =4 5 , a =20, 则c =( ) A .10 B .7 C .6 D .5 7.函数f (x )=ln|x |·sin x 的图象大致为( )

A B C D 8.执行如图所示的程序框图, 则输出的k 值为( ) A .4 B .6 C .8 D .10 9.已知F 1, F 2为椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点, B 为C 的短轴的一个端点, 直线 BF 1与C 的另一个交点为A , 若△BAF 2为等腰三角形, 则|AF 1| |AF 2| =( ) A .13 B .12 C .2 3 D .3 10.数学中有很多公式都是数学家欧拉(Leonhard Euler)发现的, 它们都叫欧拉公式, 分散在各个数学分支之中, 任意一个凸多面体的顶点数V 、棱数E 、面数F 之间, 都满足关系式V -E +F =2, 这个等式就是立体几何中的“欧拉公式”。若一个凸二十面体的每个面均为三角形, 则由欧拉公式可得该多面体的顶点数为( ) A .10 B .12 C .15 D .20 11.三棱锥S -ABC 中, SA , SB , SC 两两垂直, 已知SA =a , SB =b , SC =2, 且2a +b =5 2 , 则此三棱锥的外接球的表面积的最小值为( ) A .21π4 B .17π4 C .4π D .6π 12.已知函数f (x )=2x +log 32+x 2-x , 若不等式f ???? 1m >3成立, 则实数m 的取值范围是( )

2016年全国高考文科数学试题及答案-四川卷

2016年普通高等学校招生全国统一考试(四川卷) 数学(文科) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。 1. 设i 为虚数单位,则复数(1+i)2 = (A) 0 (B)2 (C)2i (D)2+2i 2. 设集合A={x|1≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A) 6 (B) 5 (C)4 (D)3 3. 抛物线y 2 =4x 的焦点坐标是 (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4. 为了得到函数y=sin )3 (π +x 的图象,只需把函数y=sinx 的图象上所有的点 (A)向左平行移动 3π个单位长度 (B) 向右平行移动3π 个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3 π 个单位长度 5. 设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 6. 已知a 函数f(x)=x 3 -12x 的最小值点,则a= (A)-4 (B) -2 (C)4 (D)2 7. 某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年 (B) 2019年 (C)2020年 (D)2021年 8. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为

2020最新高考文科数学押题卷(带答案)

赢在微点★倾情奉献 文科数学押题卷(二) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x ≤2},B ={0,1,2,3},则A ∩B =( ) A .{0,1} B .{0,1,2} C .{1,2} D .{0,1,2,3} 2.已知复数z =1-2i (1+i )2 ,则z 的虚部为( ) A .-12 B .12 C .-12i D .12i 3.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下: 月份 1 2 3 4 5 6 人均销售额 6 5 8 3 4 7 利润率(%) 12.6 10.4 18.5 3.0 8.1 16.3 A .利润率与人均销售额成正相关关系 B .利润率与人均销售额成负相关关系 C .利润率与人均销售额成正比例函数关系 D .利润率与人均销售额成反比例函数关系 4.已知a =????13π,b =????1312,c =π1 2,则下列不等式正确的是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a 5.已知某空间几何体的三视图如图所示,其中正视图和侧视图是边长为3的正三角形,则该几何体的体积为( ) A .π B . π2 C .3π8 D .π4 6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =-35,cos B =4 5 ,a =20,则c =( ) A .10 B .7 C .6 D .5 7.函数f (x )=ln|x |·sin x 的图象大致为( ) A B C D 8.执行如图所示的程序框图,则输出的k 值为( )

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 21 B. 22 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A. AD B. AD 21 C. BC D. BC 21 (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体 的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2020年泄露天机高考押题卷之文科数学(二)学生版

绝密 ★ 启用前 2020年普通高等学校招生全国统一考试 文 科 数 学(二) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、考生号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。 3.回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。 4.考试结束,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设22i 1i z -=+,则z =( ) A .2 B .2 C .5 D .3 2.设{} 1A x x =>,{} 2 20B x x x =--<,则() A B =R I e( ) A .{} 1x x >- B .{} 11x x -<≤ C .{} 11x x -<< D .{} 12x x << 3.若1 2 2a =,ln 2b =,1 lg 2 c =,则有( ) A .a b c >> B .b a c >> C .c b a >> D .b c a >> 4.设a b ,是两个实数,给出下列条件:①1a b +>;②2a b +=;③2a b +>; ④22 2a b +>.其中能推出“a b ,中至少有一个大于1”的条件是( ) A .①② B .②③ C .③④ D .③ 5.已知定义在R 上的偶函数()()e sin x f x x ω?=+(0ω>,0?<<π)的部分图象如图所示,设0x 为()f x 的极大值点,则0cos x ω=( ) A . 5 5 B . 25 5 C . 35 D . 45 6.从随机编号为0001,0002,L ,1500的1500名参加这次南昌市四校联考期末测试的学生中用系统抽样的方法抽取一个样本进行成绩分析,已知样本中编号最小的两个编号分别为0018, 0068,则样本中最大的编号应该是( ) A .1466 B .1467 C .1468 D .1469 7.已知()()3cos 222sin 3cos 5 αααπ??+ ? ??=π-+-,则tan α=( ) A .6- B .23 - C . 23 D .6 8.设向量,,a b c 满足++=0a b c ,()-⊥a b c ,⊥a b ,若1=a ,则2 2 2 ++= a b c ( ) A .3 B .4 C .5 D .6 9.执行如图所示的程序框图,输出S 的值为( ) A .5 B .6 C .8 D .13 10.已知双曲线2 2 1mx ny +=与抛物线2 8y x =有共同的焦点F ,且点F 到双曲线渐近线的距离 等于1,则双曲线的方程为( ) A .2 213 x y -= B .2 213 y x -= C .2 215x y -= D .2 2 15 y x -= 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

2016年福建高考文科数学试题及答案(Word版)

1 2 cos 3A =2016年福建高考文科数学试题及答案 (满分150分,时间120分钟) 第Ⅰ卷 一. 选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. ) (1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a= (A )-3 (B )-2 (C )2 (D )3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A )13 (B )12 (C )13 (D )56 (4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 已知a =2c =,则 b= (A (B (C )2 (D )3 (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的 14,则该椭圆的离心率为 (A )13 (B )12 (C )23 (D )34 (6)将函数y=2sin (2x+π6)的图像向右平移14 个周期后,所得图像对应的函数为 (A )y=2sin(2x+π4) (B )y=2sin(2x+π3 ) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3 ) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是28π3 ,则它的表面积是 (A )17π (B )18π (C )20π (D )28π

2016年高考文科数学全国3卷(附答案)

.. ;. 学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - - 绝密★启用前 2016年普通高等学校招生全国统一考试 文科数学 全国III 卷 (全卷共12页) (适用地区:广西、云南、四川) 注意事项: 1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。 2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答案卡一并交回。 第I 卷 一、 选择题:本题共12小题,每小题5分。在每个小题给出的四个选项中, 只有一项是符合题目要求的。 (1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A C B =( ) A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10} (2)若43z i =+,则 z z =( ) A.1 B.1- C.4355 i + D.4355 i - (3 )已知向量1(2BA = ,31 (),2 BC = 则ABC ∠=( ) A.30? B.45? C.60? D.120? (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和 平均最低气温的雷达图。图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。下面叙述不正确的是 A. 各月的平均最低气温都在00C 以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均气温高于200C 的月份有5个 (5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,,M I N 中的 一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A. 815 B.18 C. 115 D. 130 (6)若1 tan 3 θ= ,则cos2θ=( ) A.45 - B.15 - C.15 D. 45 (7)已知432a =,233b =,1 325c =,则( ) A.b a c << B.a b c << C.b c a << D.c a b << (8)执行右图的程序框图,如果输入的4,6a b = =,那么输出的n = ( )

2014年全国高考文科数学试题及答案解析-山东卷

2014年普通高等学校招生全国统一考试(山东卷) 文科数学 第I卷(共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi += (A) 34i - (B) 34i + (C) 43i - (D) 43i + (2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B = (A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4) (3) 函数21 ()log 1 f x x = -的定义域为 (A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞ (4) 用反证法证明命题:“设,a b 为实数,则方程3 0x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根 (B) 方程3 0x ax b ++=至多有一个实根 (C) 方程30x ax b ++=至多有两个实根 (D) 方程3 0x ax b ++=恰好有两个实根 (5) 已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是 (A) 33 x y > (B) sin sin x y > (C) 22 ln(1)ln(1)x y +>+ (D) 221111 x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是 (A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为 6 π ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 x E O

高考数学高三模拟试卷试题压轴押题普通高中毕业班教学质量监测试题文科数学

高考数学高三模拟试卷试题压轴押题普通高中毕业班教学质量监测试题文科数学 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知全集{}U 1,2,3,4,5=,集合{}1,2A =,{}2,3B =,则 ( )U A B =( ) A .{}3 B .{}4,5 C .{}1,2,3 D .{}2,3,4,5 2.已知向量()1,2a =,()23,2a b +=,则b =( ) A .()1,2 B .()1,2- C .()5,6 D .()2,0 3.已知i 是虚数单位,若()3 2i z i -?=,则z =( ) A .2155i - - B .2155i -+ C .1255i - D .1255 i + 4.从数字1、2、3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( ) A . 13 B .16 C .12 D .23 5.已知3cos 25πα??+= ???,且3,22 ππ α?? ∈ ??? ,则tan α=( ) A . 43 B .34 C .34- D .34 ± 6.已知函数()sin 22f x x π? ? =- ?? ? (R x ∈),下列结论错误的是( ) A .函数()f x 的最小正周期为π B .函数()f x 是偶函数 C .函数()f x 在区间0, 2π?? ???? 上是增函数 D .函数()f x 的图象关于直线4x π=对称 7.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则当1n >时,n S =( ) A .1 32n -?? ? ?? B .1 2 n - C .1 23n -?? ? ?? D .1 11132n -?? - ??? 8.执行如图1所示的程序框图,若输入A 的值为2,则输出P 的值为( ) A .2 B .3 C .4 D .5

2020年安徽省高考文科数学考前押题试卷及答案解析

2020年安徽省高考文科数学考前押题试卷 一.选择题(共12小题,满分60分,每小题5分) 1.(5分)复数z 满足(1+i )z =|1﹣i |,则z =( ) A .1﹣i B .1+i C . √22?√2 2 i D . √22+√2 2 i 2.(5分)设集合A ={x|x+2 x?1≤0},B ={x |y =log 2(x 2﹣2x ﹣3)},则A ∩B =( ) A .{x |﹣2≤x <﹣1} B .{x |﹣1<x ≤1} C .{x |﹣2≤x <1} D .{x |﹣1≤x <1} 3.(5分)已知a =21.2,b =30.4,c =ln 8 3,则( ) A .b >a >c B .a >b >c C .b >c >a D .a >c >b 4.(5分)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”,过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下: 甲地:总体平均数为3,中位数为4; 乙地:总体平均数为1,总体方差大于0; 丙地:总体平均数为2,总体方差为3; 丁地:中位数为2,众数为3; 则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的是( ) A .甲地 B .乙地 C .丙地 D .丁地 5.(5分)若函数f (x )的图象如图所示,则f (x )的解析式可能是( ) A .f(x)= e x +x x B .f(x)=1?x 2 x C .f(x)=e x ?x 2 x D .f(x)= x+1 x 2

6.(5分)某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法: (1)在本校中随机抽取100名学生,并编号1,2,3, (100) (2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机换出一球,记住其颜色并放回; (3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生. 若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是( ) A .80% B .85% C .90% D .92% 7.(5分)已知a → =(1,3),b → =(2,2),c → =(n ,﹣1),若(a → ?c → )⊥b → ,则n 等于( ) A .3 B .4 C .5 D .6 8.(5分)已知cos (α+π 3)=?√3 3(α为锐角),则sin α=( ) A . 2√2+√3 6 B . 2√2?√3 6 C . √6+3 6 D . 3?√6 6 9.(5分)执行如图所示的程序框图,如果输入n =2019,则输出的S =( ) A . 40384039 B . 20194039 C . 20184037 D . 40364037

2014年高考文科数学试题及参考答案

2014年普通高等学校统一考试(大纲卷) 文科数学 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N I 中元素的个数为 A .2 B .3 C .5 D .7 2.已知角α的终边经过点(4,3)-,则cos α= A .45 B .35 C .35- D .45 - 3.不等式组(2)0||1 x x x +>?? 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为 A .16 B .13 D 5.函数1)(1)y x =+>-的反函数是 A .3(1)(1)x y e x =->- B .3 (1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈ 6.已知a b r r 、 为单位向量,其夹角为060,则(2)a b b -?=r r r A .-1 B .0 C .1 D .2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有 A .60种 B .70种 C .75种 D .150种 8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S = A .31 B .32 C .63 D .64

9. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的直线交C 于A 、B 两点,若1AF B ? 的周长为,则C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为 A .814π B .16π C .9π D .274 π 11.双曲线C :22 221(0,0)x y a b a b -=>>的离心率为2 ,则C 的焦距等于 A .2 B . C .4 D . 12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += A .-2 B .-1 C .0 D .1 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6 (2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos 22sin y x x =+的最大值为 . 15. 设x 、y 满足约束条件02321x y x y x y -≥??+≤??-≤? ,则4z x y =+的最大值为 . 16. 直线1l 和2l 是圆22 2x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分) 数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.

相关文档
相关文档 最新文档