文档库 最新最全的文档下载
当前位置:文档库 › 初三数学总复习 统计和概率 教案

初三数学总复习 统计和概率 教案

初三数学总复习 统计和概率 教案
初三数学总复习 统计和概率 教案

精品文档

《总复习——统计与概率》教案

一、教学目标

知识与技能:在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率.

过程与方法:经历模仿、参考例题到自己动手完成变式训练,体会概率问题的书写规范.

情感态度与价值观:通过简单概率事件的计算提升学生对数学学习的兴趣.

二、教学重点与难点

重点:概率综合问题的书写格式、概率的计算.

难点:概率大题的书写规范.

三、教学过程

1. 知识回顾

m?)(AP的意义公式n一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件mP(A)?发生的概率包含其中的Am. 种结果,那么事件A n

2. 例题讲解

(2016一检22)一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.

(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;

(2)求两次摸出球上的数字的积为奇数的概率.

解:(1)根据题意,可以列出如下表格:

或根据题意,可以画如下的树状图:

精品文档.

精品文档

. 9由树状图可以看出,所有可能的结果共有种,这些结果出现的可能性相等种情况,4)由(1)得:其中两次摸出的球上的数字积为奇数的有2(4两次摸出的球上的数字积为奇数)=P(∴9错题分析3.

4. 正确示范

精品文档.

精品文档

5. 变式训练

(2015一检20)小红和小白想利用所学的概率知识设计一个摸球游戏,在一个不透明的袋子中装入完全相同的4个小球,把它们分别标号为2,3,4,5.两人先后从袋中随机摸出一个小球,若摸出的两个小球上的数字和是奇数则小红获胜,否则小白获胜.下面的树状图列出了所有可能的结果:

请判断这个游戏是否公平?并用概率知识说明理由.

解:由树状图可知,所有可能的结果共有12种,且每种结果出现的可能性相同

其中两个小球上的数字和是奇数的共有8种,为偶数的共有4种

8241??和为奇数)=,)=P(和为偶数∴P(12312321?∵33∴这个游戏不公平

(2014一检18)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5. 小明先随机地摸出一个小球,小强再随机地摸出一个小球. 记小明摸出球的标号为x,小强摸出球的标号为y. 小明和小强在此基础上共同协商一个游戏:当x与y的积为偶数时,小明获胜;否则小强获胜.

(1)若小明摸出的球不放回,求小明获胜的概率;

(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由.

解:(1)列表如下:

或列树状图如下:

由树状图可知,所有可能的结果共有12种,并且每种情况出现的可能性相等,其中x与y的积为偶数的有6种.

精品文档.

精品文档

1的积为偶数)=与小明获胜的概率P(xy∴2

(2)列表如下:

或列树状图如下:

由树状图可知,所有可能的结果共有16种,并且每种情况出现的可能性相等,其中x与y的积为偶数的有7种.

71 与P(xy的积为偶数)=∴小明获胜的概率162∴游戏规则不公平

总结归纳6.

7. 布置作业

优化设计P72—74

精品文档.

精品文档

教学反思:

精品文档.

新初中数学概率技巧及练习题

新初中数学概率技巧及练习题 一、选择题 1.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( ) A . 34 B . 14 C . 124 D . 125 【答案】D 【解析】 【分析】 求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】 解:∵AH=6,BH=8, 勾股定理得AB=10, ∴HG=8-6=2,S△AHB=24, ∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125 故选D. 【点睛】 本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键. 2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是( ) A . 12 B . 13 C . 16 D . 19 【答案】B 【解析】 【分析】 先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A 、B 、C 表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.

【详解】 画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示) 共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3, 所以小斌和小宇两名同学选到同一课程的概率=31 93 , 故选B. 【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 3.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是() A.B.C.D. 【答案】D 【解析】 【分析】 用中间正方形小孔的面积除以圆的总面积即可得. 【详解】 ∵铜钱的面积为4π,而中间正方形小孔的面积为1, ∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是, 故选:D. 【点睛】 考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等. 4.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分

人教版九年级数学上《概率初步》单元测试含答案

第二十五章概率初步单元测试 一、单选题(共10题;共30分) 1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是 A、B、C、D、 2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是() A、B、C、?D、? 3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率 是() A、B、C、D、 4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是() A、B、C、D、 5、下列模拟掷硬币的实验不正确的是() A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下 B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上

C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上 D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上 6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是() A、B、C、D、 7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是() A、“正面向上”必会出现5次 B、“反面向上”必会出现5次 C、“正面向上”可能不出现 D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次 8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个. A、100个 B、90个 C、80个 D、70个 9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是(??) A、B、C、D、

高中数学概率统计知识万能公式文科

高中数学概率统计知识万 能公式文科 The pony was revised in January 2021

第六部分 概率与统计万能知识点及经典题型Ⅰ 【考题分析】 1、考试题型:选择填空1个,解答题:18(必考) 2、考题分值:17分; 3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率 4、难度系数:左右,(120分必须全对,100以上者全对) 【知识总结】 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数: 112212n n n x x x x ωωωωωω++???+= ++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n =-+-+???+- 二、频率直方分布图下的频率

1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

初三数学概率初步单元测试题及答案

概率初步单元测评附参考答案 (时间:100分钟,满分:110分) 班级:姓名:学号:得分: 一、选择题(每题4分,共48分) 1.下列事件是必然事件的是() A.明天天气是多云转晴 B.农历十五的晚上一定能看到圆月 C.打开电视机,正在播放广告 D.在同一月出生的32名学生,至少有两人的生日是同一天 2.下列说法中正确的是() A.可能性很小的事件在一次实验中一定不会发生 B.可能性很小的事件在一次实验中一定会发生 C.可能性很小的事件在一次实验中有可能发生 D.不可能事件在一次实验中也可能发生 3.下列模拟掷硬币的实验不正确的是() A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下 B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上 C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上 D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上 4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是() A. B. C. D. 5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为() A. B. C. D. 6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是() A. B. C. D. 7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是() 1

A. B. C. D. 8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的 展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是() A. B. C. D. 9.四张完全相同的卡片上,分别画有圆、矩形、等边三 角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为() A. B. C. D. 10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是() A. B. C. D. 11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为() A. B. C. D. 12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是 一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是() A. B. C. D. 2

初三数学九上概率初步所有知识点总结和常考题型测验题

概率初步知识点 一、 概率的概念 某种事件在某一条件下可能发生, 也可能不发生, 但可以知道它发生的可能性的大小, 我们把刻划 (描述) 事件发生的可能性的大小的量叫做概率 . 2、事件类型: ①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件 . ②不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件 . ③不确定事件: 许多事情我们无法确定它会不会发生,这些事情称为不确定事件 . 3、概率的计算 一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都 相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 ( 1) 列表法求概率 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通 常采用列表法。 ( 2) 树状图法求概率 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。 4、利用频率估计概率 ①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某 个常数,可以估计这个事件发生的概率。 ②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模 拟实验。 ③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的 数据称为随机数。 概率初步练习 一、选择题 1、下列成语所描述的事件是必然事件的是( ) A .瓮中捉鳖 B .拔苗助长 C .守株待兔 D .水中捞月 2、在一个不透明的口袋中,装有 5 个红球 3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到 红球的概率为( ) A . 1 B . 1 C . 5 D . 3 5 3 8 8 3、小伟掷一个质地均匀的正方体骰子,骰子的六个面分别刻有 1 到 6 的点数。则向上的一面的点数大于 1 / 3

[精品]新高三数学第二轮专题复习概率与统计优质课教案

高三数学第二轮专题复习:概率与统计 高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳 本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 [10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11 (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图和累积频率的分布图 命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法

知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率 [10,15) 4 0.08 0.08 [15,20) 5 0.10 0.18 [20,25)10 0.20 0.38 [25,30)11 0.22 0.60 [30,35)9 0.18 0.78 [35,40)8 0.16 0.94 [40,45) 3 0.06 1 总计50 1 (2)频率分布直方图与累积频率分布图如下

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

初中数学概率经典测试题及答案

初中数学概率经典测试题及答案 一、选择题 1.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是() A.指针落在标有5的区域内B.指针落在标有10的区域内 C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内 【答案】C 【解析】 【分析】 根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可. 【详解】 解:A、指针落在标有5的区域内的概率是1 8 ; B、指针落在标有10的区域内的概率是0; C、指针落在标有偶数或奇数的区域内的概率是1; D、指针落在标有奇数的区域内的概率是1 2 ; 故选:C. 【点睛】 此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性. 2.下列诗句所描述的事件中,是不可能事件的是() A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰 【答案】D 【解析】 【分析】 不可能事件是指在一定条件下,一定不发生的事件. 【详解】

A、是必然事件,故选项错误; B、是随机事件,故选项错误; C、是随机事件,故选项错误; D、是不可能事件,故选项正确. 故选D. 【点睛】 此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 3.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是() A.抛一枚硬币,出现正面朝上 B.掷一个正六面体的骰子,掷出的点数是5 C.任意写一个整数,它能被2整除 D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球 【答案】D 【解析】 【分析】 根据频率折线图可知频率在0.33附近,进而得出答案. 【详解】 A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误; B、掷一个正六面体的骰子、掷出的点数是5的可能性为1 6 ,故此选项错误; C、任意写一个能被2整除的整数的可能性为1 2 ,故此选项错误; D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是1 3 ,符合题意, 故选:D. 【点睛】 此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.

高中数学《概率与统计》教学设计

高中数学《概率与统计》教学设计 课题:1.3抽样方法 教学目的:1理解什么是系统抽样 2.会用系统抽样从总体中抽取样 教学重点:系统抽样的概念及如何用系统抽样获取样本 教学难点:与简单随机抽样一样,系统抽样也属于等概率抽样,这是本节课的一个难点;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行,这时在整个抽样过程中每个个体被抽取的概率仍然是相等的.这是本节课的又一难点授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数. 2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为 N 1;在整个抽样过程中各个个体被抽到的概率为N n;⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. 4.抽签法:先将总体中的所有个体(共有N个编号(号码可从1到N,并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑