文档库 最新最全的文档下载
当前位置:文档库 › 2018全国高考数学真题文科1卷

2018全国高考数学真题文科1卷

2018全国高考数学真题文科1卷
2018全国高考数学真题文科1卷

2018年普通高等学校招生全国统一考试

文科数学

注意事项:

1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.

3.考试结束后,将本试卷和答题卡一并交回.

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )

A .{}02,

B .{}12,

C .{}0

D .{}21012--,,

,, 2.设121i z i i

-=++,则z =( )

A .0

B .12

C .1

D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是( )

A .新农村建设后,种植收入减少

B .新农村建设后,其他收入增加了一倍以上

C .新农村建设后,养殖收入增加了一倍

D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13 B .12 C .2 D .22 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )

A .122π

B .12π

C .82π

D .10π

6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )

A .2y x =-

B .y x =-

C .2y x =

D .y x = 7.在ABC △中,AD 为BC 边上的中线,

E 为AD 的中点,则EB =( )

A .3144

AB AC - B .1344AB AC - C .3144

AB AC + D .1344AB AC + 8.已知函数()22

2cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3

B .()f x 的最小正周期为π,最大值为4

C .()f x 的最小正周期为2π,最大值为3

D .()f x 的最小正周期为2π,最大值为4

9.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在

正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )

A

. B

. C .3 D .2

10.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为( )

A .8

B

. C

. D

11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且 2cos 23α=,则a b -=( ) A .15 B

C

D .1

12.设函数()201 0x x f x x -?=?>?

,≤,,则满足()()12f x f x +<的x 的取值范围是( ) A .(]1-∞,

B .()0+∞,

C .()10-,

D .()0-∞,

二、填空题(本题共4小题,每小题5分,共20分)

13.已知函数()()

22log f x x a =+,若()31f =,则a =________. 14.若x y ,满足约束条件220100x y x y y --??-+???

≤≥≤,则32z x y =+的最大值为________.

15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.

16.ABC △的内角A B C ,,的对边分别为a b c ,,,

已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.

三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题

考生都必须作答。第22、23题为选考题,考生根据要求作答。)

(一)必考题:共60分。

17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n

=. ⑴求123b b b ,,; ⑵判断数列{}n b 是否为等比数列,并说明理由;⑶求{}n a 的通项公式.

18.(12分)在平行四边形ABCM中,3

AB AC

==,90

ACM=?

∠,以AC为折痕将ACM

△折起,使点M到达点D的位置,且AB DA

⊥.

⑴证明:平面ACD⊥平面ABC;

⑵Q为线段AD上一点,P为线段BC上一点,且

2

3

BP DQ DA

==,求三棱锥Q ABP

-的体积.

19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

水量

频数

1 3

2 4 9 26 5

使用了节水龙头50天的日用水量频数分布表

日用

水量

[)00.1, [)0.10.2, [)0.20.3, [)0.30.4, [)0.40.5, [)0.50.6,

频数

1 5 13 10 16 5

⑴在答题卡上作出使用了节水龙头50天的日用

水量数据的频率分布直方图:

⑵估计该家庭使用节水龙头后,日用水量小于的

概率;

⑶估计该家庭使用节水龙头后,一年能节省多少

水(一年按365天计算,同一组中的数据以

这组数据所在区间中点的值作代表.)

20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.

⑴当l 与x 轴垂直时,求直线BM 的方程; ⑵证明:ABM ABN =∠∠.

21.(12分)已知函数()ln 1x f x ae x =--.

⑴设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; ⑵证明:当1a e

≥,()0f x ≥.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10)

在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立

极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.

⑴求2C 的直角坐标方程;

⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.

23.[选修4—5:不等式选讲](10分)

已知()11f x x ax =+--. ⑴当1a =时,求不等式()1f x >的解集;

⑵若()01x ∈,

时不等式()f x x >成立,求a 的取值范围.

2018全国高考II卷理科数学试题及答案解析

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为

2018年高考数学真题

2018年普通高等学校招生全国统一考试(卷) 数学Ⅰ 1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A I 2. 若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为_____ 3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位 裁判打出的分数的平均数为_____ 4. 一个算式的伪代码如图所示,执行此算法,最后输出的S 的值为______ 5. 函数1log )(2-=x x f 的定义域为______ 6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加, 则恰好有2名女生的概率为_______ 7. 已知函数)22)(2sin(π?π?<<-+=x y 的图象关于直线3 π =x 对称,则?的值是______ 8. 在平面直角坐标系xOy 中.若双曲线0)b 0(122 22>>=-,a b y a x 的右焦点F(c ,0)到一 条渐近线的距离为 c 2 3 ,则其离心率的值是_____ 9. 函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间]2,2(-上,??? ??? ?≤<-+≤<=,02,21 ,20,2cos )(x x x x x f π则))15((f f 的值为______ 10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面 体的体积为_______ 11. 若函数)(12)(2 3 R a ax x x f ∈+-=在),0(+∞有且只有一个 零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______ 12. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限的点,B (5,0),以 8 99 9 011 (第3题) I ←1 S ←1 While I<6 I ←I+2 S ←2S End While Pnint S (第4题)

2018年全国高考II卷理科数学试题及答案

2018年全国高考I I 卷理科数学试题及答案 https://www.wendangku.net/doc/9a8977431.html,work Information Technology Company.2020YEAR

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 【答案】D 【解析】分析:根据复数除法法则化简复数,即得结果. 详解:选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 【答案】A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:, 当时,; 当时,; 当时,; 所以共有9个,选A. 点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.

3. 函数的图像大致为 A. A B. B C. C D. D 【答案】B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:为奇函数,舍去A, 舍去D; , 所以舍去C;因此选B. 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0 【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为 所以选B. 点睛:向量加减乘: 5. 双曲线的离心率为,则其渐近线方程为

2018年全国3卷高考数学试题理科

2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =, ,,则A B =I ( ) A .{}0 B .{}1 C .{}12, D .{}012, , 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫 卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼 的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4.若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89 -

5.5 22x x ??+ ???的展开式中4x 的系数为( ) A .10 B .20 C .40 D .80 6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ?面积的取值范围是( ) A .[]26, B .[]48, C .232????, D .2232???? , 7.函数422y x x =-++的图像大致为( ) 8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7 B .0.6 C .0.4 D .0.3 9.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ?的面积为222 4 a b c +-,则C =( ) A .2π B .3π C .4π D .6 π

2018全国高考理科数学[全国一卷]试题和答案解析

2018年全国普通高等学校招生全国统一考试 (全国一卷)理科数学 一、选择题:(本题有12小题,每小题5分,共60分。) 1、设z= ,则∣z ∣=( ) A.0 B. C.1 D. 2、已知集合A={x|x 2 -x-2>0},则 A =( ) A 、{x|-12} D 、{x|x ≤-1}∪{x|x ≥2} 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( ) A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、12 5、设函数f (x )=x 3+(a-1)x 2+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( ) A.y= -2x B.y= -x C.y=2x D.y=x 6、在?ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则 =( )

A. - B. - C. + D. + 7、某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A, 圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长 度为() A. 2 B. 2 C. 3 D. 2 8.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( ) A.5 B.6 C.7 D.8 9.已知函数f(x)= g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是 ( ) A. [-1,0) B. [0,+∞) C. [-1,+∞) D. [1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分 别为直角三角形ABC的斜边BC,直角边AB,AC. △ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3, 则( ) A. p1=p2 B. p1=p3 C. p2=p3 D. p1=p2+p3 11.已知双曲线C: - y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点 分别为M,N. 若△OMN为直角三角形,则∣MN∣=( ) A. B.3 C. D.4 12.已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则 截此正方体所得截面 面积的最大值为() A. B. C. D.

2018年全国卷1理科数学试题详细解析

2017年普通高等学校招生全国统一考试(全国I 卷) 理科数学 解析人 跃华 注意事项: 1.答卷前,考生务必将自己的、号填写在答题卡上, 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、 选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 已知集合{}{} 131x A x x B x =<=<, ,则() A .{}0=A B x x D .A B =? 【答案】A 【解析】{}1A x x =<,{}{}310x B x x x =<=< ∴{}0A B x x =<,{}1A B x x =<, 选A 2. 如图,正方形ABCD 的图形来自中国古代的太极图.正方形切圆中的黑色部分和白色部 分位于正方形的中心成中心对称,在正方形随机取一点,则此点取自黑色部分的概率是() A .1 4 B . π8 C . 12 D . π4 【答案】B 【解析】设正方形边长为2,则圆半径为1 则正方形的面积为224?=,圆的面积为2π1π?=,图中黑色部分的概率为 π2

则此点取自黑色部分的概率为π π248 = 故选B 3. 设有下面四个命题() 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . A .13p p , B .14p p , C .23p p , D .24p p , 【答案】B 【解析】1:p 设z a bi =+,则 22 11a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确; 3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复 数,故3p 不正确; 4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确; 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1 B .2 C .4 D .8 【答案】C 【解析】45113424a a a d a d +=+++= 6165 6482 S a d ?=+ = 联立求得11272461548a d a d +=???+=??① ② 3?-①②得()211524-=d 624d = 4d =∴ 选C 5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的 x 的取值围是() A .[]22-, B .[]11-, C .[]04, D .[]13, 【答案】D 【解析】因为()f x 为奇函数,所以()()111f f -=-=, 于是()121f x --≤≤等价于()()()121f f x f --≤≤|

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变 化情况,统计了该地区系农村建设前 后农村的经济收入构成比例。得到 如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视 图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面 上,从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数 字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

2018年高考文科数学试题及答案

绝密★启用前 2018年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02, B .{}12, C .{}0 D .{}21012--, ,,, 【答案】A 【难度】容易 【点评】本题在高考数学(文)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 2.设1i 2i 1i z -= ++,则z = A .0 B .12 C .1 D 【答案】C 【难度】容易 【点评】本题在高考数学(文)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A 【难度】中等 【点评】本题在高考数学(文)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 4.已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为 A .1 3 B .12 C D 【答案】C 【难度】容易 【点评】本题考查椭圆的相关知识。在高一数学强化提高班下学期课程讲座2,第三章《圆锥曲线与方程》 有详细讲解。 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A . B .12π C . D .10π 【答案】B 【难度】容易 【点评】本题在高考数学(文)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲 刺班中均有涉及。 6.设函数()()32 1f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00, 处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 【答案】D

2018年全国2卷文科数学试题及答案

2018全国2卷文科数学试题及答案 一、选择题 1. (23)i i += A. 32i - B. 32i + C. 32i -- D . 32i -+ 2.已知集合{1,3,5,7},B {2,3,4,5}A ==,则B A =I A. {3} B. {5} C . {3,5} D. {1,2,3,4,5,7} 3.函数2()x x e e f x x --=的图像大致为B 4.已知向量,a b r r 满足||1,1a a b =?-r r r ,则(2)a a b ?=r r r A.4 B.3 C.2 D.0 5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6 B.0.5 C.0.4 D .0.3 6.双曲线22 221(0,0)x y a b a b -=>>,则其渐近线方程为 A . y =? B. y =? C. 2y x =? D. 2 y x =? 7.在ABC V 中,cos 1,525 C BC AC ===,则AB =

A . B. C. D. 8.为计算11111123499100 S =-+-+鬃?-,设计了右侧的程序框图,则在空白框中应填入 A. 1i i =+ B . 2i i =+ C. 3i i =+ D. 4i i =+ 9. 在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A. 2 B. 2 C . 2 D. 2 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是 A. 4p B. 2 p C . 34p D. p 11.已知12,F F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ^,且2160PF F ?o ,则C 的离心率为 A. 1- B. 2- C. D . 1 12.已知()f x 是定义域为(,)-??的奇函数,满足(1)(1) f x f x -=+,若(1)2f =,则(1)(2)(3)(50)f f f f ++鬃?= A.-50 B.0 C.2 D.50 二、填空题 13.曲线2ln y x =在点(1,0)处的切线方程为 22y x =- . 14.若,x y 满足约束条件250,230,50, x y x y x ì+-????-+?í??-???? 则z x y =+的最大值为 9 .

2018年全国高考文科数学试题及答案-全国卷1、卷2、卷3共三套

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 文科数学 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合,,则() A.B.C.D. 2.设,则() A.0 B.C.D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆:的一个焦点为,则 的离心率() A.B.C D 5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积 为8的正方形,则该圆柱的表面积为() A.B.C.D. 6.设函数.若为奇函数,则曲线在点处的切线方程为() A.B.C.D. 7.在中,为边上的中线,为的中点,则() A.B. C.D. {} 02 A=,{} 21012 B=-- ,,,,A B= {} 02 ,{} 12 ,{}0{} 21012 -- ,,,, 1 2 1 i z i i - =+ + z= 1 2 1 C 22 2 1 4 x y a +=() 2,0C 1 3 1 2 1 O 2 O 12 O O 12π10π ()() 32 1 f x x a x ax =+-+() f x() y f x =() 00 , 2 y x =-y x =-2 y x =y x = ABC △AD BC E AD EB= 31 44 AB AC - 13 44 AB AC - 31 44 AB AC + 13 44 AB AC +

2018年高考全国卷2理科数学真题(附含答案解析)

2018年普通高等学校招生全国统一考试理科数学 本试卷共23题,共150分,共5页。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 2.已知集合A={(x,y)|x 2+y 2≤3,x∈Z,y∈Z},则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数f(x)=e 2-e-x/x 2的图像大致为 A. B. C.

D. 4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)= A.4 B.3 C.2 D.0 5.双曲线x 2/a 2-y 2/b 2=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为 A.y=±x B.y=±x C.y=± D.y=± 6.在中,cos=,BC=1,AC=5,则AB= A.4 B. C. D.2 7.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入 A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1= 则异面直线AD1与DB1所成角的余弦值为

A. B. 10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是 A. B. C. D. π 11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)= A.-50 B.0 C.2 D.50 12.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为 A.. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线y=2ln(x+1)在点(0,0)处的切线方程为________。 14.若x,y满足约束条件则z=x+y的最大值为_________。 15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=________。 16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为 ,则该圆锥的侧面积为________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S1=-15。 (1)求{a n}的通项公式; (2)求S n,并求S n的最小值。 18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t。 (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由。

2018全国各地高考数学试题汇编(附答案解析)

2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = ▲ . [答案]{1,8} 2.若复数z 满足i 12i z ?=+,其中i 是虚数单位,则z 的实部为 ▲ . [答案]2 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ . [答案]90 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ . [答案]8 5.函数()f x 的定义域为 ▲ . [答案][)∞+,2 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]10 3 7.已知函数sin(2)()22y x ??ππ=+-<<的图象关于直线3 x π =对称,则?的值是 ▲ . [答案]6 -π 8.在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点(c,0)F 到一条渐近线的距离为 ,则其离心率的值是 ▲ . [答案]2

9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π?

2018全国高考数学真题文科1卷

2018年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12, C .{}0 D .{}21012--,, ,, 2.设121i z i i -=++,则z =( ) A .0 B .12 C .1 D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 则下面结论中不正确的是( ) A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍

D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13 B .12 C .2 D .22 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π 6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 7.在ABC △中,AD 为BC 边上的中线, E 为AD 的中点,则EB =( ) A .3144 AB AC - B .1344AB AC - C .3144 AB AC + D .1344AB AC + 8.已知函数()22 2cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在

2018年文科数学全国三卷真题及答案)

2018年数学试题 文(全国卷3) 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合题目要求的.) 1.已知集合{}|10A x x =-≥,{}012B =, ,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012, , 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4.若1 sin 3 α=,则cos2α=( ) A .89 B . 7 9 C .79 - D .89 - 5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A .0.3 B .0.4 C .0.6 D .0.7 6.函数 ()2tan 1tan x f x x =+的最小正周期为( ) A . 4 π B . 2 π C .π D .2π 7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .()ln 1y x =- B .()ln 2y x =- C .()ln 1y x =+ D .()ln 2y x =+ 8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2 222x y -+=上,则ABP ?面积的取值围是( )

A .[]26, B .[]48, C .232????, D .2232???? , 9.函数422y x x =-++的图像大致为( ) 10.已知双曲线22 221x y C a b -=:(00a b >>,2()40,到C 的渐近线的 距离为( ) A 2 B .2 C 32 D .211.ABC ?的角A ,B , C 的对边分别为a ,b ,c .若ABC ?的面积为222 4 a b c +-,则C =( ) A .2π B .3π C .4π D .6 π 12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ?为等边三角形且其面积 为3D ABC -体积的最大值为( ) A .123 B .183 C .243 D .543 二、填空题(本题共4小题,每小题5分,共20分) 13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 14.某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准

高中数学:2018年数学高考真题

对应学生用书P105 剖析解读 高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.在难度上会有一些差异,在试卷结构,命题方向上基本都是相同的. “稳定是高考的主旋律”.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新是高考的生命线”.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心理解归纳,是难以拿到高分的.在对数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.

全国Ⅰ、Ⅱ、Ⅲ卷对必修4三角函数、三角恒等变换的考查,相对来说难度不大,综合性较低,但比去年难度有所提高,位置有所移后,其中,全国Ⅰ卷文科把三角函数放到第11题,略微有一点难度,是一个很明显的例子;但是对于平面向量的考查,全国Ⅰ、Ⅱ、Ⅲ卷通常放在填空题第1题或选择题中间的位置,难度相对于去年有所降低,2017年把基本平面向量放到第12题的位置,综合性较强. 其他自主命题省市高考题对于三角函数、三角恒等变换的考查,难度都不大,而平面向量的考查难度各省市有较大区别,比如:天津卷、江苏卷、北京卷、浙江卷等较难,要求学生有较强的分析问题、转化问题的能力以及运算能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及各地区必修4所考查全部试题,请同学们根据所学必修4的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性的试做!) 穿越自测 一、选择题 1.(2018·全国卷Ⅲ,文4)若sinα=1 3,则cos2α=() A.8 9B. 7 9C.- 7 9D.- 8 9 ★答案★B 解析cos2α=1-2sin2α=1-2 9= 7 9.故选B. 2.(2018·全国卷Ⅱ,文4理4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a

2018年高考全国I卷数学(理科)真题与答案

理科数学 2018年高三试卷 理科数学 单选题(本大题共12小题,每小题____分,共____分。) 1.设,则 A. B. C. D. 2.已知集合,则 A. B. C. D. 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解 该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

建设前经济收入构成比例建设后经济收入构成比例 则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A. B. C. D. 5.设函数.若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 6.在中,为边上的中线,为的中点,则 A. B. C. D.

7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对 应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A. B. C. 3 D. 2 8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A. 5 B. 6 C. 7 D. 8 9.已知函数.若g(x)存在2个零点,则a的 取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半 圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.的三边所围成的区域 记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则

2018年数学高考真题

2018年数学高考真题 对应学生用书P111剖析解读 高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的. “稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角函数、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低. “创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心理解归纳,是难以拿到分数的.对数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.高考全国Ⅰ、Ⅱ、Ⅲ卷以及其他省市自主命题试卷对立体几何知识的考查主要体现在:图形辨认:三视图、直观图、展开图、折叠图、图形割补等;定性证明:线线、线面、面面的垂直或平行关系的证明;定量计算:体积与面积的计算、线线角、线面角、面面角的计算.从能力考查的角度看,突出空间想象能力、推理论证能力和逻辑表达能力的考查,突出学科内知识的综合运用.如Ⅱ卷第16题以求圆锥体侧面积的形式考查了旋转体轴截面、线面角、正弦定理等知识的综合运用,在知识点的相互联系上有一定的变化;对立体几何知识的考查总体来说比去年比重有所提升,重视程度有所增加,如Ⅱ卷大题中20题以往考查解析几何,今年考了立体几何,同时,解析几何难度明显下降,而立体几何难度相对较大,主要体现在规范性要求高和计算量增大上. 总之,在学习中强化空间想象能力,注重强化基础知识的巩固和知识网络的构建,通过提升学生知识迁移能力、综合分析能力来提高应考能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修2所考查

2018年高考理科数学全国三卷试题和答案解析

2018年高考理科全国三卷 一.选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视 图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆上,则 面积的取值范围是( ) A. B. C. D. 7、函数的图像大致为( ) A. B. C. D.

8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D. 13、已知向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若,则 三.解答题 17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:

相关文档
相关文档 最新文档