文档库 最新最全的文档下载
当前位置:文档库 › 高中文科数学高考模拟试卷(含答案).pdf

高中文科数学高考模拟试卷(含答案).pdf

高中文科数学高考模拟试卷(含答案).pdf
高中文科数学高考模拟试卷(含答案).pdf

高考数学模拟试题文科数学(含答案)

1 新课标高考模拟试题 数学文科 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。 参考公式: 样本数据n x x x ,,21的标准差 锥体体积公式 ])()()[(1 22221x x x x x x n S n -++-+-= Sh V 31= 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式 Sh V = 3 23 4,4R V R S ππ= = 其中S 为底面面积,h 为高 其中R 为球的半径 第Ⅰ卷(选择题 共60分) 一、选择题 1.已知集合2{|1},{|20}A x x B x x x =≤=-<,则A B = ( ) A .(0,1) B . C . (]0,1 D .[)1,1- 2.若(1,1),(1,1),(2,4)a b c ==-=-,则c 等于 ( ) A .-a+3b B .a-3b C .3a-b D .-3a+b 3.已知四棱锥P —ABCD 的三视图如右图所示,则四棱锥P —ABCD 的体积为( ) A . 1 3 B . 23 C . 34 D . 38 4.已知函数 ()sin()(0,0,||)2 f x A x A π ω?ω?=+>>< 的部分图象如图所示,则() f x 的解析式是( ) A .()sin(3)()3f x x x R π=+∈ B .()sin(2)()6f x x x R π =+∈ C . ()sin()()3 f x x x R π =+∈ D . ()sin(2)()3 f x x x R π =+∈ 5.阅读下列程序,输出结果为2的是( ) 6.在ABC ? 中,1tan ,cos 2A B == ,则tan C 的值是 ( ) A .-1 B .1 C D .-2 7.设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,有下列四个命题: ①若,,;m m βα βα?⊥⊥则 ②若//,,//;m m αβαβ?则 ③若,,,;n n m m αβαβ⊥⊥⊥⊥则 ④若,,,.m m αγβγαβ⊥⊥⊥⊥则 其中正确命题的序号是 ( ) A .①③ B .①② C .③④ D .②③ 8.两个正数a 、b 的等差中项是5,2 ,a b >且则双曲线22 221x y a b -=的离 心率e 等于 ( )

高考文科数学模拟试卷及答案

高考文科数学模拟试卷 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z满足(2﹣i)2?z=1,则z的虚部为() A.B.C.D. 2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A?B的() A.充分不必要条件B.必要不充分条 C.充要条件D.既不充分也不必要条件 3.设单位向量的夹角为120°,,则|=() A.3 B. C.7 D. 4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是() A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20 5.一几何体的三视图如图所示,则该几何体的体积为() A.B.C.4﹣πD. 6.双曲线=1的顶点到其渐近线的距离为() A. B.C. D. 7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则 f(2014)+f(2015)=() A.0 B.1 C.2 D.3

8.已知x,y满足约束条件,则z=2x+y的最大值为() A.2 B. C.4 D. 9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=() A.B.C.D. 10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则 下列结论正确的是() A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减 C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值 二、填空题:本大题共5小题,每小题5分,共25分. 11.右面的程序框图输出的S的值为. 12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .13.若点(a,9)在函数的图象上,则a= . 14.已知x>0,y>0且2x+y=2,则的最小值为.

高三文科数学模拟试题含答案知识分享

高三文科数学模拟试题 满分:150分 考试时间:120分钟 第Ⅰ卷(选择题 满分50分 一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数31i i ++(i 是虚数单位)的虚部是( ) A .2 B .1- C .2i D .i - 2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ?=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B . 12 C .1 2 - D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那 么这个几何体的表面积为( ) A .4π B . 3 2 π C .3π D .2π 5.将函数()sin 2f x x =的图象向右平移6 π 个单位,得到函数 () y g x =的图象,则它的一个对称中心是( ) A .(,0)2π - B . (,0)6π- C . (,0)6π D . (,0) 3π 6.执行如图所示的程序框图,输出的s 值为( ) A .10- B .3- C . 4 D .5 7. 已知圆22 :20C x x y ++=的一条斜率为1的切线1l ,若 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为( ) A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++= 8.在等差数列{}n a 中,0>n a ,且301021=+++a a a Λ, 则65a a ?的最大值是( ) A . 94 B .6 C .9 D .36 正视图 侧视图 俯视图 1k k =+结束 开始 1,1 k s ==5?k < 2s s k =- 输出s 否 是

高考模拟复习试卷试题模拟卷高三数学数学试卷文科001

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2} B.{1,2,4} C.{1,2,4,6} D.{1,2,3,4,6} 2.(5分)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的() A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 3.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D. 4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为() A.0 B.1 C.2 D.3 5.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()

A. B. C.D. 6.(5分)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为() A.a<b<c B.b<a<c C.c<b<a D.c<a<b 7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f ()=0,且f(x)的最小正周期大于2π,则() A.ω=,φ=B.ω=,φ=﹣ C.ω=,φ=﹣D.ω=,φ= 8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是() A.[﹣2,2] B.C.D. 二、填空题:本大题共6小题,每小题5分,共30分. 9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为. 10.(5分)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为. 11.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 12.(5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y 轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为. 13.(5分)若a,b∈R,ab>0,则的最小值为. 14.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.

高中文科数学高考模拟试卷含答案

高中文科数学高考模拟试卷 一、选择题:本大题共12小题,每小题5分,满分60分. 1.如果复数 )()2(R a i ai ∈+的实部与虚部是互为相反数,则a 的值等于 A .2 B .1 C .2- D .1- 2.已知两条不同直线1l 和2l 及平面α,则直线21//l l 的一个充分条件是 A .α//1l 且α//2l B .α⊥1l 且α⊥2l C .α//1l 且α?2l D .α//1l 且α?2l 3.在等差数列}{n a 中,69327a a a -=+,n S 表示数列}{n a 的前n 项和,则=11S A .18 B .99 C .198 D .297 4.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是 A .π32 B .π16 C .π12 D .π8 5.已知点)4 3cos ,43 (sin ππP 落在角θ的终边上,且)2,0[πθ∈,则θ的值为 A . 4 π B . 4 3π C . 4 5π D . 4 7π 6.按如下程序框图,若输出结果为170,则判断框内应补充的条件为 A .5i > B .7i ≥ C .9i > D .9i ≥ 7.若平面向量)2,1(-=与的夹角是?180,且||=b A .)6,3(- B .)6,3(- C .)3,6(- 8.若函数)(log )(b x x f a +=的大致图像如右图,其中则函数b a x g x +=)(的大致图像是 A B C D 9.设平面区域D 是由双曲线1422 =-x y 的两条渐近线和椭圆12 22 =+y x 的右准线所围成的三角形(含边界与内部).若点D y x ∈),(,则目标函数y x z +=的最大值为 A .1 B .2 C .3 D .6 10.设()11x f x x +=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===L 则()2009=f x A .1x - B .x C .11x x -+ D .11x x +- 俯视图

高考文科数学模拟试题

高考文科数学模拟题 一、选择题: 1.已知集合{}{} 12,03A x x B x x =-<=<<,则A B =() A .{} 13x x -<”是“0<

高三模拟考试数学试卷(文科)精选

高三模拟考试数学试卷(文科) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数f(x)=的定义域为( ) A.(﹣∞,0] B.(﹣∞,0)C.(0,)D.(﹣∞,) 2.复数的共轭复数是( ) A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i 3.已知向量=(λ, 1),=(λ+2,1),若|+|=|﹣|,则实数λ的值为( ) A.1 B.2 C.﹣1 D.﹣2 4.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于( ) A.180 B.90 C.72 D.10 5.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( ) A.y=±2x B.y=±x C.y=±x D.y=±x 6.下列命题正确的个数是( ) A.“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题; B.命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件; C.“?x∈R,x3﹣x2+1≤0”的否定是“?x∈R,x3﹣x2+1>0”; D.“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”. A.1 B.2 C.3 D.4 7.已知某几何体的三视图如图所示,则这个几何体的外接球的表面积等于( ) A.B.16πC.8πD. 8.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是( )

A.5 B.6 C.7 D.8 9.已知函数f(x)=+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣10=0垂直,则实数m的取值范围是(三分之一前有一个负号)( ) A.C.D. 10.若直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,则的最小值( ) A.B.C.2 D.4 11.设不等式组表示的区域为Ω1,不等式x2+y2≤1表示的平面区域为Ω2.若Ω1与Ω2有且只有一个公共点,则m等于( ) A.﹣B.C.±D. 12.已知函数f(x)=sin(x+)﹣在上有两个零点,则实数m的取值范围为( ) A.B.D. 二、填空题:本大题共4小题,每小题5分. 13.设函数f(x)=,则方程f(x)=的解集为__________. 14.现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是__________. 15.若点P(cosα,sinα)在直线y=﹣2x上,则的值等于__________. 16.16、如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论: ①直线AM与直线CC1相交; ②直线AM与直线BN平行; ③直线AM与直线DD1异面; ④直线BN与直线MB1异面. 其中正确结论的序号为__________.

2020年高考文科数学模拟试卷及答案(共三套)

2020年高考文科数学模拟试卷及答案(共三套) 2020年高考文科数学模拟试卷及答案(一) 一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求) 1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+

2020年四川省高考文科数学模拟试题含答案

第 1 页 共 10 页 2020年四川省高考文科数学模拟试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。共150分,考试时间120分钟 注意事项: 1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,考生要认真核对答题纸上 粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动, 用橡皮擦净后,再选涂其他答案标号。第Ⅱ卷用黑色墨水签字笔在答题纸上书写作答,在试题卷上作答,答案无效。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求) 1.已知集合{}3,2,1,0,1-=A ,{} 022>-=x x x B ,则=B A I A .{}3 B . {}3,1- C .{}3,2 D .{}2,1,0 2.已知复数,则z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 已知θ θθ2cos 22sin 1则,2tan -=的值为 A .23 B .21 C .21- D .2 3- 4.若n S 是等差数列}{n a 的前n 项和,且2038=-S S ,则11S 的值为 A.44 B.22 C. 2203 D.88 5.已知函数)0()1(2 1)(2>++-+?=a a x a x a e e x f x ,其中e 为自然对数的底数.若函数)(x f y =与)]([x f f y =有相同的值域,则实数a 的最大值为 A .e B .2 C. 1 D . 2 e 6.若函数() f x 同时满足以下三个性质:

2018年高考文科数学模拟试卷(共十套)(含答案)

高考文科数学模拟试卷(一) (考试时间120分钟满分150分) 一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A={x|x2﹣3x<0},B={x|x2>4},则A∩B=() A.(﹣2,0)B.(﹣2,3)C.(0,2) D.(2,3) 2.复数z满足:(3﹣4i)z=1+2i,则z=() A. B.C. D. 3.设命题p:?x>0,x﹣lnx>0,则¬p为() A.?x>0,x﹣lnx≤0 B.?x>0,x﹣lnx<0 C.?x0>0,x0﹣lnx0>0 D.?x0>0,x0﹣lnx0≤0 4.已知2sin2α=1+cos2α,则tan(α+)的值为() A.﹣3 B.3 C.﹣3或3 D.﹣1或3 5.函数f(x+1)是偶函数,则函数y=f(x)的图象关于() A.直线x=1对称B.直线x=﹣1对称 C.点(1,0)对称 D.点(﹣1,0)对称 6.函数f(x)=3sin(2x﹣)的图象可以由y=3sin2x的图象() A.向右平移个单位长度得到 B.向左平移个单位长度得到 C.向右平移个单位长度得到 D.向左平移个单位长度得到 7.已知长方体ABCD﹣A1B1C1D1中,AB=BC,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为() A.B.C.D. 8.设数列{a n}的前n项和为S n,若S n +1,S n,S n +2 成等差数列,且a2=﹣2,则a7= () A.16 B.32 C.64 D.128 9.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,

2018高考文科数学模拟试题

2018高考文科数学模拟试题 一、选择题: 1.已知命题,,则是成立的( )条件. A .充分不必要 B .必要不充分 C .既不充分有不必要 D .充要 2.已知复数,,,是虚数单位,若是实数,则( ) A . B . C . D . 3.下列函数中既是偶函数又在上单调递增的函数是( ) A . B . C . D . 4.已知变量,之间满足线性相关关系 ,且,之间的相关数据如下表所示:则( ) A .0.8 B .1.8 C .0.6 D .1.6 5.若变量,满足约束条件,则的最大值是( ) A .0 B .2 C .5 D .6 6.已知等差数列的公差和首项都不为,且成等比数列,则( ) A . B . C . D . 7.我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的 :12p x -<<2:log 1q x

高三文科数学模拟试卷(一).docx

2016届高三文科数学模拟试卷(一) 第I 卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{} 1A x x =≤,集合B Z =,则A B =( ) A.{}0 B.{}11A x x =-≤≤ C.{}1,0,1- D.? 1.解:集合{} {}111A x x x x =≤=-≤≤,所以{}1,0,1A B =-,选C. 2.设i 是虚数单位,复数111i z i -=+ +在复平面上所表示的点为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.解:复数12 1111i z i i i -=+ ==-++.所对应的点为(1,1)-,在第四象限,选D. 3.已知向量(,2)a m =-,(4,2)b m =-,条件p ://a b ,条件q :2m =,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.解:因为2//2802a b m m ?-+=?=±,所以p 是q 的必要不充分条件,选B. 4.函数1()cos23sin cos 2 f x x x x =+的一个对称中心是( ) A.(,0)3π B.(,0)6 π C.(,0)6 π - D.(,0)12 π - 4.解:函数113()cos23sin cos cos2sin 2sin(2)2226 f x x x x x x x π =+=+=+的对称中心的横 坐标满足2,6 x k k Z π π+ =∈,即,212k x k Z ππ= -∈,所以(,0)12 π -是它的一个对称中心, 选D.

高三数学文科高考模拟试卷

2009年高考模拟试卷 数学(文科)卷 本试题卷分第Ⅰ卷和第Ⅱ卷两部分。满分150分,考试时间120分。 第Ⅰ卷(共50分) 参考公式: 锥体的体积公式:1 3 V Sh = ,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:2 4πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合 题目要求的。 (1)已知集合{} {}3,1,2,3,4A x x B =<=,则(R A )∩B =( ) A .{4} B .{3,4} C .{2,3,4} D .{1,2,3,4} (课本练习改编) (2) i 是虚数单位,若 (1+i)z=i ,则z=( ) A . i 2121+ B .i 2121+- C .i 2121- D .i 2 121-- (课本练习改编) (3) “f(0)=0”是“函数y=f(x)是奇函数”的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (原创) (4) 同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( ) A . 21 B .31 C .41 D .8 1 (课本练习改编) (5) 已知向量)4 tan(//),1,(sin ),2,(cos π ααα-=-=,则且b a b a 等于( ) A .3 B .-3 C . 31 D .3 1- (6)下面框图表示的程序所输出的结果是 ( ) A . 3 B .12 C .60 D .360 (7)下列命题中正确的是( ) A .过平面外一点作此平面的垂面是唯一的 。 B .过平面的一点作此平面的垂线是唯一的 。 C .过直线外一点作此直线的垂线是唯一的 D .过直线外一点作此直线的平行平面是唯一的 (课本练习改编)

高考数学模拟试题(文科)及答案

凹凸教育高考文科数学模拟题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,U R =且{}{} 2|12,|680, A x x B x x x =->=-+<则()U C A B I 等于 (A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)- 2.已知i z i 32)33(-=?+(i 是虚数单位),那么复数z 对应的点位于复平面内的 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列有关命题的说法正确的是 (A )命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. (B )“1x =-”是“2560x x --=”的必要不充分条件. (C )命题“x R ?∈,使得210x x ++<”的否定是:“x R ?∈, 均有210x x ++<”. (D )命题“若x y =,则sin sin x y =”的逆否命题为真命题. 4.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千米()a b <,再前进c 千米,则此人离起点的距离s 与时间t 的关系示意图是 (A ) (B ) (C ) (D ) 5.已知(31)4,1()log ,1a a x a x f x x x -+

2018年高三文科数学模拟试卷04

2016年高考模拟试卷04 文科数学 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。第I 卷1至2页。第II 卷3至4页。考试结束后,将本草纲目试卷和答题卡一并交回。 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。 3.第I 卷共12小题,第小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 第I 卷 一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.) 1. 已知集合{}1,0,1M =-和{}0,1,2,3N =的关系的韦恩(Venn )图如图1所示,则阴影部 分所示的集合是( ) A .{}0 B .{}0,1 C .{}1,2,3- D .{}1,0,1,2,3- 2. 命题“存在实数x ,使2280x x +-=”的否定是( ) A .对任意实数x , 都有2280x x +-= B .不存在实数x ,使2280x x +-≠ C .对任意实数x , 都有2280x x +-≠ D .存在实数x ,使2280x x +-≠ 3. 若复数 1i 1 2i 2 b +=+(i 是虚数单位,b 是实数),则b =( ) A .2- B .1 2 - C .12 D .2 4. 已知平面向量(1,2)AB =,(2,)AC y =,且0AB AC ?=,则23AB AC +=( ) A .(8,1) B .(8,7) C .()8,8- D .()16,8 图1

2019高考文科数学模拟试卷(文科)一

2019高考文科数学模拟试卷 一、选择题 1. 已知集合{ } 2 230A x N x x =∈+-≤,则集合A 的真子集个数为 (A )31 (B )32 (C )3 (D )4 2. 若复数()()21z ai i =-+的实部为1,则其虚部为 (A )3 (B )3i (C ) 1 (D )i 3.设实数2log 3a =,12 13b ??= ??? ,13 log 2c =,则有 (A )a b c >> (B )a c b >> (C )b a c >> (D )b c a >> 4.已知1 cos()43 π α+ =,则sin2α= (A )79- (B )79 (C )22± (D )79 ± 5. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,右图是源于其思想的一个程序框图,若输入的,a b 分别为5,2,则输出的n 等于 (A )2 (B )3 (C )4 (D )5 6.如图,AB 为圆O 的一条弦,且4AB =,则OA AB =u u u r u u u r g (A )4 (B )-4 (C )8 (D )-8 7.以下命题正确的个数是 ①函数()f x 在0x x =处导数存在,若0:()0p f x '=;0:q x x =是()f x 的极值点, 则p 是q 的必要不充分条件 ②实数G 为实数a ,b 的等比中项,则G ab =± ③两个非零向量a r 与b r ,若夹角0a b

高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷 考生须知: 1、全卷分试卷I 、II ,试卷共4页,有三大题,满分150分。考试时间120分钟。 2、本卷答案必须做在答卷I 、II 的相应位置上,做在试卷上无效。 3、请用蓝、黑墨水笔或圆珠笔将姓名、准考证号分别填写在答卷I 、II 的相应位置上,用2B 铅笔将答卷I 的准考证号和学科名称所对应的方框内涂黑。 参考公式: 如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B ) V =Sh 如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B ) 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p , 那么n V = 3 1Sh 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C k n p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 棱台的体积公式 S = 4πR 2 )2211(3 1 S S S S h V ++= 球的体积公式 其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =3 4πR 3 的高 其中R 表示球的半径 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图,全集}9,7,6,4,2,1{=I , 其中}9,7,4,2{=M ,}9,7,4,1{=P ,}7,4,2{=S 是I 的3个子集,则阴影部分所表示的集合等于 ( ▲ ) (A )}9,7,4{ (B )}9,7{ (C )}9,4{ (D )}9{ 2.已知a R ∈,则“2a >”是“2 2a a >”成立的( ▲ ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 3.已知βα,是不同的两个平面,n m ,是不同的两条直线,则下列命题中不正确...的是( ▲ ) (A )若α⊥m n m ,//,则α⊥n (B )若,m m αβ⊥⊥,则αβ∥ (C )若βα?⊥m m ,,则αβ⊥ (D )若,m n ααβ=I ∥,则m n ∥ 4.下列函数中,既是偶函数又在) , 0(∞+上单调递增的是( ▲ ) (A )||ln x y = (B )2 x y -= (C )x e y = (D )x y cos = 5. 某中学高三理科班从甲、乙两个班各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( ▲ ) (A )8 (B )7 (C )9 (D )168 (第5题) 乙甲y x 6 1 1 92 6 11805 6798

(完整版)高三数学文科模拟试题

数学(文)模拟试卷 1.复数2i i 1 z = -(i 为虚数单位)在复平面内对应的点所在象限为() 第二象限 B.第一象限 C.第四象限 D.第三象限 2.已知命题p :0x ?>,总有(1)1x x e +>,则p ?为( ) A .00x ?≤,使得0 0(1)1x x e +≤ B .0x ?>,总有(1)1x x e +≤ C .00x ?>,使得0 0(1)1x x e +≤ D .0x ?≤,总有(1)1x x e +≤ 3.已知集合{}{} 21,0,1,2,3,20,A B x x x =-=->则A B =I () A .{3}= B.{2,3} C.{-1,3} D.{1,2,3} 4.如下图所示是一个几何体的三视图,则这个几何体外接球的表面积为( ) A .8π B .16π C. 32π D .64π 5.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,4则输出v 的值为( ) A .399 B .100 C .25 D .6 6.要得到函数x x x f cos sin 2)(=的图象,只需将函数x x x g 22sin cos )(-=的图象( ) A .向左平移 2π个单位 B .向右平移2π个单位 C .向左平移4π个单位D .向右平移4 π 个单位

7.若变量x ,y 满足约束条件1021010x y x y x y -+≥?? --≤??++≥? ,则目标函数2z x y =+的最小值为( ) A .4 B .-1 C. -2 D .-3 8.在正方形内任取一点,则该点在此正方形的内切圆外的概率为( ) A . 44 π- B . 4 π C .34π- D .24π- 9.三棱锥P ABC PA -⊥中,面ABC ,1,3AC BC AC BC PA ⊥===,,则该三棱锥外接球的表面 积为 A .5π B .2π C .20π D .7 2 π 10.已知 是等比数列,若,数列的前项和为,则为 ( ) A . B . C . D . 11.已知函数2log ,0,()1(),0,2 x x x f x x >?? =?≤??则((2))f f -等于( ) A .2 B .-2 C . 1 4 D .-1 12.设双曲线22 221(00)x y a b a b -=>>,的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的 右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则2e =( ) A .322+B .522- C .12+D .422-二.填空题 13.已知平面向量a ,b 的夹角为 23 π ,且||1=a ,||2=b ,若()(2)λ+⊥-a b a b ,则λ=_____. 14.曲线y =2ln x 在点(1,0)处的切线方程为__________. 15.已知椭圆22 221(0)x y C a b a b +=>>:的左、右焦点为F 1,F 2,3,过F 2的直线l 交椭圆C 于A , B 两点.若1AF B ?的周长为43 C 的标准方程为 . 16.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ?组成的集合:对于函数 ()x ?,存在一个正数M ,使得函数()x ?的值域包含于区间[,]M M -。例如,当31()x x ?=,2()sin x x ?=时,1()x A ?∈,2()x B ?∈。现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ?∈,x R ?∈,()f a b =”; ②若函数()f x B ∈,则()f x 有最大值和最小值; ③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +?;

全国高考文科数学模拟试题及答案

2017年普通高等学校招生全国统一模拟考试 文科数学 考场:___________座位号:___________ 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。满分150分,考试时间120分 钟. 第I 卷(选择题共60分) 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合 () U A B 中的元素共有( ) (A) 3个 (B ) 4个 (C )5个 (D )6个 (2)(2) 复数 3223i i +=-( ) (A )1 (B )1- (C )i (D)i - (3)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( ) (A )17- (B )17 (C )1 6 - (D )16 (4)已知tan a =4,cot β=1 3 ,则tan(a+β)=( ) (A)711 (B)711- (C) 713 (D) 713 - (5)已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则=a ( ) A. 2 B. 26 C. 2 5 D. 1 (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( ) (A )0 (B )1 (C )2 (D )4

(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π + =x y ,④)4 2tan(π -=x y 中,最小正周期为π的所有函数为( ) A.①②③ B. ①③④ C. ②④ D. ①③ (8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几 何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 (9)若0tan >α,则( ) A. 0sin >α B. 0cos >α C. 02sin >α D. 02cos >α (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3 π 中心对称,那么φ的最小值为( ) (A) 6π (B) 4π (C) 3π (D) 2 π (11)设,x y 满足24, 1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ ( ) (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值 (12)已知椭圆2 2:12 x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。若3FA FB =,则AF =( ) (A) (B) 2 (C) (D) 3 第Ⅱ卷(非选择题 共90分)

高考数学文科模拟试卷及答案

高考数学文科模拟试卷及答案 摒弃侥幸之念,必取百炼成钢;厚积分秒之功,始得一鸣惊人。长风破浪会有时,直 挂云帆济沧海。待到高考过后时,你在花丛中笑。祝高考顺利啊!下面就是小编给大 家带来的高考数学文科模拟试卷及答案,希望大家喜欢! 第I卷(选择题部分共50分) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合= A.B.C.D. 2.已知i为虚数单位,若复数在复平面上对应的点在虚轴上,则实数a的值是 A.B.C.2D.-2 3.设,则“a=l”是“函数为偶函数”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.执行如图所示的程序框图,则输出的s值是 A.-1 B. C. D.4 5.为三条不重合的直线,为三个不重合的平面,给出下列五个命题: ①②③ ④⑤。其正确命题的个数是 A.1个 B.2个 C.3个 D.4个 6.已知D是由不等式组所确定的平面区域,则圆在区域D内的弧长为 A.B.C.D. 7.已知某四棱锥的三视图(单位:cm)如图所示, 则该四棱锥的体积是 A.B. C.D.

8.某次数学测试中,学号为i(i=1,2,3)的三位学生的考试成绩则满足的学生成绩情况的概率是 A.B.C.D. 9.在△ABC中,角A,B,C所对的边分别为a,b,c,若= A.B.C.D. 10.已知点F1,F2分别是椭圆为C:的左、右焦点,过点作x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线于点Q,若直线PQ与双曲线的一条渐近线平行,则椭圆的离心率为 A.B.C.D. 第Ⅱ卷(非选择题部分共100分) 二、填空题:本大题共7小题,每小题4分,共28分. 11.函数的零点有个. 12.设样本的平均数为,样本的平均数为,若样本的平均数为. 13.已知数列为等差数列,则=. 14.△ABC外接圆的半径为1,圆心为O,且,则的值是. 15.过直线2x—y+3=0上点M作圆(x-2)2+y2=5的两条切线,若这两条切线的夹角为90°,则点M的横坐标是. 16.设函数,则实数a的取值范围是。 17.已知三个正数a,b,c满足a-b-c=0,a+bc-l=0,则a的最小值是. 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)已知函数(其中)的最小正周期为,值为2. (I)求A,的值; (II)设的值. 19.(本小题满分14分)在三棱柱ABC—A1B1C1中,AB=AC=AA1=2,平面ABC1⊥平面AA1C1C,∠AA1C1=∠BAC1=60°,设AC1与AC相交于点O,如图. (I)求证:BO⊥平面AA1C1C; (Ⅱ)求二面角B1—AC1—A1的大小。 20.(本小题满分15分),已知数列满足:a1=1,,设 (I)求,并证明:; (II)①证明:数列为等比数列;

相关文档
相关文档 最新文档