文档库 最新最全的文档下载
当前位置:文档库 › 2011—2017高考全国卷Ⅰ文科数学统计、概率总汇编

2011—2017高考全国卷Ⅰ文科数学统计、概率总汇编

2011—2017高考全国卷Ⅰ文科数学统计、概率总汇编
2011—2017高考全国卷Ⅰ文科数学统计、概率总汇编

新课标全国卷Ⅰ文科数学汇编

统计、概率

一、选择题

【2017,2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,

,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是

A. 12,,,n x x x 的平均数

B. 12,,,n x x x 的标准差

C. 12,,

,n x x x 的最大值 D. 12,,

,n x x x 的中位数

【2017,4】如图,正方形ABCD 的图形来自中国古代的太极图,正方形切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形随机取一点,则此点取自黑色部分的概率是( )

A.

14 B.π8 C.12 D.π4

【2016,3】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ).

A .

13 B . 12 C . 23 D . 56

【2015,4】如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5

中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .

310 B .15 C .110 D .120 【2013,3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).

A .

12 B .13 C .14 D .16

【2012,3】在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线1

12

y x =+上,则这组样本数据的样本相关系数为( ) A .-1 B .0 C .

1

2

D .1

【2011,6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).

A.13

B.12

C.23

D.34

二、填空题

【2014,13】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. 三、解答题

【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天依次抽取的16个零件的尺寸:

经计算得16119.9716i i x x ===∑,

0.212s ==≈, 18.439≈

,()16

1

()8.5 2.78i i x x i =--=-∑,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)

(1)求(),i x i (i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)

附:样本(x i ,y i )(i =1,2,…,n )的相关系数()()

n

i

i

x x y y r --=

∑0.09≈.

【2016,19】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期更换的易损零件数,得下面柱状图

.

频数

x 表示1台机器在三年使用期需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单

位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求

y 与x 的函数解析式;

(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;

(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量(单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i ,和年销售量y i (i =1,2,3,…,8)的数

据作了初步处理,得到下面的散点图及一些统计量的值,表中8

118i i

i ωωω===∑

ω

(Ⅰ)根据散点图判断,y=a+bx 与y c =+,哪一个宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;

(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x ,根据(Ⅱ)的结果回答下列问题: (1)当年宣传费x=49时,年销售量及年利润的预报值时多少? (2)当年宣传费x 为何值时,年利润的预报值最大?

【2013,18】为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A 药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B 药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

【2012,18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式;

①假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。

【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别成为A 配方和B 配方)做试验,各生产了100件这样的产品,并测量了每件产品的质量指标值,得到了下面试验结果.

A 配方的频数分布表

B 配方的频数分布表

(1)分别估计用A 配方,B 配方生产的产品的优质品率; (2)已知用B 配方生产的一件产品的利润y (单位:元)

与其质量指标值t 的关系式为2,94,2,94102,4,102.t y t t -

=

估计用B 配方生产的一件产品的利润大于0的概率,并

求用B 配方生产的上述100件产品平均一件的利润.

解 析

一、选择题

【2017,2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,

,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是

A. 12,,,n x x x 的平均数

B. 12,,,n x x x 的标准差

C. 12,,

,n x x x 的最大值 D. 12,,

,n x x x 的中位数

解:一组样本数据的方差与标准差反映了这组样本数据的稳定程度,故选B 【2017,4】如图,正方形ABCD 的图形来自中国古代的太极图,正方形切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形随机取一点,则此点取自黑色部分的概率是( )

A.

14 B.π8 C.12 D.π4

解:设正方形的边长为2a ,则黑色部分的面积为21

2

a π,而正方形的面积为24a ,由几何概率模型可得,

所求概率为2

21248

a a ππ=,选B 【2016,3】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ). A .

13 B . 12 C . 23 D . 56

解析:选C. 只需考虑分组即可,分组(只考虑第一个花坛中的两种花)情况为(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共6种情况,其中符合题意的情况有4种,因此红色和紫色的花不在同一花坛的概率是

2

3

.故选C . 【2015,4】如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5

中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .

310 B .15 C .110 D .1

20

解:选C ,从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,1种,故所求概率为

1

10

,故选C 【2013,3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).

A .

12 B .13 C .14 D .16

解析:选B. 由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为

1

3

. 【2012,3】3.在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线1

12

y x =

+上,则这组样

本数据的样本相关系数为( ) A .-1 B .0 C .12

D .1

【解析】因为112y x =+中,1

02

k =>,所以样本相关系数0r >,

又所有样本点(i x ,i y )(i =1,2,…,n )都在直线1

12

y x =+上,

所以样本相关系数1r =,故选择D 。

【2011,6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).

A.13

B.

12 C.23 D.34

【解析】选A.. 甲、乙两位同学参加3个小组的所有可能性有339?=(种),其中甲、乙两人参加同一个小组的情况有3种.故甲、乙两位同学参加同一个兴趣小组的概率31

93

P ==.

二、填空题

【2014,13】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.

解:设数学书为1,2,语文书为A ,则所有的排法有(1,2,A),(1,A,2),(2,1, A),(2, A,1),(A,1,2),(A,2,1)共6 种,其中2 本数学书相邻的情况有4 种情况,故所求概率为4263

P ==. 三、解答题

【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天依次抽取的16个零件的尺寸:

经计算得16119.9716i i x x ===∑,0.212s ==≈,

18.439≈,()16

1

()8.5 2.78i i x x i =--=-∑,

其中x i 为抽取的第i 个零件的尺寸,i =1,2,…,16. (1)求(),i x i (i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)

附:样本(x i ,y i )(i =1,2,…,n )

的相关系数()()

n

i

i

x x y y r --=

0.09≈.

【解析】(1)16

118.516i i y y ===∑,1616

11

()()()() 2.78i i i i i x x y y x x i y ==--=--=-∑∑

0.848s =,

18.439≈

故()()

2.78

0.1780.84818.439

n

i

i x

x y y r ---=

≈-?∑

0.178<0.25r =. 所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.

(2)(i) 39.9730.2129.334x s -=-?=,39.9730.21210.606x s +=+?= 第13个零件的尺寸为9.22,9.229.334<,

所以从这一天抽检的结果看,需对当天的生产过程进行检查. (ii)剔除9.22,这条生产线当天生产的零件尺寸的均值为169.22169.979.22

10.021515

x -?-==,

方差为

222221

[(9.9510.02)(10.1210.02)(9.9610.02)(9.9610.02)(10.0110.02)15

-+-+-+-+-

222222(9.9210.02)(9.9810.02)(10.0410.02)(10.2610.02)(9.9110.02)(10.1310.02)+-+-+-+-+-+-2222(10.0210.02)(10.0410.02)(10.0510.02)(9.9510.02)]0.008+-+-+-+-=

故标准差为0.09.

(ii)解法二:剔除9.22,这条生产线当天生产的零件尺寸的均值为

169.22169.979.22

10.021515

x -?-==,

由0.212s ==≈,得16

2221

=0.21216+169.97=1591.13i i x =??∑,

试剔除离群值,这条生产线当天生产的零件尺寸的方差0.09s '=

≈ 【2016,19】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期更换的易损零件数,得下面柱状图

.

频数

更换的易损零件数

x 表示1台机器在三年使用期需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单

位:元),n 表示购机的同时购买的易损零件数. (1)若19n =,求

y 与x 的函数解析式;

(2)若要求 “需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;

(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个

还是20个易损零件?

解析 (1)当19x 时,192003800y =?=(元);

当19x >时,()19200195005005700y x x =?+-?=-(元),

所以3800,,195005700,,19x x y x x x ∈?=?-∈>?

N N .

(2)由柱状图可知更换易损零件数的频率如表所示.

所以更换易损零件数不大于18的频率为:0.060.160.240.460.5++=<,

更换易损零件数不大于19的频率为:0.060.160.240.240.700.5+++=>,故n 最小值为19. (3)若每台都购买19个易损零件,则这100台机器在购买易损零件上所需费用的平均数为:

10019

20020500210500

4000100

??+?+??=(元)

; 若每台都够买20个易损零件,则这100台机器在购买易损零件上所需费用的平均数为:

1002020010500

4050100

??+?=(元)

.

因为40004050<,所以购买1台机器的同时应购买19个易损零件.

【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量(单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i ,和年销售量y i (i =1,2,3,…,8)的数据作了初步处理,得到下面的散点图及一些统计量的值. 8

1

18i i ωωω

===∑表

中(Ⅰ)

根据散点图判断

y=a+bx 与y c =+,哪一个宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不

必说明理由);

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;

(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x ,根据(Ⅱ)的结果回答下列问题: (1)当年宣传费x=49时,年销售量及年利润的预报值时多少? (2)当年宣传费x 为何值时,年利润的预报值最大?

解:(Ⅰ) 由散点图可知y c =+适合作为年销售量y 关于年宣传费x 的回归方程类型. …2分

ω

(Ⅱ)设x ω=y=c+d ω,由公式得

108.8

=

1.6

β=68,α=563-68×6.8=100.6,所以y=100.6+68ω, 所以y 关于x 的回归方程为100.6+68y x = …6分

(Ⅲ) (1)当x=49时,年销售量的预报值y=100.6+68×7=576.6,

年利润的预报值z=0.2×576.6y-49=66.32, …9分

(2)因为 2

0.2(100.6+68)()13.620.12z x x x x =-=-+

x ,即宣传费x=46.24千元时,年利润的预报值最大. …12分 考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识 19. 解析 (1)由散点图变化情况选择y c x =+较为适宜.

(2)由题意知()()

()

8

1

8

2

1

108.8

681.6

i

i

i i

i w w y y d w w ==--=

=

=-∑∑. 又y c x =+一定过点()

,w y ,所以56368 6.8100.6c y d w =-=-?=, 所以y 关于x 的回归方程为100.6y x =+(3)(ⅰ)由(2)可知当49x =时,100.66849576.6y =+=,

0.2576.64966.32z =?-=.

所以年宣传费49x =时,年销售量为576.6t ,年利润的预报值为66.32千元. (ⅱ)(0.20.2100.66813.620.12z y x x x x x =-=+-=+=

)

2

26.8 6.820.12x -

++.

6.8x =,即2

6.846.24x ==(千元)时,年利润的预报值最大, 【2013,18】为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3

2.4

服用B 药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2

2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得

x =

1

20

(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)

=2.3,

y =

1

20

(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)

=1.6.

由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:

从以上茎叶图可以看出,A 药疗效的试验结果有

710的叶集中在茎2,3上,而B 药疗效的试验结果有7

10

的叶集中在茎0,1上,由此可看出A 药的疗效更好.

【2012,18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N )的函数解析式;

①假设花店在这100天每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率, 求当天的利润不少于75元的概率。

【解析】(1)当日需求量17≥n 时,利润85517=?=y ;

当日需求量16≤n 时,利润8510)17(55-=--=n n n y 。

所以当天的利润y 关于当天需求量n 的函数解析式为???≥≤-=)17(85

)

16(8510n n n y (N n ∈)。

(2)①假设花店在这100天每天购进17枝玫瑰花,

则这100天的日利润(单位:元)的平均数为

]8510851385158516)85160(16)85150(20)85140(10[100

1

?+?+?+?+-?+-?+-??=

y

4.76=(元)

。 ②利润不低于75元当且仅当日需求量不少于16枝。 故当天的利润不少于75元的概率为

7.010.013.015.016.016.0=++++=p 。

【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别成为A 配方和B 配方)做试验,各生产了100件这样的产品,并测量了每件产品的质量指标值,得到了下面试验结果.

A 配方的频数分布表

B 配方的频数分布表

(1)分别估计用A 配方,B 配方生产的产品的优质品率;

(2)已知用B 配方生产的一件产品的利润y (单位:元)

与其质量指标值t 的关系式为2,94,2,94102,4,102.t y t t -

=

估计用B 配方生产的一件产品的利润大于0的概率,并

求用B 配方生产的上述100件产品平均一件的利润.

【解析】(1)由试验结果知,用A 配方生产的产品中优质品的频率为228

0.3100

+=,所以用A 配方生产的产品的优质品率的估计值为0.3.

由试验结果知,用B 配方生产的产品中优质品率的频率为3210

0.42100

+=,所以用B 配方生产的产品的优质品率的估计值为0.42.

(2)由条件知,用B 配方生产的一件产品的利润大于0,需其质量指标值94t ,

由试验结果知,质量指标值94t

的频率为0.96.

用B 配方生产的产品平均一件的利润为()1

42542424 2.68100??-+?+?=???

?(元)

2019年全国高考文科数学试题分类汇编之统计与概率

一、选择题: 1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,???,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A .1x ,2x ,???,n x 的平均数 B .1x ,2x ,???,n x 的标准差 C .1x ,2x ,???,n x 的最大值 D .1x ,2x ,???,n x 的中位数 2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7 4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )

A.1 4 B. 8 π C. 1 2 D. 4 π 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为() A. 4 5 B. 3 5 C. 2 5 D. 1 5 6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为() A. 1 10 B. 1 5 C. 3 10 D. 2 5 二、解答题: 7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 经计算得 16 1 1 9.97 16i i x x = == ∑,1616 222 11 11 ()(16)0.212 1616 i i i i s x x x x == =-=-≈ ∑∑, 16 2 1 (8.5)18.439 i i = -≈ ∑,16 1 ()(8.5) 2.78 i i x x i = --=- ∑,其中i x为抽取的第i个零件的尺寸,1,2,,16 i=???. (1)求(,) i x i(1,2,,16) i=???的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25 r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).

2017年高考全国1卷理科数学试题和答案解析

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;

2017年高考理科数学(全国卷1)试题与答案(word版)

2017年高考理科数学(全国卷1)试题及答案 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则( ) A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆 中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内 随机取一点,则此点取自黑色部分的概率是( ) A .14 B . π8 C .12 D .π4 3.设有下面四个命题 1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .13,p p B .14,p p C .23,p p D .24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和 等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三 角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和 为( ) A .10 B .12 C .14 D .16 8.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么 在和两个空白框中,可以分别填入( )

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

2017年高考全国卷一文科数学试题及答案

2017年普通高等学校招生全国统一考试全国卷一文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?

2020高考数学分类汇编--概率统计

2020 年普通高等学校招生全国统一考试一卷理科数学 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度 x(单位:°C) 的关系,在 20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i 1,2, ,20)得到下面的 散点图: 由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发 芽率y 和温度 x 的回归方程类型的是 2 A . y a bx B . y a bx C. y a be x D. y a bln x 19.(12 分) 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下: 累计负两场者被淘汰;比赛前抽签决定首先比赛的 另一人轮空;每场比赛的胜者两人, 与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩 余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束 . 经抽签,甲、乙首先比赛,丙轮空 .设每场比赛双方获胜的概率都为1, 2 (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率;

( 3)求丙最终获胜的概率 . 5.D 6. B 7.C 8. C 1 19.解:( 1)甲连胜四场的概率为. 16 (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 20

个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得 x i i1 60 , 比赛四场结束,共有三种情况: 1 甲连胜四场的概率为 ; 16 1 乙连胜四场的概率为 1 ; 16 1 丙上场后连胜三场的概率为 1 . 8 1 1 1 3 所以需要进行第五场比赛的概率为 1 1 1 1 3 . 16 16 8 4 (3)丙最终获胜,有两种情况: 比赛四场结束且丙最终获胜的概率为 1 . 8 比赛五场结束且丙最终获胜, 则从第二场开始的四场比赛按照丙的胜、 三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为 2020 年普通高等学校招生全国统一考试 理科数学 3.在新冠肺炎疫情防控期间,某超市开通网上销售业务, 每天能完成 1200 份订单配货, 由 于订单量大幅增加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知 该超市某日积压 500份订单未配货,预计第二天的新订单 1600 份的概率为 0.05,志愿者每 人每天能完成 50 份订单的配货,为使第二天 积压订单及当日订单的配货的概率不小于 0.95,则至少需要志愿者 A .10名 B .18名 C .24名 D .32 名 18.( 12 分) 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地 区某种野生动物的数量, 将其分成面积相近的 200 个地块, 从这些地块中用简单随机抽样的 方法抽取 20 个作为样区, 调查得到样本数据 x i ,y i i 1,2, ,20 ,其中 x i 和 y i 分别表示第 i 负、轮空结果有 1 ,1 , 1 16 8 8 因此丙最终获胜的概率为 1 1 1 1 7 8 16 8 8 16

(完整版)2017年高考数学试题分类汇编之概率统计,推荐文档

2017 年高考试题分类汇编之概率统计 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2017 课标I 理)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是() A. 1 4 B. 8 C. 1 2 D. 4 (第1 题)(第2 题) 2.(2017 课标III 理)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1月至2016 年12 月期间月接待游客量(单位万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是() A.月接待游客量逐月增加 C. 各年的月接待游客量高峰期大致在7,8 月 B.年接待游客量逐年增加 D. 各年1月至6 月的月接待游客量相对7 月至12 月,波动性更小,变化比较平稳 3.(2017 课标Ⅱ文)从分别写有 1,2,3,4,5 的5 张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()1 A.10 1 B.5 3 C.10 2 D.5 4.(2017 课标I 文)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位: kg )分别为x1 , x2 ,?x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1, x2 ,?x n的平均数 C.x1, x2 ,?x n的最大值 B.x1, x2 ,?x n的标准差 D.x1, x2 ,?x n的中位数 5.(2017 天津文)有5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5 支彩笔中任取2 支不同颜色的彩笔,则取出的2 支彩笔中含有红色彩笔的概率为(

高考数学 统计与概率汇编分类 理

高考数学 统计与概率汇编分类 理 (福建)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A. 1 4 B.13 C.12 D.23 (福建)(1+2x)3的展开式中,x 2 的系数等于 A.80 B.40 C.20 D.10 (广东)甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局 就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 A. 12 B.35 C.23 D.34 (湖北)已知随机变量ξ服从正态分布() 22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)= A.0.6 B.0.4 C.0.3 D.0.2 (辽宁)从1,2,3,4,5中任取2各不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B ︱A )= A . 1 8 B . 1 4 C . 25 D . 12 (全国2)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种 【思路点拨】本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。所以要分类进行求解。 【精讲精析】选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有1 44C =种;取出的2本画册, 2本集邮册,此时赠送方法有2 46C =种。总的赠送方法有10种。 (全国新)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组 的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34 (全国新)5 12a x x x x ? ???+- ???????的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40

2017年高考新课标全国3卷文科数学

2017年普通高等学校招生全国统一考试(新课标Ⅲ) 文科数学 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.已知集合A={1,2,3,4},B={2,4,6,8},则A?B中元素的个数为 A.1 B.2 C.3 D.4 2.复平面内表示复数z=i(–2+i)的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至 2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图 . 根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知 4 sin cos 3 αα -=,则sin2α= A. 7 9 -B. 2 9 -C. 2 9 D. 7 9 5.设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z=x-y的取值范围是 A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]

6.函数f (x )=15sin(x +3π)+cos(x ?6π )的最大值为 A .6 5 B .1 C .35 D .15 7.函数y =1+x +2sin x x 的部分图像大致为 A . B . C . D . 8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .2 9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4

2017年全国高考理科数学试题及答案-全国卷1

2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1 ?答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型 (B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2 ?作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要 改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3?非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4 ?考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 ?已知集合A={x|x<1} , B={x| 3x 1},贝y A. AI B {x| x 0} B. AUB R C. AU B {x|x 1} D. AI B 2?如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 绝密★启用前 A. 1 B. n 4 8 C.丄 2 3 .设有卜面四个命题 1 p1:若复数z满足R , z 则z R ; P3 :若复数乙,Z2满足Z1Z2R,则z,S ; n D.- 4 P2:若复数z满足z2R,则z R ; P4 :若复数z R,则z R . A. P1 , P3 B. P1, P4 C. P2, P3 D. P2, P4 4 .记S n为等差数列{a n}的前n项和.若a4a524 , S6 48,则{a n}的公差为 A. 1 B. 2 C. 4 D. 8 5 .函数f (x)在()单调递减,且为奇函数.若 f (1) 1,则满足 1 f(x 2) 1的x的取值范围是 其中的真命题为

2018年高考数学计数原理、统计、概率分类汇编

2018年高考数学计数原理、统计、概率分类汇编 一、选择题 1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻 番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个 半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3

3.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A . B . C . D . 4.【2018全国三卷5】的展开式中的系数为 A .10 B .20 C .40 D .80 5.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,, ,则 A .0.7 B .0.6 C .0.4 D .0.3 6.【2018浙江卷7】设0

高考数学概率与统计(理科)部分分类汇编

鑫榜教育概率与统计(理) 江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为_______ 安徽理(20)(本小题满分13 分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超 过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别p , p , p ,假设p , p ,p 互不相等,且假定各人能否完成任务的事件相互独立. (Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化? (Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q,q,q ,其中q,q ,q 是p,p , p的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ; (Ⅲ)假定p p p ,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达 到最小。 北京理17.本小题共13 分以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X 表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。 12 2 2 (注:方差s2x1 x x2 x K x n x ,其中x为x1,x2,??x n的平均数) n 福建理13.盒中装有形状、大小完全相同的5 个球,其中红色球3 个,黄色球2个。若从中随机取出2个球,则所取出的2 个球颜色不同的概率等于__________ 。 福建理19.(本小题满分13 分)某产品按行业生产标准分成8 个等级,等级系数X 依次为1,2,??,8,其中X≥5为标准 A ,X≥为标准B,已知甲厂执行标准 A 生产该产品,产品的零售价为 6 元/件;乙厂执行标准 B 生产该产品,产品的零售价为 4 元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I)已知甲厂产品的等级系数X1 的概率分布列如下所示: x15678 P0.4a b0.1 且X1 的数字期望EX1=6,求 a,b 的值; II )为分析乙厂产品的等级系数X2 , 从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据 如 下: 3533855634 6347534853 8343447567 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2 的数学期望. III )在(I)、(II )的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.

2017年高考理科数学真题及答案全国卷1

绝密★启用前 2017年全国卷1理科数学真题及答案 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为

2021高考数学分类汇编:统计与概率

2021年高考数学理试题分类汇编 统计与概率 一、选择题 1、(2016年北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多 【答案】C 2、(2016年山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所 示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为 [17.5,20),[20,22.5),[22.5, 25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间 不少于22.5小时的人数是 (A )56 (B )60 (C )120 (D )140 【答案】D 3、(2016年全国I 高考)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发 车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34 【答案】B 4、(2016年全国II 高考)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为

2017高考全国3卷理科数学试题及答案

2017年普通高等学校招生全国统一考试(全国) 理科数学 (试题及答案解析) 一、选择题:(本题共12小题,每小题5分,共60分) 1.已知集合{} 22 (,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为() A .3 B .2 C .1 D .0 【答案】B 【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合, 故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B. 2.设复数z 满足(1i)2i z +=,则z =() A .1 2 B . 2 C .2 D .2 【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2 z -+= ===+++-,则22112z =+=,故选C. 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份

D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【答案】A 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A. 4.5()(2)x y x y +-的展开式中33x y 的系数为() A .-80 B .-40 C .40 D .80 【答案】C 【解析】由二项式定理可得,原式展开中含33x y 的项为 ()()()()2 3 3 2 233355C 2C 240x x y y x y x y ?-+?-=,则33x y 的系数为40,故选C. 5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5 y x =,且与椭圆 22 1123 x y +=有公共焦点.则C 的方程为() A .221810x y - = B .22145x y -= C .22154x y -= D .22 143 x y -= 【答案】B 【解析】∵双曲线的一条渐近线方程为5y x =,则5 b a = ① 又∵椭圆22 1123 x y + =与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22 145 x y - =,故选B. 6.设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【答案】D 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ???上先递减后递增,D 选项错误,故选D. π23π53 -π36 π x y O 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为() A .5 B .4 C .3 D .2

历年高考全国1卷文科数学真题分类汇编-概率与统计无答案

历年高考新课标Ⅰ卷试题分类汇编—概率与统计 1、(2012年第19题)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。 (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。 (Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 (i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。 2、(2013年第3题) 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )错误!未找到引用源。 (B )错误!未找到引用源。 (C )1 4 错误!未找到引用源。(D ) 16 3、(2013年第19题) 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

2008年高考数学理科试题汇编--概率与统计

2008年高考数学试题分类汇编 概率与统计 一.选择题: 1.(安徽卷10).设两个正态分布2111()(0)N μσσ>,和2 222()(0)N μσσ>,的密度函数图像如图所示。 则有( A ) A .1212,μμσσ<< B .1212,μμσσ<> C .1212,μμσσ>< D .1212,μμσσ>> 2.(山东卷7)在某地的奥运火炬传递活动中,有编为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编能组成3为公差的等差数列的概率为B (A ) 511 (B )681 (C )3061 (D )408 1 3.(山东卷8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 (A )304.6 (B )303.6 (C)302.6 (D)301.6 4.(江西卷11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为C A . 1180 B .1288 C .1360 D .1 480 5.(湖南卷4)设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 6.(重庆卷5)已知随机变量ζ服从正态分布N (3,a 2 ),则P (3)ζ<=D (A) 15 (B) 14 (C) 13 (D) 12 7.(福建卷5)某一批花生种子,如果每1粒发牙的概率为 4 5 ,那么播下4粒种子恰有2粒发芽的概率是B

2017年全国二卷理科数学高考真题及详解(全)

20XX 年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.=++i 1i 3 A .i 21+ B .i 21- C .i 2+ D .i 2- 2. 设集合{}4 2 1,,=A ,{} 042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π36 5.设y x 、满足约束条件?? ? ??≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是 A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A .12种 B .18种 C . 24种 D .36种 理科数学试题 第1页(共4页)

高考数学-统计与概率汇编分类-理

2011高考数学 统计与概率汇编分类 理 (福建)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A. 1 4 B.13 C.12 D.23 (福建)(1+2x)3的展开式中,x 2 的系数等于 A.80 B.40 C.20 D.10 (广东)甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局 就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 A. 12 B.35 C.23 D.34 (湖北)已知随机变量ξ服从正态分布() 22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)= A.0.6 B.0.4 C.0.3 D.0.2 (辽宁)从1,2,3,4,5中任取2各不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B ︱A )= A . 1 8 B . 1 4 C . 25 D . 12 (全国2)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种 【思路点拨】本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。所以要分类进行求解。 【精讲精析】选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有1 44C =种;取出的2本画册, 2本集邮册,此时赠送方法有2 46C =种。总的赠送方法有10种。 (全国新)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组 的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34 (全国新)5 12a x x x x ? ???+- ???????的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40

2017全国卷1理科数学试题详细解析

2017年普通高等学校招生全国统一考试(全国I 卷) 理科数学 解析人 李跃华 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上, 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、 选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 已知集合{}{} 131x A x x B x =<=<, ,则() A .{}0=< A B x x B .A B =R C .{}1=> A B x x D .A B =? 【答案】A 【解析】{}1A x x =<,{}{}310x B x x x =<=< ∴{}0A B x x =< ,{}1A B x x =< , 选A 2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白 色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是() A .14 B .π8 C . 12 D . π4 【答案】B 【解析】设正方形边长为2,则圆半径为1 则正方形的面积为224?=,圆的面积为2π1π?=,图中黑色部分的概率为π2 则此点取自黑色部分的概率为π π248 = 故选B

3. 设有下面四个命题() 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . A .13p p , B .14p p , C .23p p , D .24p p , 【答案】B 【解析】1:p 设z a bi =+,则 22 11a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确; 3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复 数,故3p 不正确; 4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确; 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1 B .2 C .4 D .8 【答案】C 【解析】45113424a a a d a d +=+++= 6165 6482 S a d ?=+ = 联立求得11272461548a d a d +=???+=??① ② 3?-①②得()211524-=d 624d = 4d =∴ 选C 5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤ 的x 的取值范围是() A .[]22-, B .[]11-, C .[]04, D .[]13, 【答案】D 【解析】因为()f x 为奇函数,所以()()111f f -=-=, 于是()121f x --≤≤ 等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞, 单调递减 121x ∴--≤≤ 3x ∴1≤≤ 故选D

相关文档 最新文档