文档库 最新最全的文档下载
当前位置:文档库 › 2019届高三文科数学小综合专题练习——概率与统计(最新整理)

2019届高三文科数学小综合专题练习——概率与统计(最新整理)

2019届高三文科数学小综合专题练习——概率与统计(最新整理)
2019届高三文科数学小综合专题练习——概率与统计(最新整理)

O O O G A A A G G G A A O O G G A O

2009 届高三文科数学小综合专题练习——概率与统计

东莞市光明中学解兴武老师提供

一、选择题

1. 4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡片上的数字之和为奇数的概率为()

1 1

2 3

A.B.C.D.

3 2 3 4

2.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1 , 2 , 3 , 4 , 5 , 6 ),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数x +y i 的实部大于虚部的概率是()

A.1

6 B.5

12

C.7

12

D.1

3

3.下图是 2007 年在广州举行的全国少数民族运动会上,七位评委为

某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()7 9

8 4 4 6 4 7

9 3

A.84 ,4.84 B.84 ,1.6 C.85 ,1.6 D.85 ,4

4.Ω={(x, y) | x +y ≤ 6, x ≥ 0, y ≥ 0},A ={(x, y) | x ≤ 4, y ≥ 0, x - 2 y ≥ 0},若向区域Ω上随机投一点P,则

点 P 落在区域 A 的概率为( )

1 2 1 2

A.B.C.D.

3 3 9 9

?π? 5.连掷两次骰子得到的点数分别为m 和n ,记向量a = (m,n) 与向量b = (1,-1) 的夹角为,则∈ 0,?

的概率是()?2?

5 1 7 5

A.B.C.D.

12 2

二、填空题

12 6

6.如图,矩形长为 6,宽为 4,在矩形内随机地撒 300 颗黄豆,

数得落在椭圆外的黄豆数为 96 颗,以此实验数据为依据可以

估计出椭圆的面积约为..

7.统计某校1000名学生的数学会考成绩,得到样本频率分布直

方图如右图示,规定不低于60分为及格,不低于80分为优秀,

则及格人数是;优秀率为.

第 6 题图

8. (2008 梅州一模文)设 a ∈{1, 2, 3}, b ∈{2, 4, 6}, 则函数 y = log b

a

1 是增函数的概率为

x

9.(2008 揭阳一模理)某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有 100 名学生,他们参加活动的次数统计如右图所示.则该文学社学生参加活动的 人均次数为 ;从文学社中任意选两名学生,他们参加活动次数不同的概率是 .

10.(2008 惠州一模文、理)对 196 个接受心脏搭桥手术的病人和 196 个接受血管清障手术的病人进行了 3 年的 又发作过心脏病 未发作过心脏病 合计 心脏搭桥手术 39 157 196 血管清障手术 29 167 196 合计 68 324 392

试根据上述数据计算 k 2

= 比较这两种手术对病人又发作心脏病的影响有没有差别

三、解答题

11. 袋子中装有 18 只球,其中 8 只红球、5 只黑球、3 只绿球、2 只白球,从中任取 1 球,求:

(1) 取出红球或绿球的概率; (2) 取出红球或黑球或绿球的概率.

12. 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有 900 名学生参加了这次

竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为 100 分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

(1) 填充频率分布表的空格

(将答案直接填在表格内);

(2) 补全频数条形图; (3) 若成绩在 75.5

85.5 分的学生为二等奖,问获得二等奖的学生约为多少人

13.(2008 宁夏 19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校 6 名

学生进行问卷调查.6 人得分情况如下:5,6,7,8,9,10.把这 6 名学生的得分看成一个总体.

分组 频数 频率 50.5~60.5 4

0.08 60.5~70.5 0.16 70.5~80.5 10

80.5~90.5 16

0.32

90.5~100.5

合计 50

(1)求该总体的平均数;

(2)用简单随机抽样方法从这 6 名学生中抽取 2 名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过 0.5 的概率.

14.下表为某体育训练队跳高成绩的分布,共有队员 40 人,成绩分为 1~5 五个档次,例如表中所示跳高成绩为 4

分,跳远成绩为 2 分的队员为 5 人.将全部队员的姓名卡混合在一起,任取一张,该卡片队员的跳高成绩为 x,跳远成绩为 y,设 x,y 为随即变量(注:没有相同姓名的队员)

(1)求x = 4 的概率及x ≥ 3 且y = 5 的概率;

15.将 A、B 两枚骰子各抛掷一次,观察向上的点数,问:

(1)共有多少种不同的结果?

(2)两枚骰子点数之和是 3 的倍数的结果有多少种?

(3)两枚骰子点数之和是 3 的倍数的概率是多少?

16.甲、乙两同学下棋,胜一盘得 2 分,和一盘各得一分,负一盘得 0 分.连下三盘,得分多者为胜,求甲获

胜的概率.

17.设有关于x 的一元二次方程x2+ 2ax +b2= 0 .

(1)若a 是从0,1,2,3 四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.18.已知| x |≤ 2,| y |≤ 2 ,点 P 的坐标为(x, y).

(1)求当x, y ∈R 时,P 满足(x - 2)2 + ( y - 2)2 ≤ 4 的概率;

分组 频数 频率 50.560.5 4 0.08 60.570.5 8 0.16 70.580.5 10 0.20 80.590.5 16 0.32 90.5100.5

12 0.24 合计

50

1.00

(2)求当 x , y ∈ Z 时,P 满足(x - 2)2 + ( y - 2)2 ≤ 4 的概率.

一、1.C 2.B 3.C 4.D 5.C 参考答案

1 6 二、6. 16.32

7. 800 20 %

8.

9. 2.2

3

11

10. 1.78 不能作出这两种手术对病人又发作心脏病的影响有差别的结论.

三、11.解:记事件 A =“从 18 只球中任取 1 球是红球”,B =“从 18 只球中任取 1 球是黑球”,C =“从 18 只球中 任取 1 球是绿球”,D =“从 18 只球中任取 1 球是白球”,则

P ( A ) = 8

, P (B ) = 18 5 , P (C ) = 18 3 , P (D ) = 2

. 18 18

(1) 根据题意,A ,B ,C ,D 彼此互斥,由互斥事件概率加法公式,得取出红球或绿球的概率为:

P = P ( A ) + P (C ) = 8 + 3

18 18 =

11

18

2 8

(2) “取出红球或黑球或绿球”的对立事件是“取出白球”,所以 P = 1 - P (D ) = 1 - = .

18 9

12. 解:(1)如下表.

(2)频数直方图如右上所示.

(3)成绩在 75.580.5 分的学生占 70.580.5 分的学生的 5

,因为成绩在 70.580.5 分的学生频

10

率为 0.2 ,所以成绩在 76.580.5 分的学生频率为 0.1 ,

5

成绩在 80.585.5 分的学生占 80.590.5 分的学生的

,因为成绩在 80.590.5 分的学生频率为

10

0.32 ,所以成绩在 80.585.5 分的学生频率为 0.16 所以成绩在 76.585.5 分的学生频率为 0.26, 由于有 900 名学生参加了这次竞赛,

所以该校获得二等奖的学生约为 0.26900=234(人)

13. 解:(1)总体平均数为 1 (5 + 6 + 7 + 8 + 9 +10) = 7.5 .

6

(2)设 A 表示事件“样本平均数与总体平均数之差的绝对值不超过 0.5”.

从总体中抽取 2 个个体全部可能的基本结果有: (5,6) , (5,7) , (5,8) , (5,9) , (5,10) , (6,7) , (6,8) ,

9 1

=

(6,9) ,(6,10) ,(7,8) ,(7,9) ,(7,10),(8,9) ,(8,10) ,(9,10) 共15个基本结果.

事件A 包括的基本结果有:(5,9) ,(5,10) ,(6,8) ,(6,9) ,(6,10) ,(7,8) ,(7,9) .共有7个基本结

7

果.所以所求的概率为P( A) =.

15

14.解:(1)当x = 4 时的概率为P

1

=

40

当x ≥ 3 且y = 5 时的概率为P2=

10

(2)m +n = 40 - 37 = 3

15.解: (1)共有6 ? 6 = 36 种结果

(2)若用(a,b)来表示两枚骰子向上的点数,则点数之和是3的倍数的结果有:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(4,5),(5,4),(3,6),(6,3),(6,6)共12种.

12 1

(3)两枚骰子点数之和是 3 的倍数的概率是:P=

36 3

16.解:甲同学的胜负情况画树图如下:

每盘棋都有胜、和、负三种情况,三盘棋共有3×3×3=27种情况.

设“甲获胜”为事件 A,甲获胜的情况有:三盘都胜得 6 分有一种情况,二胜一和得 5 分有 3 种情况,二胜一负得 4 分有 3 种情况,一胜二和得 4 分有 3 种情况,共 10 种情况.

10

故甲取胜的概率为P(A)= .

27

17.解:设事件A 为“方程a2+ 2ax +b2= 0 有实根”.

当a > 0 ,b > 0 时,方程x2+ 2ax +b2= 0 有实根的充要条件为a ≥b .

(1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2) .其中第一个数表示a 的取值,第二个数表示b 的取值.

9 3 6 事件 A 中包含 9 个基本事件,事件 A 发生的概率为 P ( A ) =

= . 12 4

(2)试验的全部结束所构成的区域为{(a , b ) | 0 ≤ a ≤ 3,0 ≤ b ≤ 2}

构成事件 A 的区域为{(a , b ) | 0 ≤ a ≤ 3,0 ≤ b ≤ 2, a ≥ b }

. 3? 2 - 1

? 22

所以所求的概率为 = 2 = 2 .

3? 2 3

18. 解:(1)如图,点 P 所在的区域为正方形 A B C D 的内部(含边界),满足(x - 2)2

+ ( y - 2)2

≤ 4

的点的区域

为以(2, 2) 为圆心,2 为半径的圆面(含边界).

1

? 22

∴所求的概率 P = 4 = .

1

4 ? 4 16

(2)满足 x , y ∈ Z ,且| x |≤ 2,| y |≤ 2 的点有 25 个, 满足 x , y ∈ Z ,且(x - 2)2 + ( y - 2)2 ≤ 4 的点有 6 个,

∴所求的概率 P 2 =

25

. y D 2

C 2 x

A

B

O

“”

“”

At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

文科数学专题概率与统计(专练)高考二轮复习资料含答案

专題16概率与统计(押题专练〉 1 12 1 ?围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为7都是白子的概率是35.则从 中任意取出2粒恰好是同一色的概率是 ( ) 1 12 A : B. 35 7 17 C D. 1 35 【答案】 C 【解析】设如中取出2粒都是黒子彷事件直「从中取出2粒者卩是白子彷事件B 「任竜取出2粒恰 好是 同一色悄事件C f 则C=AUB,且事件A 与B 互斥-所叹PQ=P(A)+P(B)=昇||二¥即任青取出 -粒恰好是同一色的概率为紧 n 1 2?若[0 , n ],则sin ( 0 + 3)>5成立的概率为( ) 2 C 3 D 1 【答案】B n n 4 n n 1,口 n n 5 n n 【解析】依题意,当 0 € [0, n ]时,0 +-3€[§,丁],由 sin ( 0 +~3)>2得"3 w 0 + _3<_^,。三 0 <2. n 1 因此,所求的概率等于二十n =二,选B 3?在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被 4整除的概率是( ) 1 1 A 3 B -2 C 1 【答案】D 【解析】所有的两位数为 12,14,21,41,32,34,23,43,52,54,25,45 ,共12个, 能被4整除的数为12,32,52,共3个, 3 1 故所求概率P = ;7=匚.故选D 12 4 4.在平面区域{(x , y)|0 w x w 1, 1w y w 2}内随机投入一点 P,则点P 的坐标(x , y)满足y w 2x 的概率 1 A 3 1 B-2

1 1 X - X1 S阴影2 2 5.在区间[0,1]上随机取一个数x,则事件“ log°.5(4x —3)>0”发生的概率为( 1 1 C3 D-4 【答案】D 【解析】因为log o.5(4x —3)>0,所以0<4x —3< 1,即|

高三文科数学统计概率的总结课件.doc

实用标准文案 统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社 区做分层抽样调查。假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96 人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为() A 、101 B、808 C、1212 D、2012 02、某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体学生中抽取一个容量为280 的 样本,则此样本中男生人数为____________. 03、一支田径运动队有男运动员56 人,女运动员42 人。现用分层抽样的方法抽取若干人,若抽取的男运 动员有8 人,则抽取的女运动员有______人。 04、某单位有840 名职工, 现采用系统抽样方法, 抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机 编号, 则抽取的42 人中, 编号落入区间[481, 720] 的人数为() A .11 B.12 C.13 D.14 05、将参加夏令营的600 名学生编号为:001,002,,, 600,采用系统抽样方法抽取一个容量为50 的样 本,且随机抽得的号码为003.这600 名学生分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26, 16, 8 B.25,17,8 C.25,16,9 D.24,17, 9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100 户居民进行月用电量调查, 发现其用电 量都在50 到350 度之间, 频率分布直方图所示. (I) 直方图中x的值为________; (II) 在这些用户中, 用电量落在区间100,250 内的户数为_____. 02、下图是样本容量为200 的频率分布直方图。根据样本的频率分布直 方图估计,样本数据落在[6,10]内的频数为,数据落在(2, 10)内的概率约为 精彩文档

2020高考文科数学概率与统计专项练习

概率与统计专项练习 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.[2019·山东滨州模考]若复数(1-a i)2 -2i 是纯虚数,则实数a =( ) A .0 B .±1 C .1 D .-1 答案:C 解析:(1-a i)2 -2i =1-a 2 -2a i -2i =1-a 2-(2a +2)i. ∵(1-a i)2 -2i 是纯虚数,∴? ?? ?? 1-a 2 =0,2a +2≠0,解得a =1,故选C. 2.[2019·广东广州执信中学测试]从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是( ) A .系统抽样 B .分层抽样 C .简单随机抽样 D .各种方法均可 答案:B 解析:因为社会购买力的某一项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应采用分层抽样的方法,故选B. 3.用反证法证明命题“设a ,b 为实数,则方程x 3 +ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 3 +ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 答案:A 解析:因为“方程x 3 +ax +b =0至少有一个实根”等价于“方程x 3 +ax +b =0的实根的个数大于或等于1”,因此,要做的假设是“方程x 3 +ax +b =0没有实根”. 4.[2019·山东烟台模拟]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽到的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计 1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下: 支付 金额 支付方式 不大于 (Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数; (Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(Ⅰ)400人; (Ⅱ)1 25 ; (Ⅲ)见解析. 【解析】 【分析】 (Ⅰ)由题意利用频率近似概率可得满足题意的人数; (Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率; (Ⅲ)结合概率统计相关定义给出结论即可. 【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人, 所以样本中两种支付方式都使用的有1003025540 ---=,

所以全校学生中两种支付方式都使用的有 40 1000400100 ?=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元, 所以该学生上个月支付金额大于2000元的概率为 125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为1 25 , 因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元, 依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多. 【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力. 2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生 【答案】C 【解析】 【分析】 等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n =+()n *∈N , 若8610n =+,则1 5 n = ,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样. 3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

全国卷文科数学概率统计汇总

概率统计高考题 1.[2016.全国卷3.T5] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A. 158 B. 81 C. 151 D. 30 1 2.[2016.全国卷2.T8] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A. 710 B. 58 C.38 D.310 3.[2015.全国卷1.T4] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A. 103 B.15 C.110 D.1 20 4.[201 5.全国卷2.T3]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显著 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 5.[2013.全国卷1.T3]从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A. 12 B.13 C.14 D.1 6 6.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A. -1 B.0 C. 1 2 D. 1 7.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A. 13 B. 12 C.23 D.34 8.[2014.全国卷1.T13] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

高三文科数学统计概率总结

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规得知晓情况,对甲、乙、丙、丁四个社区 做分层抽样调查。假设四个社区驾驶员得总人数为N ,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员得人数分别为12,21,25,43,则这四个社区驾驶员得总人数N 为( ) A 、101 B 、808 C 、1212 D 、2012 02、某个年级有男生560人,女生420人,用分层抽样得方法从该年级全体学生中抽取一个容量为280得样 本,则此样本中男生人数为____________、 03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样得方法抽取若干人,若抽取得男运动 员有8人,则抽取得女运动员有______人。 04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机 编号, 则抽取得42人中, 编号落入区间[481, 720]得人数为( ) A.11 B.12 C.13 D.14 05、将参加夏令营得600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50得样本, 且随机抽得得号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中得人数依次为( ) A.26, 16, 8 B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电 量都在50到350度之间,频率分布直方图所示、 (I)直方图中x 得值为________; (II)在这些用户中,用电量落在区间[)100,250内得户数为_____、 02、下图就是样本容量为200得频率分布直方图。 根据样本得频率分布直方图估计,样本数据落在[6,10] 内得频数为 ,数据落在(2,10)内得概率约为 03、有一个容量为200得样本,其频率分布直方图如图所示,根据样本得频率分布直方图估计,样本数据落 在区间)10,12??内得频数为 A.18 B.36 C.54 D.72 04、如上题得频率分布直方图,估计该组试验数据得众数为_______,

高中数学概率统计知识万能公式文科

第六部分 概率与统计万能知识点及经典题型Ⅰ 【考题分析】 1、考试题型:选择填空1个,解答题:18(必考) 2、考题分值:17分; 3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率 4、难度系数:0.7-0.8左右,(120分必须全对,100以上者全对) 【知识总结】 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 2 2 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。 分析:?i e 越小越好; 2、残差平方和:21 ?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

高三文科数学统计概率总结

高三文科数学统计概率 总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对 甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() 02、A、101 B、808 C、1212 D、2012 03、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽 取一个容量为280的样本,则此样本中男生人数为____________. 04、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若 干人,若抽取的男运动员有8人,则抽取的女运动员有______人。 05、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() 06、A.11 B.12 C.13 D.14 07、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取 一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营 区,三个营区被抽中的人数依次为() 08、A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间, 频率分布直方图所示. 02、(I)直方图中x的值为________; 100,250内的户数为_____. 03、(II)在这些用户中,用电量落在区间[) 04、下图是样本容量为200的频率分布直方图。根据样本的 频率分布直方图估计,样本数据落在[6,10]内的频数 为,数据落在(2,10)内的概率约为

高三文科数学概率与统计

达濠侨中高三数学(文科)第二轮复习题 概率与统计 一 选择题 1.(2015·新课标全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显着 B .2007年我国治理二氧化硫排放显现成效 C .2006年以来我国二氧化硫年排放量呈减少趋势 D .2006年以来我国二氧化硫年排放量与年份正相关 2.为了解某社区居民的家庭收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 3.一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( ) A .15 B .16 C .17 D .19 4. 【2015高考新课标文】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A ) 310 (B )15 (C )110 (D )1 20 5. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π - 6.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是( ) A .23 B .33 C .43 D .53 7.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等

2020年高考文科数学概率与统计题型归纳与训练

2020年高考文科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一古典概型 例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(). A. 1 5B. 2 5 C. 8 25 D. 9 25 【答案】B 【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42 105 =.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】2 3 【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6 种,其中2本数学书相邻的有4种,则其概率为:42 63 p==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二几何概型 1 / 18

例 1 如图所示,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π 4 【答案】B 【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为 8 22122 ππ=??? ????a a .故选B. 例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】3 2 【解析】方程2 2320x px p 有两个负根的充要条件是2121244(32)0 20320 p p x x p x x p ??=--≥? +=-? 即 2 1,3 p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503 -+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化. 【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. D

高中文科数学(统计与概率)综合练习

《概率与统计》练习 求:(Ⅰ)年降雨量在) 200 , 100 [范围内的概率; (Ⅱ)年降雨量在) 150 , 100 [或) 300 , 250 [范围内的概率; (Ⅲ)年降雨量不在) 300 , 150 [范围内的概率; (Ⅳ)年降雨量在) 300 , 100 [范围内的概率. > · 2.高三某班40名学生的会考成绩全部在40分至100分 之间,现将成绩分成6段:) 50 , 40 [、) 60 , 50 [ 、) 70 , 60 [、 ) 80 , 70 [、) 90 , 80 [、] 100 , 90 [.据此绘制了如图所示的频率分布直方图。在这40名学生中, (Ⅰ)求成绩在区间) 90 , 80 [内的学生人数; (Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间] 100 , 90 [内的概率. " @

3.已知集合}1,1(},2,0,2{-=-=B A . ; (Ⅰ)若},|),{(B y A x y x M ∈∈=,用列举法表示集合M ; (Ⅱ)在(Ⅰ)中的集合M 内,随机取出一个元素),(y x ,求以),(y x 为坐标的点位于区 域D :?? ? ??-≥≤-+≥+-10202y y x y x 内的概率. . 4.某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于%90,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如 A 组 B 组 C 组 ? 疫苗有效 673 x y 疫苗无效 77 90 z > 已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是33.0. (Ⅰ)求x 的值; (Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问C 组应抽取几个? (Ⅲ)已知465≥y ,30≥z ,求不能通过测试的概率.

高考文科数学试题分类汇编11:概率与统计

高考文科数学试题分类汇编11:概率与统计 一、选择题 1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的 机会均等,则甲或乙被录用的概率为 ( ) A . 23 B . 25 C . 35 D . 910 【答案】D 2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某 产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( ) A .0.2 B .0.4 C .0.5 D .0.6 【答案】B 3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发 生的概率为.2 1 ,则 AD AB =____ ( ) A . 12 B . 14 C D 【答案】D 4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的 概率是 ( ) A . 2 3 B . 1 3 C . 12 D . 16 【答案】C 5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件. 为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均 分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为 ( ) A . 116 9 B . 367 C .36 D 【答案】B 7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎 叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是 8 7 7 9 4 0 1 0 9 1 x

概率统计专题复习(文科)

概率、统计专题复习(文科) 例1.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱 厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 20 20 60 (1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率; (3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2 S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2 S 的值.(注:方差2222121[()()()]n s x x x x x x n =-+-++-,其 中x 为12,,n x x x 的平均数) 例2.从装有编号分别为a,b 的2个黄球和编号分别为 c,d 的2个红球的袋中无放回地摸球,每次任摸一球,求:(Ⅰ)第1次摸到黄球的概率;(Ⅱ)第2次摸到黄球的概率. 例3.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1)求z 的值; (2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; (3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

20112017高考全国卷文科数学统计概率汇编

新课标全国卷Ⅰ文科数学汇编 统计、概率 一、选择题 【2017,2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为 12,,,n x x x L ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A. 12,,,n x x x L 的平均数 B. 12,,,n x x x L 的标准差 C. 12,,,n x x x L 的最大值 D. 12,,,n x x x L 的中位数 【2017,4】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A. 14 B.π8 C.12 D.π4 【2016,3】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ). A . 13 B . 12 C . 23 D . 56 【2015,4】如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A . 310 B .15 C .110 D .120 【2013,3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A . 12 B .13 C .14 D .16 【2012,3】在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线1 12 y x =+上,则这组样本数据的样本相关系数为( ) A .-1 B .0 C . 12 D .1 【2011,6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ). A.13 B. 12 C.23 D.34 二、填空题 【2014,13】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.

高考文科数学大题专项统计概率A精编版

……………………………………………………………最新资料推荐………………………………………………… 四统计概率(A) 1.(2018·大庆模拟)某人租用一块土地种植一种瓜类作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455 kg.已知当年产量低于450 kg时,单位售价为12元/kg,当年产量不低于450 kg时,单位售价为10元/kg. (1)求图中a,b的值; (2)估计年销售额大于3 600元小于6 000元的概率. 2.(2018·沈阳三模)根据相关数据统计,沈阳市每年的空气质量优良天数整体好转,2013年沈阳优良天数是191天,2014年优良天数为178

天,2015年优良天数为193天,2016年优良天数为242天,2017年优良天数为256天,把2013年年份用代码1表示,以此类推,2014年用2表示,2015年用3表示,2016年用4表示,2017年用5表示,得到如下数据: 1 ……………………………………………………………最新资料推荐………………………………………………… (1)试求y关于x的线性回归方程(系数精确到0.1); (2)试根据(1)求出的线性回归方程,预测2018年优良天数是多少天 (精确到整数). =3 374,=55. x附:y参考数据ii -==. ,参考公式:

3.(2018·厦门一模)为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如表所示: 2 ……………………………………………………………最新资料推荐………………………………………………… 若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条 形图.

高三文科数学统计概率汇总

高三文科数学统计概率汇总

————————————————————————————————作者:————————————————————————————————日期:

统计概率考点总结 【考点一】分层抽样 01、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社 区做分层抽样调查。假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为() A、101 B、808 C、1212 D、2012 02、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的 样本,则此样本中男生人数为____________. 03、一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若干人,若抽取的男运 动员有8人,则抽取的女运动员有______人。 04、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机 编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为() A.11 B.12 C.13 D.14 05、将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样 本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为() A.26, 16, 8B.25,17,8 C.25,16,9 D.24,17,9 【考点二】频率分布直方图(估计各种特征数据) 01、从某小区抽取100户居民进行月用电量调查,发现其用电 量都在50到350度之间,频率分布直方图所示. (I)直方图中x的值为________; 100,250内的户数为_____. (II)在这些用户中,用电量落在区间[) 02、下图是样本容量为200的频率分布直方图。根据样本的频率分布直 方图估计,样本数据落在[6,10]内的频数为,数据落在(2, 10)内的概率约为

2020高考文科数学复习-概率统计含答案

一、选择题 1、2019年2月,国家教育部就“文理分科是否取消”等教改问题征集民意之际,某新闻单位从900名家长中抽取15人,1500名学生中抽取25人,300名教师中抽取5人召开座谈会,这种抽样方法是( ) A .简单随机抽样 B .抽签法 C 2、某雷达测速区规定:凡车速大于或等于70km/h 视为“超速”点对200图,则从图中可以看得出将被处罚的汽车大约有( ) A .30辆 B .40辆 C .60辆 D .80辆 3、在0,1,2,3,…,9这十个数字中,任取四个不同的数字,那么“这四个数字之和大于5”这一事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不确定是何事件 4、某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .不确定是何事件 5、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件: (2)12 (2)4 f f ≤?? -≤?为事件为A ,则事件A 发生的概率为( ) A . 14 B . 58 C . 12 D . 38 二、填空题

6、容量为100的样本数据,依次分为8组,如下表: 则第三组的频率是 . 7、某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别 为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是 . 8、若数据123,,,,n x x x x L 的平均数x =5,方差22σ=,则数据 12331,31,31,,31n x x x x ++++L 的平均数为 ,方差为 . 9、若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆2216x y += 内的概率为 . 10、在一个直径为6的球内随机取一点,则这个点到球面的最近距离大于2的概率为 . 三、解答题 11、潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分 布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)1500,1000[) 。

相关文档
相关文档 最新文档