文档库 最新最全的文档下载
当前位置:文档库 › 高考文科数学真题汇编:数列高考题学生版

高考文科数学真题汇编:数列高考题学生版

高考文科数学真题汇编:数列高考题学生版
高考文科数学真题汇编:数列高考题学生版

2014年高考全国2卷文科数学试题(含解析)

绝密★启用前 2014年高考全国2卷文科数学试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.设集合2 {2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .? B .{}2 C .{0} D .{2}- 2. 131i i +=-( ) A .12i + B .12i -+ C .12i - D .12i -- 3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B .p 是q 的充分条件,但不是q 的必要条件 C .p 是q 的必要条件,但不是q 的充分条件 D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρ ρ,则=?b a ρρ( ) A .1 B .2 C .3 D .5 5.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C . (1)2n n + D .(1) 2 n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积和原来毛坯体积的比值为( ) A . 2717 B .95 C .2710 D .3 1 7.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B ) 3 2 (C )1 (D 3 D 1 1 A B 1 8.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )

海南历年高考理科数学试题及答案汇编十一数列

海南历年高考理科数学试题及答案汇编十一数列 试题 1、4.(5分)(2008海南)设等比数列{a n}的公比q=2,前n项和为S n ,则=( ) A.2B.4C .D . 2、7.(5分)(2009宁夏)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=( ) A.15B.7C.8D.16 3、16.(5分)(2009宁夏)等差数列{a n}的前n项和为S n,已知2a m﹣a m2=0,s2m﹣1=38,则m= . 解答题 1、17.(12分)(2008海南)已知{a n}是一个等差数列,且a2=1,a5=﹣5. (Ⅰ)求{a n}的通项a n; (Ⅱ)求{a n}前n项和S n的最大值. 2、17.(12分)(2010宁夏)设数列满足a1=2,a n+1﹣a n=3?22n﹣1 (1)求数列{a n}的通项公式; (2)令b n=na n,求数列{b n}的前n项和S n. 1

答案 1、解:由于q=2, ∴ ∴; 故选:C. 2、解:∵4a1,2a2,a3成等差数列.a1=1, ∴4a1+a3=2×2a2, 即4+q2﹣4q=0, 即q2﹣4q+4=0, (q﹣2)2=0, 解得q=2, ∴a1=1,a2=2,a3=4,a4=8, ∴S4=1+2+4+8=15. 故选:A 3、解:∵2a m﹣a m2=0, 解得a m=2或a m=0, ∵S2m﹣1=38≠0, ∴a m=2; ∵S2m﹣1=×(2m﹣1)=a m×(2m﹣1)=2×(2m﹣1)=38, 解得m=10. 故答案为10. 解答题 1、解:(Ⅰ)设{a n}的公差为d ,由已知条件,, 解出a1=3,d=﹣2,所以a n=a1+(n﹣1)d=﹣2n+5. (Ⅱ)=4﹣(n﹣2)2. 所以n=2时,S n取到最大值4. 2、解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1 =3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1. 而a1=2, 所以数列{a n}的通项公式为a n=22n﹣1. (Ⅱ)由b n=na n=n?22n﹣1知S n=1?2+2?23+3?25+…+n?22n﹣1① 从而22S n=1?23+2?25+…+n?22n+1② 2

数列历年高考真题分类汇编

专题六 数列 第十八讲 数列的综合应用 答案部分 2019年 1.解析:对于B ,令2 104x λ-+=,得12 λ=, 取112a = ,所以211 ,,1022n a a == ?? ?…, 10n n a a +->,{}n a 递增, 当4n … 时,11132122 n n n n a a a a +=+>+=,

所以54 65109 323232a a a a a a ?>???> ???? ?>??M ,所以6 10432a a ??> ???,所以107291064a > >故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得 11124,333a d a d a d +=+=+, 解得10,2a d ==. 从而* 22,n a n n =-∈N . 由12,,n n n n n n S b S b S b +++++成等比数列得 () ()()2 12n n n n n n S b S b S b +++=++. 解得()2 121n n n n b S S S d ++= -. 所以2* ,n b n n n =+∈N . (2 )*n c n = ==∈N . 我们用数学归纳法证明. ①当n =1时,c 1=0<2,不等式成立; ②假设() *n k k =∈N 时不等式成立,即12h c c c +++

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 3.设i i z ++= 11 ,则=||z A. 2 1 B. 2 2 C. 2 3 D. 2 4.已知双曲线)0(13 2 22>=-a y a x 的离心率为 2,则=a A. 2 B. 2 6 C. 2 5 D. 1 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B. )(|)(| x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 6.设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB A.AD B. AD 2 1 C. BC 2 1 D. BC 7.在函数①|2|cos x y =,②|cos |x y = ,③)6 2cos(π+=x y ,④)4 2tan(π-=x y 中,最小 正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )

(word完整版)历年数列高考题及答案

1. (福建卷)已知等差数列 }{n a 中,12497,1,16a a a a 则==+的值是( ) A .15 B .30 C .31 D .64 2. (湖南卷)已知数列 }{n a 满足 ) (1 33,0*11N n a a a a n n n ∈+-= =+,则 20a = ( ) A .0 B .3- C .3 D .23 3. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{}n a 是等差数列,则( ) (A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 6. (山东卷) {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( ) (A )667 (B )668 (C )669 (D )670 7. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个 顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。 8. (湖北卷)设等比数列 }{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 9. (全国卷II ) 在83和27 2之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______ 10. (上海)12、用n 个不同的实数 n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。 对第i 行in i i a a a ,,,21Λ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i Λ=。例如:用1,2,3可得数阵 如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=?-?+-=+++b b b Λ,那么,在 用1,2,3,4,5形成的数阵中, 12021b b b +++Λ=_______。 11. (天津卷)在数列{a n }中, a 1=1, a 2=2,且 )( )1(12* +∈-+=-N n a a n n n ,

2017高考试题分类汇编-数列

数列 1(2017山东文)(本小题满分12分) 已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ) {}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ??????的前n 项和n T . 2(2017新课标Ⅰ文数)(12分) 记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。 3((2017新课标Ⅲ文数)12分) 设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ????+?? 的前n 项和. 4(2017浙江)(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n N *∈). 证明:当n N *∈时,

(Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1? x n ≤12 n n x x +; (Ⅲ)112 n -≤x n ≤212n -. 112()2 n n n n x x x x n *++-≤∈N . 5(2017北京理)(本小题13分) 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--???-(1,2,3,)n =???, 其中12max{,,,}s x x x ???表示12,,,s x x x ???这s 个数中最大的数. (Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时, n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++???是等差数列. 6(2017新课标Ⅱ文)(12分) 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 7(2017天津文)(本小题满分13分) 已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于 0,

历年高考真题(数学文化)

历年高考真题(数学文化) 1.(2019湖北·理)常用小石子在沙滩上摆成各种形状研究数, 如他们研究过图1中的1, 3, 6, 10, …, 由于这些数能表示成三角形, 将其称为三角形数;类似地, 称图2中的1, 4, 9, 16…这样的数为正方形数, 下列数中既是三角形数又是正方形数的是( ) A.289 B.1024 C.1225 D.1378 2.(2019湖北·文)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 A .1升 B .6667升 C .4447升 D .3337 升 3.(2019湖北·理)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 升. 4.(2019?湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之, 九而一, 所得开立方除之, 即立圆径, “开立圆术”相当于给出了已知球的体 积V , 求其直径d 的一个近似公式 3 916V d ≈.人们还用过一些类似的近似公式.根据π =3.14159…..判断, 下列近似公式中最精确的一个是( ) A. 3 916V d ≈ B.32V d ≈ C.3157300V d ≈ D.31121V d ≈ 5.(2019?湖北)在平面直角坐标系中, 若点P (x , y )的坐标x , y 均为整数, 则称点P 为格点.若一个多边形的顶点全是格点, 则称该多边形为格点多边形.格点多边形的面积记为S , 其内部的格点数记为N , 边界上的格点数记为L .例如图中△ABC 是格点三角形, 对应的S=1, N=0, L=4. (Ⅰ)图中格点四边形DEFG 对应的S , N , L 分别是________; (Ⅱ)已知格点多边形的面积可表示为c bL aN S ++=其中a , b , c 为常数.若某格点多边形对应的N=71, L=18, 则S=________(用数值作答). 6.(2019?湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土, 这是我国现存最早的有系统的数学典籍, 其中记载有求“囷盖”的术:置如其周, 令相乘也, 又以高乘之, 三十六成一, 该术相当于给出了由圆锥的底面周长L 与高h , 计算其体积

2014年全国大纲卷高考文科数学真题及答案

2014年全国大纲卷高考文科数学真题及答案2014年普通高等学校统一考试(大纲) 文科数学 第?卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给 出的四个选项中,只有一项 是符合题目要求的. 1.设集合,则中元素的个数为MNMN,,{1,2,4,6,8},{1,2,3,5,6,7}( ) A(2 B(3 C(5 D(7 2.已知角的终边经过点,则( ) ,cos,,(4,3), 4334A( B( C( D( ,, 5555 xx(2)0,,,3.不等式组的解集为( ) ,||1x,, A( B( C( D( {|21}xx,,,,{|10}xx,,,{|01}xx,,{|1}xx,4.已知正四面体ABCD 中,E是AB的中点,则异面直线CE与BD所成角的余弦值为( ) 3311A( B( C( D( 6336 35.函数的反函数是( ) yxx,,,,ln(1)(1) x3x3A(yex,,,,(1)(1) B(yex,,,,(1)(1) x3x3C(yexR,,,(1)() D(yexR,,,(1)()

06.已知为单位向量,其夹角为,则( ) ab、(2)abb,,,60 A(-1 B(0 C(1 D(2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A(60种 B(70种 C(75种 D(150种 8.设等比数列的前n项和为,若则( ) {}aSSS,,3,15,S,nn246A(31 B(32 C(63 D(64 22xy 9. 已知椭圆C:,,1的左、右焦点为、,离心率FF(0)ab,,1222ab 3为,过的直线交C于A、B两点,若的周长为,则CF,AFB4321 3 的方程为( ) 2222222xyxyxyx2A(,,1 B(,,y1 C(,,1 D(,,1 33212812410.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) 81,27,A( B( C( D( 16,9, 4422xy ,,,,1(0,0)ab11.双曲线C:的离心率为2,焦点到渐近线的距 22ab 离为,则C的焦距等于( ) 3 A(2 B( C(4 D( 2242

历年数列高考题汇编精选

历年数列高考题汇编 1、(全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ?? ??的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由 2 3 26 9a a a =得 3234 9a a =所以 21 9q = .有条件可知a>0,故 13q = . 由 12231 a a +=得 12231 a a q +=,所以 113a = .故数列{a n }的通项式为a n =13n . (Ⅱ ) 111111 log log ...log n b a a a =+++ (12...)(1)2 n n n =-++++=- 故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n - + 2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g (1) 求数列{}n a 的通项公式;

(2) 令n n b na =,求数列的前n 项和n S 解(Ⅰ)由已知,当n ≥1时, 111211 [()()()]n n n n n a a a a a a a a ++-=-+-++-+L 21233(222)2n n --=++++L 2(1)12n +-=. 而 12, a =所以数列{ n a }的通项公式为 21 2n n a -=. (Ⅱ)由 21 2n n n b na n -==?知 3521 1222322n n S n -=?+?+?++?L ① 从而 235721 21222322n n S n +?=?+?+?++?L ② ①-②得 2352121 (12)22222n n n S n -+-?=++++-?L . 即 211 [(31)22] 9n n S n +=-+ 3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且 a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . . 4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科)(课标I ) 一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(- (2)若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (3)设i i z ++=11,则=||z A. 21 B. 22 C. 2 3 D. 2 (4)已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 2 5 D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A. AD B. AD 21 C. BC D. BC 21 (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体 的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱

2014-2019历年高考文科数学函数真题全国卷

(2019-1-3)3. 已知3.02.022.022.0log ===c b a ,,,则 A. c b a << B. b c a << C. b a c << D. a c b << (2019-1-5)5. 函数],[cos sin )(2 ππ-++=在x x x x x f 的图像大致为 A. B. C. D. (2019-2-6)6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A . B .e 1x -+ C . D .e 1x --+ (2019-2-11)11.已知a ∈(0, π 2 ),2sin2α=cos2α+1,则sinα= A .15 B .5 C . D . 25 (2019-3-12)12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则 A .f (log 314)>f (3 2 2-)>f (2 32-) B .f (log 31 4 )>f (2 32-)>f (3 22-) C .f (32 2 - )>f (232 - )>f (log 3 14 ) e 1x --e 1x ---3

D .f (23 2 - )>f (32 2 - )>f (log 3 14 ) (2018-1-12)12.设函数()20 1 0x x f x x -?=?>?,≤,,则满足()()12f x f x +<的x 的取值范围是 A .(]1-∞-, B .()0+∞, C .()10-, D .()0-∞, (2018-1-13)13.已知函数()() 2 2log f x x a =+,若()31f =,则a =________. (2018-2-3)3.函数()2 e e x x f x x --=的图像大致为 (2018-2-12)12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =, 则(1)(2)(3)f f f ++(50)f ++=L A .50- B .0 C .2 D .50 (2018-3-7)7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ (2018-3-9)9.422y x x =-++的图像大致为( ) x x x x D. C. B. A.

历年数列高考题(汇编)答案

历年高考《数列》真题汇编 1、(2011年新课标卷文) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n n b a a a =+++L ,求数列{}n b 的通项公式. 解:(Ⅰ)因为.31)31(311n n n a =?=-,23113 11)311(3 1n n n S -=--= 所以,2 1n n a S -- (Ⅱ)n n a a a b 32313log log log +++=Λ ).......21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2 )1(+-=n n b n 2、(2011全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?????? 的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113a = 。故数列{a n }的通项式为a n =13n 。 (Ⅱ )111111log log ...log n b a a a =+++ 故12112()(1)1 n b n n n n =-=--++ 所以数列1{ }n b 的前n 项和为21n n -+ 3、(2010新课标卷理)

重庆市历年高考文科数学真题及答案详解

2005年普通高等学校招生全国统一考试(重庆卷) 数学试题卷(文史类) 数学试题(文史类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。 2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 5.考试结束后,将试题卷和答题卡一并交回。 参考公式: 如果事件A、B互斥,那么P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么P(A·B)=P(A)·P(B) 如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概 率 k n k k n n P P C k P- - =) 1( ) ( 第一部分(选择题共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆 5 )2 (2 2= + +y x关于原点(0,0)对称的圆的方程为() A. 5 )2 (2 2= + -y x B.5 )2 (2 2= - +y x C. 5 )2 ( )2 (2 2= + + +y x D.5 )2 (2 2= + +y x 2. = + -) 12 sin 12 )(cos 12 sin 12 (cos π π π π ()A.2 3 - B.2 1 - C.2 1 D.2 3 3.若函数 ) (x f是定义在R上的偶函数,在]0, (-∞上是减函数,且0 ) (= x f,则使得x x f的 ) (<的取值范围是() A. )2, (-∞B.) ,2(+∞ C. ) ,2( )2 , (+∞ - -∞ D.(-2,2) 4.设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于()A.(1,1)B.(-4,-4)C.-4 D.(-2,-2)

2014年全国高考文科数学试题及答案解析-山东卷

2014年普通高等学校招生全国统一考试(山东卷) 文科数学 第I卷(共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi += (A) 34i - (B) 34i + (C) 43i - (D) 43i + (2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B = (A) (0,2] (B) (1,2) (C) [1,2) (D) (1,4) (3) 函数21 ()log 1 f x x = -的定义域为 (A) (0,2) (B) (0,2] (C) (2,)+∞ (D) [2,)+∞ (4) 用反证法证明命题:“设,a b 为实数,则方程3 0x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根 (B) 方程3 0x ax b ++=至多有一个实根 (C) 方程30x ax b ++=至多有两个实根 (D) 方程3 0x ax b ++=恰好有两个实根 (5) 已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是 (A) 33 x y > (B) sin sin x y > (C) 22 ln(1)ln(1)x y +>+ (D) 221111 x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是 (A) 0,1a c >> (B) 1,01a c ><< (C) 01,1a c <<> (D) 01,01a c <<<< (7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为 6 π ,则实数m = (A) 23 (B) 3 (C) 0 (D) 3- (8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 x E O

山东历年高考数列精彩试题

山东历年高考试题 --------数列 20.(本小题满分12分)2013 设等差数列{a n }的前n 项和为S n ,且S n =2S 2,a 2n =2 a n +1. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列{b n }的前n 项和为T n ,且T n +n n a 2 1 +=λ(λ为常数),令c n =b 2n n ∈N ﹡,求数列{c n }的前n 项和R n 。 2014年 19.(本小题满分12分) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 2015年 18.(12分)(2015?山东)设数列{a n }的前n 项和为S n ,已知2S n =3n +3. (Ⅰ)求{a n }的通项公式; (Ⅱ)若数列{b n },满足a n b n =log 3a n ,求{b n }的前n 项和T n .

(2016年山东高考)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且 1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)令1 (1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n . 5(2014课标2理)17.已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{} 12 n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+. 6(2014四川文)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(n N *∈). (Ⅰ)证明:数列{}n b 为等比数列; (Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2 -,求数列 2{}n n a b 的前n 项和n S . 8(2014四川理)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(* n N ∈). (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2 -,求数列 {}n n a b 的前n 项和n T .

历年高考理科数列真题汇编含答案解析

高考数列选择题部分 (2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100 (B )99 (C )98 (D )97 (2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列条 件中,使得() * ∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则 A .{}n S 是等差数列 B .2 {}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 2.【2015高考福建,理8】若,a b 是函数()()2 0,0f x x px q p q =-+>> 的两个不同的 零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p q + 的值等于( ) A .6 B .7 C .8 D .9 3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +< C .若120a a <<,则2a > D .若10a <,则()()21230a a a a --> 4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a , 4a ,8a 成等比数列,则( ) A.

历年高考数学真题(全国卷整理版)

参考公式: 如果事件A 、B 互斥, 那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立, 那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p , 那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m }, B ={1, m} ,A U B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点, 焦距为 4 一条准线为x=-4 , 则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 , AB=2, CC 1=22 E 为CC 1的中点, 则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n , a 5=5, S 5=15, 则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中, AB 边的高为CD , 若 a·b=0, |a|=1, |b|=2, 则 (A) (B ) (C) (D)

2014年高考文科数学试题及参考答案

2014年普通高等学校统一考试(大纲卷) 文科数学 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N I 中元素的个数为 A .2 B .3 C .5 D .7 2.已知角α的终边经过点(4,3)-,则cos α= A .45 B .35 C .35- D .45 - 3.不等式组(2)0||1 x x x +>?? 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为 A .16 B .13 D 5.函数1)(1)y x =+>-的反函数是 A .3(1)(1)x y e x =->- B .3 (1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈ 6.已知a b r r 、 为单位向量,其夹角为060,则(2)a b b -?=r r r A .-1 B .0 C .1 D .2 7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有 A .60种 B .70种 C .75种 D .150种 8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S = A .31 B .32 C .63 D .64

9. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的直线交C 于A 、B 两点,若1AF B ? 的周长为,则C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为 A .814π B .16π C .9π D .274 π 11.双曲线C :22 221(0,0)x y a b a b -=>>的离心率为2 ,则C 的焦距等于 A .2 B . C .4 D . 12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += A .-2 B .-1 C .0 D .1 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 6 (2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos 22sin y x x =+的最大值为 . 15. 设x 、y 满足约束条件02321x y x y x y -≥??+≤??-≤? ,则4z x y =+的最大值为 . 16. 直线1l 和2l 是圆22 2x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分) 数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.

相关文档
相关文档 最新文档